
Paediatr Neonatal Pain. 2019;1:21–30.	 ﻿�   |  21wileyonlinelibrary.com/journal/pne2

1  | INTRODUC TION

Pain exposure during early life not only causes acute distress, but 
may also have long‐term neurodevelopment consequences,1-4 
leading to the urgent need to improve pain management and treat‐
ment in infants. However, due to the subjective nature of pain, its 
assessment in nonverbal infants is challenging and must rely on 

surrogate measures.5 Noxious stimulation elicits a wide range of 
responses mediated at different levels of the nervous system, in‐
cluding intensity graded reflex withdrawal of both the ipsilateral 
and contralateral limb,6-8 physiological changes 9 such as increases 
in heart rate10,11 and decreases in oxygen saturation,12 behavioral 
responses such as crying and facial grimacing,13,14 and noxious‐
evoked brain activity15,16—with activation of brain regions thought 
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Abstract
Infants in neonatal intensive care units frequently experience clinically necessary 
painful procedures, which elicit a range of behavioral, physiological, and neurophysio‐
logical responses. However, the measurement of pain in this population is a challenge 
and no gold standard exists. The aim of this study was to investigate how noxious‐
evoked changes in facial expression, reflex withdrawal, brain activity, heart rate, 
and oxygen saturation are related and to examine their accuracy in discriminating 
between noxious and non‐noxious stimuli. In 109 infants who received a clinically re‐
quired heel lance and a control non‐noxious stimulus, we investigated whether com‐
bining responses across each modality, or including multiple measures from within 
each modality improves our ability to discriminate the noxious and non‐noxious stim‐
uli. A random forest algorithm was used to build data‐driven models to discriminate 
between the noxious and non‐noxious stimuli in a training set which were then vali‐
dated in a test set of independent infants. Measures within each modality were highly 
correlated, while different modalities showed less association. The model combining 
information across all modalities had good discriminative ability (accuracy of 0.81 in 
identifying noxious and non‐noxious stimuli), which was higher than the discrimina‐
tive power of the models built from individual modalities. This demonstrates the im‐
portance of including multiple modalities in the assessment of infant pain.
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to be involved in both sensory and affective processing.17,18 Thus, 
multimodal pain assessment might be best suited to capture the 
infant pain response.19

Although a number of pain scores incorporate a variety of mea‐
sures derived from one or multiple systems (hereafter referred to 
as modalities),20 the relationships between modalities and their sub‐
components, and the added value of including multiple measures 
within each modality is unclear. Behavioral measures are reported 
to be significantly more powerful in indicating pain than physiolog‐
ical measures.21,22 However, the combination of facial expressions, 
cry, body movements, and physiological measures was reported to 
be more accurate than the individual modalities, encouraging multi‐
modal pain assessment.21 This is supported by Roué and colleagues, 
who showed that variance in infants’ responses to venepuncture can 
be partially explained by two dimensions: one including behavior, 
salivary cortisol, and skin conductance; and one including changes 
in near‐infrared spectroscopy (NIRS) and physiology.23 Moreover, 
recent work by DiLorenzo and colleagues demonstrated that three 
items from the Neonatal Facial Coding System and one item from the 
Modified Behavioural Pain Scale (two widely used behavioral mea‐
sures) can maintain the psychometric properties of the full scales,24 
suggesting that the inclusion of multiple measures within a modality 
may not improve discrimination.

The aim of this study was to investigate the relationship be‐
tween, and discriminative power of, different components of the 
pain response in infants aged from 34 to 42  weeks’ gestation. 
To this end, we used a data‐driven machine learning approach to 
firstly identify whether including multiple measures within the 
same modality improves discrimination between responses to a 
noxious (clinically required heel lance) and a non‐noxious stimu‐
lus (control heel lance), compared with single measures. Secondly, 
we investigated whether including multiple modalities improves 
discrimination between the responses compared with measuring 
single modalities.

2  | METHODS

2.1 | Study design

Behavioral, physiological, and neurophysiological data recorded in 
response to a clinically required noxious heel lance and a non‐nox‐
ious control heel lance in infants were used to build classification 
models to discriminate between the responses to the noxious and 
non‐noxious stimuli. First, models using different measures within 
individual modalities were assessed to ascertain whether particu‐
lar measures provided better discriminative power, and whether 
combining measures increased classification accuracy. Next, a mul‐
timodal classification model was built. This final multimodal model 
was then validated in an independent test set of infants.

2.2 | Subjects

A total of 109 infants were included in this study. Infants were re‐
cruited for a range of previously published and unpublished stud‐
ies8,25,26 and were not specifically recruited for this study. Infants 
were recruited between 2012 and 2017 from the Maternity Ward 
and the Neonatal Unit at the John Radcliffe Hospital, Oxford 
University Hospitals NHS Foundation Trust, UK. Infants were eligi‐
ble for inclusion if they were between 34 and 42 + 6 weeks’ gestation 
at the time of the study, were clinically stable, and were not receiv‐
ing analgesics. Infants were excluded if they had an intraventricular 
hemorrhage greater than grade II, or other neurological abnormali‐
ties. Ethical approval was obtained from National Research Ethics 
Service (reference: 12/SC/0447 & 11/LO/0350). Informed written 
consent was obtained from parents before each study. Studies were 
carried out in accordance with the Declaration of Helsinki and good 
clinical practice guidelines.

A training set consisting of data from 77 infants was used to inves‐
tigate the use of multiple measures within individual modalities and 

F I G U R E  1   Data flowchart. Numbers indicate the number of infants with artifact‐free data recorded in each modality in the training and 
test sets
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to build the multimodal model. The multimodal model was validated 
in an independent test set of 32 infants. All infants in the test set had 
all modalities recorded without artifact following the noxious pro‐
cedure, the control procedure, or both. This ensured balance in the 
test set and allowed for unbiased comparisons between the models. 
Infants where not all modalities were recorded (because the primary 
study which they were recruited for did not include all modalities, or 
because modalities were missing due to artifacts) were included in 
the training set (Figure 1). A machine learning approach (random for‐
ests) that can account for missing data were therefore chosen (see 
Random forest algorithm). Infant demographics are given in Table 1. 
The modalities assessed in this study were reflex withdrawal (of both 
the ipsilateral and contralateral limb), change in heart rate, change in 
oxygen saturation, facial expression responses, and noxious‐evoked 
brain activity recorded using EEG (electroencephalography).

2.3 | Experimental procedures

Clinically required heel lances were performed using a mechanical 
Quikheel Lancet (BD Microtainer, Becton, Dickinson and Company). 
Heel lances were only performed if clinically required. None of the 
infants were studied on more than one occasion. Following the lance, 
the foot was not squeezed for 30  seconds to ensure that the re‐
corded responses were related to the noxious input from the lancet 
only. Before the lance, a control lance was performed by rotating a 
lancet by 90°, so that when released the blade did not touch the skin 
but other non‐noxious components of the stimulus were still present.

2.4 | Recording techniques

2.4.1 | Facial expressions

Infants’ facial responses were recorded with a handheld camera for 
15  seconds before and 30  seconds after the heel lance and con‐
trol lance, as is the convention in the Premature Infant Pain Profile 
(PIPP)27/ Premature Infant Pain Profile—Revised (PIPP‐R) score.28 A 
LED light activated by the experimenter at the time of stimulation 
was used to mark the timing of the control lance or heel lance on 
the videos.

2.4.2 | Electrophysiological recordings

Electrophysiological activity from DC to 400 Hz was acquired with 
a SynAmps RT 64‐channel EEG system (Compumedics Neuroscan). 
Activity was sampled at 2000 Hz and recorded using CURRYscan7 
neuroimaging suite (Compumedics Neuroscan). EEG was recorded 
using Ambu Neuroline disposable Ag/AgCl cup electrodes at Cz, 
CPz, C3, C4, FCz, Oz, T3, and T4 according to the modified interna‐
tional 10‐20 system, with a reference electrode at Fz and a ground 
electrode on the forehead. To optimize contact with the scalp, the 
skin was gently rubbed with EEG preparation gel (NuPrep gel; DO 
Weaver and Co.) prior to electrode placement and EEG conduc‐
tive paste (Elefix EEG paste; Nihon Kohden) was used. Bipolar EMG 
electrodes (Ambu Neuroline 700 solid gel surface electrodes) on 
the biceps femoris of both legs were used to measure reflexes. 
An ECG electrode (Ambu Neuroline 700 solid gel surface elec‐
trodes) was placed on the chest and recorded with reference to 
Fz. Electrophysiological activity was time‐locked to the control 
lance and the heel lance using an accelerometer as previously 
described.29

2.4.3 | Oxygen saturation

Oxygen saturation was measured with a pulse oximeter placed on 
the infant's foot. For 16 infants, an OxiMax N‐600 pulse oximetry 
monitor (Nellcor) was used. For the other infants, pulse oximetry 
was acquired using an IntelliVue MX800 Philips patient monitor. 
Data were downloaded to a computer; in the case of the Philips 
monitor using ixTrend software (ixellence). Data were time‐locked 
to the stimulus using an accelerometer29 or by an investiga‐
tor manually annotating the computer recording at the point of 
stimulation.

2.5 | Analysis

2.5.1 | Facial expressions

Videos were epoched to include 15 seconds before the stimulus and 
30 seconds afterward, and randomized so that the scorer was blinded 
to the stimulus type. Two researchers trained in facial expression scor‐
ing individually assessed the duration of brow bulge, eye squeeze, and 

TA B L E  1   Infant demographics. Values given are median 
(25th‐75th percentile) or number (%)

Training set (N = 77) Test set (N = 32)

Gestational age at 
birth (wk)

37.0 (32.2‐40.0) 39.7 (37.1‐40.7)

Gestational age at 
study (wk)

38.9 (36.6‐40.3) 40.2 (37.6‐41.1)

Postnatal age at 
study (d)

5 (1‐23) 2 (1‐5)

Weight at birth (g) 2830 (1835‐3731) 3460 (3010‐4048)

Weight at study (g) 3045 (2143‐3768) 3460 (2955‐4048)

Sex

Male 40 (52) 16 (50)

Female 37 (48) 16 (50)

Mode of delivery

Spontaneous 
vaginal

26 (34) 12 (38)

Assisted vaginal 14 (18) 13 (41)

Caesarian section 36 (47) 7 (22)

Unknown 1 (1)

Apgar score at 1 min 8 (6‐9) 9 (7‐10)

Apgar score at 5 min 10 (9‐10) 10 (9.5‐10)

Infant admitted to 
NICU

37 (48) 2 (6)
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nasolabial furrow in the 30 seconds after the stimulus. These facial 
features were chosen in accordance with the PIPP‐R score.

2.5.2 | ECG

ECG traces were preprocessed by extracting RR intervals as de‐
scribed previously.30 The heart rate in beats per minutes (bpm) was 
calculated at each second according to the mean RR interval in the 
previous 5  seconds. Baseline heart rate was defined as the aver‐
age heart rate in the 15  seconds prestimulus. Different measures 
of heart rate response were compared to assess which was most 
discriminative between the noxious and non‐noxious stimulus. Four 
categories of response were considered and defined as:

•	 mean change: the difference between the mean heart rate in the 
poststimulus window and the baseline heart rate;

•	 maximum change: the difference between the maximum heart 
rate in the poststimulus window and the baseline heart rate;

•	 normalized mean change: the difference between the mean heart 
rate in the poststimulus window and the baseline heart rate, di‐
vided by the prestimulus standard deviation;

•	 normalized maximum change: the difference between the max‐
imum heart rate in the poststimulus window and the baseline 
heart rate, divided by the prestimulus standard deviation.

Each of these values was calculated for 5, 10, 15, 20, 25, and 30 seconds 
windows poststimulus, giving a total of 24 different heart rate measures.

2.5.3 | Oxygen saturation

Similarly, a total of 24 different measures of oxygen saturation were 
compared. Baseline oxygen saturation was calculated as the mean in 
the 15 seconds prestimulus. Mean change and normalized mean change 
were calculated as described for heart rate. The minimum change was 
defined as the difference between the minimum oxygen saturation in 
the poststimulus window and the baseline oxygen saturation; and the 
normalized minimum change was defined as the difference between the 
minimum oxygen saturation in the poststimulus window and the base‐
line oxygen saturation, divided by the prestimulus standard deviation. 
Each of these values was calculated for 5, 10, 15, 20, 25, and 30 seconds 
windows poststimulus, giving a total of 24 different measures.

2.5.4 | EMG

EMG recordings were filtered between 10 and 500 Hz with a notch 
filter of 50 Hz and harmonics, and epoched from 2 seconds before the 
stimulus to 14.5 seconds afterward. Responses were calculated using 
three different approaches: the root mean square (RMS), the dura‐
tion, and the amplitude.8 RMS was calculated in 250 ms windows after 
the stimulus and then the mean calculated across the first four post‐
stimulus windows (ie, the first second after the stimulus). The dura‐
tion and amplitude of the reflexes were calculated using an algorithm 
as previously described.8 Ipsilateral and contralateral recordings were 

assessed separately for artifacts; of the 344 available EMG recordings 
from either leg and to either stimulus a total of 57 were rejected, 43 
due to movement artifacts in the baseline, 6 due to ECG artifacts, and 8 
because no endpoint of the reflex could be identified by the algorithm.

2.5.5 | EEG

EEG traces were filtered between 0.5 and 70 Hz with a notch filter 
of 50 Hz, epoched in 1.5 second epochs, with 0.5 seconds before 
the stimulus, and baseline corrected to the prestimulus mean. Of the 
168 available EEG traces, 16 were rejected due to movement arti‐
facts. The magnitude of the noxious‐evoked brain activity at the Cz 
electrode was evaluated using three different approaches:

•	 A predefined validated template of noxious‐evoked brain activ‐
ity.16 The template was projected onto individual trials in the time 
window 400‐700 milliseconds after the stimulus in each individ‐
ual trace as previously described.16 This calculates a magnitude of 
the template of noxious‐evoked brain activity within each individ‐
ual trial. To account for the age range in the study population and 
the associated expected variation in latency of the response, the 
individual traces were first Woody filtered by ±100 ms, identify‐
ing the best alignment with the template.

•	 Peak‐to‐peak amplitude rated by observers. Two raters assessed 
the presence and peak‐to‐peak amplitude of the noxious‐evoked 
brain activity in the responses. If the raters determined that there 
was no response, then the amplitude was set to 0. If the raters 
determined that there was a response, then they selected the 
negative and positive peaks and the amplitude between them was 
calculated. The data were first Woody filtered by ±100 ms in the 
region 400‐700 ms to identify the best alignment of individual 
trials with the group average. The data were randomized so that 
the raters were masked to whether the response was following a 
control heel lance or heel lance. For training, the raters assessed 
50% of the responses together initially and then independently 
assessed the remaining 50% of the data. The inter‐rater agree‐
ment in identifying noxious‐evoked brain activity in the second 
half of the data was high (Cohen's kappa 0.77, 95% CI 0.72‐0.82, 
P <  .001), and the rated response amplitude of the traces were 
highly correlated between raters (Pearson's R = .88, P < .001). One 
of the raters’ results was used in the model.

•	 Automated peak‐to‐peak amplitude. The negative peak in the time 
window 350‐450  ms and the positive peak in the time window 
450‐650 ms after the stimulus were identified automatically using 
MATLAB, and the amplitude between them was calculated. The data 
were first Woody filtered by ±100 ms in the region 400‐700 ms to 
identify the best alignment of individual trials with the group average.

2.5.6 | Random forest algorithm

Since we were interested in responses that discriminate between a 
noxious stimulus and a non‐noxious stimulus of a similar saliency, we 
used classification models to distinguish between the noxious and 
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the non‐noxious test condition. Classification models were created 
with the random forest algorithm,31 with model training and statis‐
tical analyses conducted in MATLAB (2014b, Mathworks). This ap‐
proach was chosen as it is known to produce accurate predictions, to 
be robust to overfitting and to be modifiable to account for missing 
data in the training set and test set.31,32 Furthermore, the out‐of‐bag 
predictions derived from the model provide an unbiased estimate 
of classification performance in a new data set. Optimal splitting 
points in decision trees were identified by calculating the impurity of 
the resulting nodes using the Gini diversity index.33 As the current 
study incorporates two conditions per individual, the control heel 
lance and the heel lance, the random forest algorithm was modified 
to bootstrap on subjects instead of observations, similarly to an ap‐
proach proposed by Karpievitch et al.34

Firstly, we investigated the value of different measures within 
the facial expression, heart rate, oxygen saturation, reflex with‐
drawal, and brain activity modalities. Random forest models were 

trained on the duration of brow bulge, eye squeeze, and nasolabial 
furrow individually, and each was compared to a model based on 
all three expressions. Within the heart rate, oxygen saturation, and 
brain activity modalities, individual models were trained on each dif‐
ferent measure and compared. Within the EMG modality, the values 
of EMG RMS, duration and amplitude were assessed in the ipsilateral 
leg and the contralateral leg separately.

In the second part of the study, a random forest model was 
trained on all modalities in the 61 infants from the training set for 
whom at least three modalities were available, using the measures 
with highest discrimination that were identified within the models 
of each individual modality. The measure used from each modality 
was selected based on accuracy and the area under the receiver 
operator characteristic (ROC) curve (AUC) (see statistical analysis), 
choosing the measure with higher discriminative power within our 
training data. However, it is important to note that most measures 
within individual modalities had similar discriminative power, so the 

F I G U R E  2  A, Average reflex withdrawal, heart rate, and EEG activity across infants in the training set in response to the control heel 
lance (orange) and the heel lance (purple). Average raw EEG responses are shown with the expected time window of the noxious‐evoked 
response shaded in gray. The (Woody) filtered EEG is shown overlaid with the template of noxious‐evoked brain activity (in red). The time 
of the stimulus is indicated by the gray line in each subplot. B, Correlation matrix showing Spearman's correlation coefficient between the 
different measures and modalities. Measures within a modality are indicated by green lines; ns indicates nonsignificant correlations (P ≥ .05). 
C‐G) Models comparing measures within individual modalities. C, ROC curves for the three individual facial expression models, and the 
model containing all three facial expressions. D, ROC curves for the ipsilateral reflex withdrawal models. E, Accuracy of the 24 different 
heart rate models. Error bars represent 95% confidence intervals. F, Accuracy, sensitivity, and specificity of the oxygen saturation minimum 
change (difference between the minimum oxygen saturation in the poststimulus window and the mean baseline oxygen saturation) models 
at 6 time points. G, ROC curves of the models measuring noxious‐evoked brain activity. H, Multimodal model; ROC curves showing the 
performance of the individual and the full model on the test set. (Abbreviations: BB, Brow bulge duration; ES, eye squeeze duration; NF, 
nasolabial furrow duration; EEGt, magnitude of the noxious‐evoked response measured with the validated template of noxious‐evoked 
activity; EEGa, automated peak‐to‐peak calculation; EEGr, magnitude of noxious‐evoked potential assessed by raters; HR, heart rate 
change from prestimulus mean to maximum in 15 s poststimulus; SAT, oxygen saturation change from prestimulus mean to minimum in 
30 s poststimulus; RMSi, root mean square of ipsilateral reflex withdrawal; DURi, duration of ipsilateral reflex withdrawal response; AMPi, 
amplitude of ipsilateral reflex withdrawal response, and similarly for the contralateral leg—RMSc, DURc, AMPc.)
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measures chosen may not be the single best measure within each 
modality. In determining the single best measure, other factors may 
also be taken into account (see Discussion). The multimodal model 
was finally validated in the independent test set.

2.6 | Statistical analysis

Spearman correlation coefficients were calculated to quantify cor‐
relations between measures and modalities. The performance of 
the random forest models was estimated by calculating the accu‐
racy, sensitivity, specificity, and the AUC of the ROC curve. 95% 
confidence intervals around accuracy, sensitivity, and specificity 
were computed using the Wilson score interval. Accuracy, sensitiv‐
ity, and specificity of different models were compared with two‐
sided mid‐P‐value McNemar's tests.35 Where appropriate, models 
were compared to chance with the exact binomial test. ROC curves 
and AUC were calculated by plotting false‐positive rates against 
true‐positive rates for different thresholds. 95% confidence in‐
tervals for the ROC curve and the AUC were computed by 2000‐
fold bootstrapping, and AUCs were compared with DeLong's test 
for correlated ROC curves.36 The out‐of‐bag predictions of the 
full model were stratified into a group of term infants (≥37 weeks 
gestation) and a group of preterm infants (<37 weeks gestation). 
A chi‐square test was used to compare the accuracy of the final 
model in each group. Exact binomial tests and chi‐square tests were 
performed in R3.5.2 and RStudio1.1.463. ROC curves were calcu‐
lated and compared in R3.5.2 and RStudio1.1.463 using the pROC 
package.37 All other statistical analysis was conducted in MATLAB 
(2014b, Mathworks).

3  | RESULTS

Multimodal responses to a noxious and non‐noxious (clinically re‐
quired heel lance and control heel lance) were recorded in 109 infants 
from 34 to 42 weeks’ gestational age at the time of study (Figure 2A).

3.1 | Assessing different measures within 
individual modalities

The first part of this study investigated the relationships between 
measures within each modality by determining whether multiple 
measures in the same modality could improve discrimination between 
the noxious and non‐noxious stimuli, compared with single measures, 
and whether any single measure performed better than other meas‐
ures. We compared model accuracy, specificity, sensitivity, and AUC. 
Statistical comparisons were calculated as a guide, but should not be 
interpreted as clearly indicating the best option as this is context de‐
pendent. For example, in some situations it may be more important 
to have a model with higher specificity or sensitivity or a balance be‐
tween the two. Consequently, this may mean a different feature to 
the one selected here is more appropriate in different contexts. We 
constructed models for each of facial expression, heart rate, oxygen 

saturation, reflex withdrawal, and noxious‐evoked brain activity in 
turn.

3.2 | Facial expression

Brow bulge, eye squeeze, and nasolabial furrow duration were 
highly correlated (Figure 2B). The three facial expressions individu‐
ally could discriminate similarly well between the noxious and the 
non‐noxious conditions and combining all three did not yield higher 
accuracy, sensitivity, specificity, or AUC (Figure 2C, Table S1). This 
demonstrates that combining these three measures of facial expres‐
sion did not improve discrimination between the noxious and the 
non‐noxious stimulus over single measures. Nasolabial furrow had 
the highest accuracy and AUC of the individual measures. As this 
feature was the measure with highest discriminative power, it was 
selected for use in the multimodal model.

3.3 | Reflex withdrawal

Reflex withdrawal was quantified by considering the duration, am‐
plitude, and RMS of the reflexes of the legs ipsilateral and contralat‐
eral to the site of stimulation (see Methods). For both legs, these 
measures were significantly correlated (Figure 2B). Combining the 
three measures of reflex withdrawal did not improve discrimina‐
tion between the noxious and non‐noxious stimuli over the single 
measure of RMS (Figure 2D, Table S1). Although the ipsilateral and 
contralateral RMS were well correlated, the ipsilateral duration 
and amplitude of the reflexes were less well correlated with the 
contralateral EMG measures (Figure 2B). Both ipsilateral and con‐
tralateral responses were included in the full multimodal model, as 
they are likely to provide added discriminative value.7

3.4 | Physiology

For heart rate and oxygen saturation, we examined whether any sin‐
gle measure of change performed better than others. Four different 
measures of heart rate (mean change, maximum change, normal‐
ized mean change, and normalized maximum change) were consid‐
ered across six different time windows, giving a total of 24 models 
(see Methods). The maximum change (the difference between the 
prestimulus mean and the poststimulus peak) in the 15  seconds 
poststimulus had the highest accuracy and the third highest AUC of 
the 24 models (Figure 2E, Table S2), consistent with the steep rise 
in heart rate in the first 15 seconds after the stimulus (Figure 2A). 
Therefore, we selected the maximum change in heart rate in the 
15 seconds poststimulus for inclusion in the final multimodal model.

Oxygen saturation provided poor discrimination, as it was not 
significantly different to the 50% threshold that would be expected 
solely based on chance (Table S3). Nevertheless, the decrease in 
oxygen saturation from baseline to the 30  seconds poststimulus 
(part of the PIPP‐R score) had a relatively high specificity of 74% 
(Figure 2F, Table S3), highlighting that when a decrease in oxygen 
saturation occurs it is likely indicative of the noxious stimulus.
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3.5 | EEG

Assessment of the magnitude of noxious‐evoked brain activity was 
compared using three different approaches: (a) using a validated 
template 16; (b) using automated peak‐to‐peak amplitude detection 
software and (c) observer ratings of amplitude (see Methods for 
further details). The magnitude of noxious‐evoked brain activity as‐
sessed by the validated template was well correlated with automated 
peak‐to‐peak amplitude, but less well correlated with observer rat‐
ings of amplitude (Figure 2B). Using the validated template of nox‐
ious‐evoked brain activity was significantly more accurate than 
automated peak‐to‐peak amplitude calculations (Table S4) and had a 
significantly higher AUC than observer ratings (Figure 2G, Table S4). 
These findings, combined with the fact that the template provides 
an objective measure, which cannot be biased by an observer and 
does not require expert ratings of the responses, demonstrates the 
appropriateness of using the template.

3.6 | Relationships in a multimodal 
classification model

In the second part of the study, we wanted to address the relation‐
ships between modalities. Overall, correlations between modalities 
were less strong than correlations within modalities (Figure 2B). 
Since all modalities, except oxygen saturation, had reasonable ac‐
curacy (>70%) in discriminating responses, it is possible that the dif‐
ferent modalities explain distinct components of the variance in the 
evoked responses to the two stimuli. This would imply that combin‐
ing measures would lead to higher discriminative power.

To explore this hypothesis, a final model containing the “best” 
individual measure from each modality was trained on 61 infants 
(Table 2) and validated in an independent test set of 32 infants 
(Table 3). In the training set (out‐of‐bag predictions), model accuracy 
was 0.81 (confidence interval 0.72‐0.87). To test whether discrimi‐
native power was affected by age, we divided the training set into 
preterm (34‐36 weeks gestational age) and term (37‐42 weeks ges‐
tational age) infants. There was no significant difference in accuracy 
at discriminating between noxious and non‐noxious stimuli between 
the two groups (chi‐square test, P  =  .22, Table 2). In the test set, 
the accuracy of the full model was also 0.81 (confidence interval 
0.70‐0.89) and the AUC was 0.90 (confidence interval: 0.78‐0.95) 
signifying a good balance between sensitivity and specificity at 
all thresholds. This was significantly higher than the AUC for the 

individual models of nasolabial furrow, heart rate, oxygen saturation, 
EEG, and contralateral EMG and higher than the AUC for the ipsi‐
lateral EMG (Figure 2H, Table 3). This indicates that including mul‐
tiple modalities improves discrimination between the noxious and 
non‐noxious responses. Moreover, the full model had a significantly 
higher AUC than a model with only behavioral and physiological re‐
sponses (nasolabial furrow, heart rate change, and oxygen saturation 
change; Table 3). This suggests that discrimination between noxious 
and non‐noxious stimuli is improved with the addition of the neuro‐
physiological measures.

4  | DISCUSSION

In this study, we investigated the multimodal relationships in re‐
sponses to noxious and non‐noxious stimuli in infants aged 34 to 
42 + 6 weeks at the time of study. We quantified noxious‐evoked 
changes in infant behavior, physiology, reflex withdrawal activity, 
and brain activity and used accuracy of discrimination between a 
noxious and non‐noxious stimulus as a marker to establish the ben‐
efit of including both multiple modalities and multiple measures 
within each modality. Random forests machine learning provided a 
data‐driven approach to assess classification accuracy across differ‐
ent models,31 identifying discriminative patterns first within a train‐
ing set and then validating these patterns within a test set.38 The 
models identify features within the data that can predict whether re‐
sponses are evoked by the noxious or non‐noxious stimuli. Validating 
the model in an independent test set gives an accurate picture as to 
how the model will perform with any independent data. We dem‐
onstrate that measures within modalities (eg, multiple measures of 
facial grimacing) are highly correlated and that single measures per‐
form as well as multiple measures. In contrast, measures recorded 
across different modalities are less correlated, and as such, including 
different modalities improves the discrimination between a noxious 
and non‐noxious stimulus. This indicates that there is a benefit to 
including activity recorded across a range of modalities in infant pain 
assessment, which is consistent with recommendations of other au‐
thors examining multimodal responses to pain.21,23

Overall, we find strong relationships between measures within 
modalities and consequently including multiple measures within a 
modality does not improve discrimination compared with using a sin‐
gle measure of reflex withdrawal or facial expression. Nevertheless, 
although we found, for example, that the duration of nasolabial 

TA B L E  2   Model metrics for the full model, obtained in the training set

Model metrics (out‐of‐bag)

Accuracy Sensitivity Specificity AUC

Full model (61 infants, of which 40 term, 
21 preterm, 118 observations)

All ages 0.81 (0.72‐0.87) 0.76 (0.64‐0.85) 0.85 (0.73‐0.92) 0.89 (0.81‐0.94)

Preterm (<37 wk) 0.88 (0.74‐0.95) 0.80 (0.58‐0.92) 0.95 (0.77‐0.99) 0.94 (0.81‐0.99)

Term (≥37 wk) 0.77 (0.66‐0.85) 0.74 (0.59‐0.85) 0.79 (0.64‐0.89) 0.86 (0.75‐0.93)

Out‐of‐bag accuracy, sensitivity, specificity, and AUC (area under the ROC curve) are reported along with confidence intervals in brackets.
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furrow alone had similar discriminative accuracy compared with the 
combination of all three facial expressions, this should not be inter‐
preted to suggest that nasolabial furrow will always be the best facial 
expression measure to use. Other measures might be more appro‐
priate in different contexts; for instance, in ventilated infants, where 
the nose and mouth are obscured from view, brow bulge, or eye 
squeeze could be assessed. In this study, P‐values were used only as a 
guide to select the best measure for inclusion in our final multimodal 
model. Many infant pain assessment tools make use of multiple mea‐
sures within a single modality, and while these data do not imply that 
existing pain scores should be modified for use in pain assessment (as 
these are validated constructs), it is important to note that multiple 
measures within a single modality may not always add value.

Correlations between measures that span different modali‐
ties were considerably less strong than the correlations observed 
within modalities, and the discriminative power of the model with 
multiple modalities was higher than the models with individual mo‐
dalities. This highlights the benefit of using multimodal assessment 
when attempting to quantify infant pain experience. Behavioral and 
physiological measures of pain are frequently combined in infant 
pain assessment tools.5,20 For example, the well‐validated PIPP‐R 
combines scores from three different facial components, change in 
heart rate, and change in the oxygen saturation, as well as baseline 
behavioral state and gestational age.28 We find that neurophysiolog‐
ical measures are only moderately correlated to the behavioral and 
physiological modalities, implying that noxious‐evoked brain activity 
and reflex withdrawal measure different components of the infant's 
experience, and demonstrating the value of including neurophysio‐
logical measures in infant pain assessment.

As pain is a subjective experience and necessarily involves corti‐
cal activity,39 measuring brain activity can provide important insight 
into how nociceptive input is processed by the brain. However, the 
template of noxious‐evoked brain activity that has previously been 
derived is limited as it does not measure all nociceptive activity that 

takes place across the infant's brain.16 Furthermore, the sensitivity 
and specificity of this measure for individual infants was previously 
noted to be only moderate (approximately 65%).16 While developing 
a validated signature of noxious‐evoked brain activity which incor‐
porates other features (such as the data acquired from fMRI studies 
17,40) will add additional information, inclusion of noxious‐evoked 
brain activity in the full multimodal model in this study (measured 
using the validated template) provided increased power to discrimi‐
nate noxious from non‐noxious procedures.

Some studies have questioned the utility of physiological mea‐
sures in infant pain assessment due to their lack of specificity to 
noxious stimulation.9 Välitalo and colleagues used a graded response 
model to examine individual components of the COMFORT and PIPP 
scales and found that behavioral measures were more informative 
than physiological measures.22 However, here we find that physio‐
logical measures add value. In particular, while oxygen saturation has 
low sensitivity, it has moderately high specificity. Moreover, using a 
poststimulus time window of 15 seconds (shorter than the 30 sec‐
onds used in the PIPP‐R score) improved discrimination based on 
change in heart rate. While this time window may not be appropriate 
for longer procedures, and consideration of other non‐noxious con‐
trol stimuli is needed, using a data‐driven approach such as the one 
used here may identify features within physiological responses which 
are accurate surrogate measures of infant pain. Moreover, in the case 
of clinical trials of analgesics, including multiple modalities is bene‐
ficial in the assessment of safety, as well as efficacy, of a drug.41,42

Here, we considered responses to a clinically required heel lance 
and compared them to responses to a non‐noxious control stimulus. 
These stimuli were closely matched, allowing us to identify features 
that could discriminate the noxious component of the procedure. 
However, the models’ ability to discriminate these stimuli with rel‐
atively high accuracy does not mean that this would be directly ap‐
plicable to other noxious and non‐noxious procedures which may 
vary in intensity and duration. The specific model produced here 

TA B L E  3   Model metrics and statistics for the individual models and the full model, obtained in the test set

Model metrics (test set)
P‐Values (comparison to 
full model)

Accuracy Sensitivity Specificity AUC Accuracy AUC

Model Nasolabial furrow 0.70 (0.58‐0.80) 0.56 (0.39‐0.72) 0.84 (0.68‐0.93) 0.76 (0.64‐0.85) .022*  .00079* 

Heart rate 0.73 (0.62‐0.83) 0.72 (0.55‐0.84) 0.75 (0.58‐0.87) 0.77 (0.63‐0.87) .21 .027* 

Oxygen saturation 0.55 (0.43‐0.66) 0.44 (0.28‐0.61) 0.66 (0.48‐0.80) 0.52 (0.38‐0.65) .00091*  <.0001* 

EEG 0.64 (0.52‐0.75) 0.59 (0.42‐0.74) 0.69 (0.51‐0.82) 0.75 (0.60‐0.85) .012*  .013* 

Ipsilateral EMG 0.77 (0.65‐0.85) 0.81 (0.65‐0.91) 0.72 (0.55‐0.84) 0.84 (0.71‐0.92) .50 .34

Contralateral EMG 0.72 (0.60‐0.81) 0.63 (0.45‐0.77) 0.81 (0.65‐0.91) 0.71 (0.56‐0.82) .21 .0081* 

Facial, HR, saturation 0.75 (0.63‐0.84) 0.75 (0.58‐0.87) 0.75 (0.58‐0.87) 0.80 (0.65‐0.89) .13 .0069* 

Full 0.81 (0.70‐0.89) 0.78 (0.61‐0.89) 0.84 (0.68‐0.93) 0.90 (0.78‐0.95) N/A N/A

Note: Models of individual measures were compared with the full model. A model combining measures of facial expression (nasolabial furrow), heart 
rate and oxygen saturation was also compared with the full model. Accuracy, sensitivity, specificity, and AUC (area under the ROC curve) in the test 
set are reported along with confidence intervals in brackets. P‐values are given for the comparison between the accuracy of the individual models 
and the full model (mid‐P‐value McNemar's test) and between the AUC’s of the individual models and the full model (DeLong's test).
*Indicates P < .05. 
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was not designed to develop a pain score but rather to investigate 
the relationship between different measures and modalities within 
infant pain assessment. Indeed, if these data were to be used to aid 
in the development of a new pain measurement tool, the importance 
of testing other features, such as the ability for such a tool to detect 
changes in pain intensity after a pain‐reducing intervention has re‐
cently been eloquently highlighted.43

Using the classification approach taken here, a misclassified re‐
sponse is counted as a failure of the model. Ultimately, this is import‐
ant, as we would strive to achieve a model that can identify whether 
an infant is in pain with 100% accuracy. However, it is currently un‐
clear what it means when an infant does not mount a response to a 
noxious stimulus in any given modality.44 For example, infants can 
fail to respond behaviorally 25 and it is not well understood whether 
this truly reflects a lack of pain experience or is driven by other 
reasons such as lethargy.44,45 It is possible that a lack of response 
across several modalities, which would lead to misclassification in 
our model, is because the infant does not find the stimulus painful. 
However, interpreting these data are complex and further research 
is warranted.

In this study, we considered infants from 34 to 42 weeks’ ges‐
tation at the time of study. Infants younger than this are more likely 
to display nonmodality‐specific brain activity responses,46 reflex 
to tactile as well as noxious stimuli,6 and display facial grimacing to 
both noxious and non‐noxious stimuli.25 Moreover, gestational age is 
a strong influential factor in creating automated pain assessment ap‐
proaches 47 and responses to noxious stimulation increase over the 
age range studied here.6,8,25 While we did not see a difference in ac‐
curacy of the multimodal model between preterm and term infants, 
an important extension of this work will be to determine how well 
multiple assessment modalities can discriminate between noxious 
and non‐noxious stimuli in younger preterm infants. Deriving an age‐
dependent multimodal pain assessment tool for preterm infants is 
critical given the high burden of pain experienced during the course 
of neonatal treatment. Moreover, many other factors may influence 
infants’ responses to noxious stimuli, including sleep state, mode 
of delivery, current medication, pathology, and type and timing of 
feeding.48,49 Investigating how discrimination between noxious and 
non‐noxious stimuli is influenced by these factors will shed further 
light on the infant pain experience.

In summary, we demonstrate that the inclusion of data recorded 
across multiple modalities in the assessment of infant pain (includ‐
ing pain‐related changes in behavior, reflex withdrawal, physiology, 
and brain activity) improves our ability to discriminate infants’ re‐
sponses to noxious and innocuous stimuli. In contrast, inclusion of 
data acquired from taking multiple measures within a single modal‐
ity (eg, alternative measures of facial grimacing) does not improve 
discrimination between noxious and innocuous stimuli. This is par‐
ticularly relevant in the research setting where combining neuro‐
physiological, physiological, and behavioral measures can provide 
better insight into the infant pain experience and lead to a better 
understanding of how analgesic interventions influence nocicep‐
tive processing across all levels of the central nervous system.
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