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Complete Genome Sequence of Serratia marcescens Phage MTx
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ABSTRACT Serratia marcescens is a nosocomial pathogen that has evolved resis-
tance to multiple antibiotics. Here, we present the genome sequence of myophage
MTx that infects S. marcescens. MTx encodes 103 proteins, with 26 being assigned a
predicted function or superfamily classification, and it has little similarity with other
phages at the nucleotide level.

erratia marcescens is a pathogen from the Enterobacteriaceae family responsible for

hospital-acquired infections. It is commonly found in soil or water and is able to
infect plants, animals, and humans (1). Considering the ability of S. marcescens to form
biofilms and its emerging drug resistance, there is a need for new approaches, such as
the use of phage, to treat these infections (1, 2). Here, we present the complete genome
sequence of the Serratia-infecting phage MTx.

Using Serratia marcescens D1 (number 8887172; Ward's Science), MTx was isolated
from activated sludge collected at a wastewater treatment plant located in Bryan, TX.
Both the host and phage were cultured as described in reference 3 at 30°C in LB (BD)
broth and agar. Phage genomic DNA was purified and prepared with a TruSeq nano
low-throughput (LT) kit for [llumina MiSeq sequencing with v2 500-cycle chemistry,
which yielded 346,883 reads (4). The 250-bp paired-end reads were quality con-
trolled and trimmed using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) and the FASTX-Toolkit 0.0.14 (hannonlab.cshl.edu/fastx_toolkit/). The MTx con-
tig was assembled using SPAdes v.3.5.0 at 146-fold coverage (5). PCR (forward primer,
5'-GGTTCCTGTGGGTGTAATTGT-3’; reverse primer, 5-CCTCCTGGCAACACCTTATT-3’)
and Sanger sequencing were used to close the genome. Analysis and annotation of the
phage genome were performed using tools in Galaxy (https://cpt.tamu.edu/galaxy
-pub) and Web Apollo, respectively, both hosted by the Center for Phage Technology
at Texas A&M University (6, 7). Gene calling was performed using GLIMMER 3.0 and
MetaGeneAnnotator 1.0 or ARAGORN 2.36 for tRNAs, and gene function was predicted
using BLASTp v.2.2.31 against the UniProtKB Swiss-Prot/TrEMBL and NCBI nonredun-
dant (nr) databases, with a =0.001 expectation value cutoff (8-12). Additionally,
domain searches with InterProScan v.5.22, TMHMM v.2.0, and LipoP v.1.0 were used
(13-15). Further analysis for predictions used HHpred with ummiclust 30_2018_08 for
multiple-sequence alignment (MSA) generation and PDB_mmCIF70 for modeling in the
HHsuite v.3.0 release (16). The presence of rho-independent termination sites was
detected with TransTermHP v.2.09 (17). Phage samples were stained using 2% (wt/vol)
uranyl acetate, and morphology was determined using transmission electron micros-
copy performed at the Microscopy and Imaging Center at Texas A&M University (18).

MTx has a 68,621-bp genome with a G+C content of 49.9% and a 92.6% coding
density from 103 potential protein-coding genes. Predicted functions and superfamily
assignments were given to 26 proteins. The genome has no identified tRNAs. Phage-
Term predicted 3,566-bp terminal repeats (19). In a comparison using progressive-
Mauve, MTx does not share significant nucleotide similarity (<30%) with other phages,
although it encodes 50 proteins similar to multiple Pseudomonas phages (GenBank
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accession numbers LC105987, FM897211, LN610579, and KR869157) and 47 proteins
similar to Escherichia phage ECML-117 (GenBank accession number JX128258) (20).

The genes in MTx do not appear to be grouped by function, as replication and

structural genes are scattered throughout the genome. The enzymatic proteins ex-
pected for replication, including DNA polymerase subunits, two helicases, a ligase, and
a primase, were annotated. MTx encodes a thymidylate synthase (GenBank accession
number QBQ72381). Among the structural components needed for myophage assem-
bly are major and minor capsid proteins and multiple baseplate proteins. MTx contains
a lytic transglycosylase (GenBank accession number QBQ72355) and endolysin (Gen-
Bank accession number QBQ72363); however, the corresponding holin and spanin
components of the typical lysis cassette were not identified.
Data availability. The genome sequence and associated data for phage MTx were
deposited under GenBank accession number MK618717, BioProject accession num-
ber PRJNA222858, SRA accession number SRR8869241, and BioSample accession num-
ber SAMN11360401.
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