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Objective: The aim of this study was to evaluate tau-related structural network metrics derived from gray matter 
magnetic resonance imaging (MRI) scans in cognitively normal (CN) older adults. 
Methods: We recruited 47 amyloid-negative CN older adults (mean age ± standard deviation, 65.0 ± 7.9 years; 26 
women). All participants underwent 3D T1-weighted MRI and 11C-Pittsburgh compound-B and 18F-THK5351 
positron emission tomography scans. Four local network metrics (betweenness centrality, clustering coefficient, 
characteristic path length, and degree) were computed and rendered on individual brain images. We then 
evaluated the correlations between 18F-THK5351 positron emission tomography images and local network metric 
images at the voxel level. 
Results: Significant positive correlations of the four local network metrics with 18F-THK5351 were detected in the 
bilateral caudate. 
Conclusion: Our findings suggest that tau and neuroinflammation in CN older adults may influence the gray 
matter structural network in the caudate.   

1. Introduction 

Aging is a complex process that can be a major risk factor for 
neurodegenerative diseases, including Alzheimer’s disease (AD) [1–3]. 
Normal aging is accompanied by several neuropathological changes, 
such as neuroinflammation and accumulation of misfolded proteins. 
Previous neuropathological studies have shown that tau-related neuro-
fibrillary tangles accumulate in the medial temporal lobe (MTL) with 
aging, even in individuals with normal cognitive function [4]. 

These age-related changes can now by evaluated in vivo owing to the 
recent advent of molecular imaging. 18F-THK5351, one of the first- 
generation tau positron emission tomography (PET) tracers, reveals 
tau-associated regions in AD and is considered a promising biomarker 
for tau [5]. However, several studies have clarified that 18F-THK5351 
reflects not only tau but also astrogliosis-related neuroinflammation 
because of off-target binding to monoamine oxidase B (MAO-B) [6]. 
Therefore, 18F-THK5351 may provide important information on both 
tau and inflammatory pathology with aging. 

The human brain comprises a complex network composed of billions 
of neurons. Network analysis based on graph theory has provided new 
insight into the understanding of brain networks using resting-state 
functional magnetic resonance imaging (fMRI) and diffusion tensor 
imaging [7,8]. However, these MRI protocols are usually used for 
research purposes owing to their long acquisition times. Moreover, 
resting-state fMRI is susceptible to the influence of physiological con-
ditions [9] and diffusion tensor imaging results vary among scanner 
vendors [10]. To solve these problems, Tijms et al. [11] proposed a new 
method based on similarities of gray matter (GM) features in individual 
brains using 3D T1-weighted images, which are obtained in routine 
clinical practice. They have applied this method to healthy individuals 
and shown that it can obtain reproducible results that are equivalent to 
those provided by other modalities [11]. Other studies, including ours, 
have also applied this method and detected disease-related structural 
network changes in AD [12], multiple sclerosis [13], bipolar disorder 
[14], and myalgic encephalomyelitis/chronic fatigue syndrome [15]. 

We have previously applied this method to healthy individuals to 
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examine the correlation between local network metrics and cerebral 18F- 
THK5351 accumulation and found positive correlations in several ce-
rebral regions, including the default mode network area [16]. However, 
this correlation was observed at the global level of 18F-THK5351 accu-
mulation. A further local correlation study may be necessary for eluci-
dation of the direct influence of tau/inflammatory changes on the 
structural network. Thus, the purpose of the present study was to 
investigate the local correlation of 18F-THK5351 accumulation and 
network metrics by direct comparison at the voxel level. 

2. Materials and methods 

2.1. Participants 

We recruited 47 cognitively normal (CN) older adults from the Brain 
Mapping by Integrated Neurotechnologies for Disease Studies (Brain/ 
MINDS) project (grant number 18dm0207017h0005). All individuals 
underwent structural MRI and 11C-Pittsburgh compound-B (11C-PiB) 
and 18F-THK5351 PET scans, as well as cognitive testing that included 
the Mini-Mental State Examination (MMSE), global Clinical Dementia 
Rating Scale (CDR), and Wechsler Memory Scale-Revised Logical 
Memory II (WMSR LM-II). Inclusion criteria were as follows: visually 
negative 11C-PiB PET results, a global CDR score of 0, an MMSE score of 
≥26, performance within education-adjusted norms for the WMSR LM- 
II, no neurological or psychiatric disorders, and no medications affecting 
cognition. Amyloid negativity was visually determined by a board- 
certified nuclear medicine specialist. 

All participants provided written informed consent to participate in 
the study, which was approved by the institutional ethics committee at 
the National Center of Neurology and Psychiatry, Tokyo (approval 
A2014-146). 

2.2. MRI and PET data acquisition and processing 

All participants underwent structural MRI scans on a Siemens 3-T 
scanner (Verio; Siemens, Erlangen, Germany) to obtain 3D sagittal T1- 
weighted magnetization-prepared rapid acquisition with gradient echo 
images (repetition time/echo time, 1.900/2.52 ms; 1.0-mm effective 
slice thickness with no gap; 300 slices; matrix, 256 × 256; field of view, 
25 × 25 cm; acquisition time; 4 min 18 s). 

All PET/computed tomography (CT) scans were acquired using a 
Siemens/Biograph TruePoint16 Scanner (3D acquisition mode; 81 
image planes; 16.2-cm axial field of view; 4.2-mm transaxial resolution; 
4.7-mm axial resolution; 2-mm slice interval). Low-dose CT scans for 
attenuation correction were performed prior to the PET scans. 11C-PiB 
PET scans were acquired as dynamic scans in LIST mode 50-–70 min 
after a bolus injection of 555 ± 185 MBq of 11C-PiB. 18F-THK5351 scans 
were acquired as dynamic scans in LIST mode 40–60 min after a bolus 
injection of 185 ± 37 MBq of 18F-THK5351. PET/CT data were recon-
structed using an iterative 3D ordered subset expectation maximization 
reconstruction algorithm. All MRI and PET data were acquired in the 
same manner as in a previous study [17]. 

2.3. Postprocessing of MRI and PET data 

GM images were segmented from 3D T1-weighted images using 
Statistical Parametric Mapping Software version 12 (SPM12; Functional 
Imaging Laboratory, University College London, London, UK). The 11C- 
PiB and 18F-THK5351 PET data were partial volume-corrected using the 
SPM toolbox PETPVE12 [18]. Each participant’s PET images were then 
coregistered to the corresponding T1-weighted images and normalized 
with the Diffeomorphic Anatomical Registration Through Expo-
nentiated Lie (DARTEL) method [19]. After spatial normalization, the 
standardized uptake value ratios (SUVRs) for PET images were calcu-
lated using the individual’s positive mean uptake value of cerebellar GM 
as the reference region. Finally, SUVR of each PET image was smoothed 

using an 8-mm full width at half maximum (FWHM) Gaussian kernel. 
MRI and PET data were processed in the same manner as in a previous 
study [17]. 

2.4. Single-subject GM networks 

We calculated the following local network metrics using the 
similarity-based method [11]: betweenness centrality (i.e., the propor-
tion of the shortest paths running through a node), clustering coefficient 
(i.e., the level of interconnectedness of neighboring nodes), character-
istic path length (i.e., the shortest distance between two nodes), and 
degree (i.e., the number of edges per node). These network metric im-
ages were rendered on individual brain images as previously described 
[14–16]. First, we resliced the segmented GM images into 2 × 2 × 2-mm 
isovoxels. Then, we calculated the network metric images from the 
segmented GM images in native space. In this network analysis, nodes 
were defined as small brain areas (regions of 3 × 3 × 3 voxels) and 
connectivity was based on similarity in the spatial structure of GM 
density values quantified with Pearson’s correlations. The networks 
were binarized using subject-specific thresholds determined using a 
random permutation method that ensured the inclusion of at most a 5% 
chance of spurious correlations in the network [20]. 

To evaluate network metric images at the voxel level, network im-
ages were normalized with DARTEL [19]. Each network metric image 
was smoothed using a 10-mm FWHM Gaussian kernel in the same 
manner as in previous studies [14–16]. 

2.5. Voxel-wise correlations between 18F-THK5351 PET and the GM 
network 

To evaluate correlations between 18F-THK5351 and local network 
metrics, we used the Biological Parametric Mapping (BPM) toolbox 
[21]. This toolbox allows voxel-wise correlations across two imaging 
modalities based on the general linear model. We analyzed the corre-
lations between 18F-THK5351 and four local network metrics 
(betweenness centrality, clustering coefficient, characteristic path 
length, and degree). Results with the following criteria were deemed 
significant: family-wise error-corrected at p < .05 and an extent 
threshold of 100 voxels. 

3. Results 

Participants’ demographics are shown in Table 1. Mean age ±
standard deviation was 65.0 ± 7.9 years and 26 of the participants 
(55%) were women. Mean cognitive scores were 0.0 ± 0.2 for the CDR 
sum of boxes, 29.3 ± 1.1 for the MMSE, and 13.4 ± 2.9 for the WMSR 
LM-II. 

18F-THK5351 showed cerebral accumulation mainly in the MTL and, 
to a lesser extent, in the inferior temporal lobe, insula, posterior 
cingulate/precuneus, and basal frontal lobe (Fig. 1). Elevated 18F- 
THK5351 accumulation was also observed in the caudate nucleus, pu-
tamen, and thalamus. 

Significant positive correlations were found between 18F-THK5351 
and the four local network metrics in the bilateral caudate (Table 2 and 

Table 1 
Participants’ demographics.   

Cognitively normal older adults 

No. (women) 47 (26) 
Age, years 65.0 ± 7.9 [50–86] 
Education, years 14.3 ± 2.4 [9–22] 
MMSE 29.3 ± 1.1 [26–30] 
WMSR LM-II 13.4 ± 2.9 [8–19] 

Values are the mean ± standard deviation [range]. MMSE, Mini-Mental 
State Examination; WMSR LM-II, Wechsler Memory Scale-Revised 
Logical Memory II. 
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Fig. 2). No significant negative correlations were detected. 

4. Discussion 

This is the first study to investigate the direct voxel-wise imaging 
correlations between 18F-THK5351 and local network metrics in 
amyloid-negative CN older adults. We identified positive correlations of 
18F-THK5351 with local GM network metrics in the bilateral caudate. 
These findings suggest that tau and inflammatory pathology in CN older 
adults may influence the local GM network in the caudate. 

We found cerebral 18F-THK5351 accumulation mainly in the MTL 
and, to a lesser extent, in the inferior temporal lobe, insula, posterior 
cingulate/precuneus, and basal frontal lobe. These findings correspond 
to Braak stage III–IV and are considered to reflect primary age-related 
tauopathy (PART) [22]. In addition, elevated 18F-THK5351 accumula-
tion was observed in the caudate nucleus, putamen, and thalamus, 
which was considered to be largely due to non-specific binding to MAO- 

Fig. 1. Mean SUVR images of 18F-THK5351 in cognitively normal older adults. SUVR, standardized uptake value ratio.  

Table 2 
Clusters of positive correlations between 18F-THK5351 accumulation and local 
network metrics detected by voxel-wise correlation analysis using biological 
parametric mapping.   

Cluster 
size (no. 
of voxels) 

T-value 
(peak 
voxel) 

Talairach 
coordinates (x, 
y, z) 

Location of peak 
voxels 

Betweenness 
centrality 

432 Inf 8, 14, 14 Right Caudate* 

Clustering 
coefficient 

313 6.98 − 6, 6, 13 Left Caudate 

Characteristic 
path length 

357 7.06 − 6, 6, 13 Left Caudate 

Degree 505 7.57 − 4, 6, 11 Left Caudate* 

Results were family-wise error-corrected for multiple comparisons (p < .05) with 
an extent threshold of 100 voxels. 

* Note that these are the nearest gray matter regions to the peak voxels. 

Fig. 2. Voxel-wise correlations between 18F-THK5351 and four local network metrics in cognitively normal older adults. Significant positive correlations between 
18F-THK5351 and local network metrics were detected in the bilateral caudate (family-wise error-corrected p < .05 with a 100-voxel extent threshold). A, anterior; L, 
left; P, posterior; R, right. 
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B [23]. 
The similarity-based GM network method allows direct comparisons 

of local network metrics images via the rendering of each metric image 
in Montreal Neurological Institute space. BPM analysis revealed signif-
icant voxel-wise positive correlations of 18F-THK5351 in the caudate 
with four local network metrics based on graph theory. Betweenness 
centrality is the proportion of the shortest paths that run through a node 
and our findings suggest that the caudate plays an important role as a 
hub. An increased clustering coefficient indicates the progress of 
segregation with 18F-THK5351 accumulation, whereas an increased 
characteristic path length suggests a decrease in network integration in 
the caudate. Thus, although the caudate is overactivated as a hub and in 
local network segregation progresses, tau and inflammatory pathology 
also locally disrupt the network integration. 

Neuropathological studies have shown that tau pathology accumu-
lates in the caudate nucleus as well as in the MTL in PART patients with 
higher Braak stages (e.g., III/IV) [24]. In addition, a previous PET study 
using [11C]L-deprenyl-D2 reported that MAO-B levels in the basal 
ganglia increase by an average of 8% per decade in healthy individuals 
[25]. Another study using quantitative enzyme radioautography and in 
situ hybridization histochemistry also detected high levels of MAO-B in 
the caudate nucleus [26]. MAO-B levels increase with age and are 
considered to elevate oxidative stress, which may worsen the vulnera-
bility of the brain dopamine system to age-related degeneration [27]. A 
recent structural network study using T1-weighted images in patients 
with idiopathic rapid eye movement sleep behavior disorder, which 
often precedes neurodegenerative disease, reported overactivity of the 
caudate nucleus as a hub, suggesting that such overactivity might be a 
potential biomarker of this sleep behavior disorder [28]. 

Anatomically, the caudate nucleus is connected to the MTL and is 
part of the cortico-striato-thalamic loop [29,30]. The caudate plays a 
critical role in cognitive aging, which includes decreases in the func-
tioning of inhibitory mechanisms, executive control, or planning and 
cognitive function, as determined by increases in response times [31]. 
Moreover, the caudate appears to be linked to apathy [32], which is the 
most frequent abnormal behavior before memory deficits become 
noticeable in AD. A recent systematic review and meta-analysis reported 
that apathy was associated with an approximately 2-fold increased risk 
of dementia in memory clinic patients, indicating that apathy might be 
one of the useful indicators of prodromal dementia [33]. Several MRI 
studies have detected reductions in caudate volume with aging [34,35], 
which is consistent with previous autopsy data indicating an estimated 
15% decrease in caudate volume from ages 25 to 75 years [36]. This 
atrophy may be secondary to the accumulation of tau and inflammatory 
pathology in the caudate. Because the caudate is connected to the MTL, 
our findings of both overactivity and local network disruption in the 
caudate may be induced by tau and neuroinflammation in the MTL, 
which is the first brain region to be affected by tau pathology with aging. 

This study has several limitations. First, this study had a relatively 
small number of participants. Second, we did not conduct correlation 
analysis of networks using other modalities such as resting-state func-
tional MRI or diffusion tensor imaging. However, Tijms et al. [11] 
applied this method to healthy individuals and obtained similar results 
to those determined using other modalities. Third, we found that some 
of the peak voxels were contained inside the lateral ventricles adjacent 
to the caudate. This reduced accuracy of anatomical registration might 
be caused by the use of large 6-mm cube voxels, which are necessary to 
maintain the 3D structure of the cortex. Fourth, this study was a cross- 
sectional design, so we did not know if the disturbance of the network 
metrics in the caudate has some predictive value in CN older adults. 
Longitudinal evaluation in the same subjects is needed to support our 
results. Fifth, no significant correlations were detected between neuro-
psychological tests and the network changes, which is possibly owing to 
the small sample size and inclusion of cognitively healthy subjects. We 
would like to evaluate more detailed cognitive testing such as WAIS-III 
subscores to reveal subtle neurocognitive changes related to the network 

changes in the caudate. 

5. Conclusions 

We found voxel-wise positive correlations between 18F-THK5351 
and local network metrics in the caudate. Our results suggest that tau 
and inflammatory pathology may influence local GM network metrics of 
the caudate in CN older adults. 
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