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1  | INTRODUC TION

Pain exposure during early life not only causes acute distress, but 
may also have long‐term neurodevelopment consequences,1‐4 
leading to the urgent need to improve pain management and treat‐
ment in infants. However, due to the subjective nature of pain, its 
assessment in nonverbal infants is challenging and must rely on 

surrogate measures.5 Noxious stimulation elicits a wide range of 
responses mediated at different levels of the nervous system, in‐
cluding intensity graded reflex withdrawal of both the ipsilateral 
and contralateral limb,6‐8 physiological changes 9 such as increases 
in heart rate10,11 and decreases in oxygen saturation,12 behavioral 
responses such as crying and facial grimacing,13,14 and noxious‐
evoked brain activity15,16—with activation of brain regions thought 
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Abstract
Infants in neonatal intensive care units frequently experience clinically necessary 
painful procedures, which elicit a range of behavioral, physiological, and neurophysio‐
logical responses. However, the measurement of pain in this population is a challenge 
and no gold standard exists. The aim of this study was to investigate how noxious‐
evoked changes in facial expression, reflex withdrawal, brain activity, heart rate, 
and oxygen saturation are related and to examine their accuracy in discriminating 
between noxious and non‐noxious stimuli. In 109 infants who received a clinically re‐
quired heel lance and a control non‐noxious stimulus, we investigated whether com‐
bining responses across each modality, or including multiple measures from within 
each modality improves our ability to discriminate the noxious and non‐noxious stim‐
uli.	A	random	forest	algorithm	was	used	to	build	data‐driven	models	to	discriminate	
between the noxious and non‐noxious stimuli in a training set which were then vali‐
dated in a test set of independent infants. Measures within each modality were highly 
correlated, while different modalities showed less association. The model combining 
information across all modalities had good discriminative ability (accuracy of 0.81 in 
identifying noxious and non‐noxious stimuli), which was higher than the discrimina‐
tive power of the models built from individual modalities. This demonstrates the im‐
portance of including multiple modalities in the assessment of infant pain.
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to be involved in both sensory and affective processing.17,18 Thus, 
multimodal pain assessment might be best suited to capture the 
infant pain response.19

Although	a	number	of	pain	scores	incorporate	a	variety	of	mea‐
sures derived from one or multiple systems (hereafter referred to 
as modalities),20 the relationships between modalities and their sub‐
components, and the added value of including multiple measures 
within each modality is unclear. Behavioral measures are reported 
to be significantly more powerful in indicating pain than physiolog‐
ical measures.21,22 However, the combination of facial expressions, 
cry, body movements, and physiological measures was reported to 
be more accurate than the individual modalities, encouraging multi‐
modal pain assessment.21 This is supported by Roué and colleagues, 
who	showed	that	variance	in	infants’	responses	to	venepuncture	can	
be partially explained by two dimensions: one including behavior, 
salivary cortisol, and skin conductance; and one including changes 
in	 near‐infrared	 spectroscopy	 (NIRS)	 and	 physiology.23 Moreover, 
recent	work	by	DiLorenzo	and	colleagues	demonstrated	that	three	
items	from	the	Neonatal	Facial	Coding	System	and	one	item	from	the	
Modified	Behavioural	Pain	Scale	(two	widely	used	behavioral	mea‐
sures) can maintain the psychometric properties of the full scales,24 
suggesting that the inclusion of multiple measures within a modality 
may not improve discrimination.

The aim of this study was to investigate the relationship be‐
tween, and discriminative power of, different components of the 
pain	 response	 in	 infants	 aged	 from	 34	 to	 42	 weeks’	 gestation.	
To this end, we used a data‐driven machine learning approach to 
firstly identify whether including multiple measures within the 
same modality improves discrimination between responses to a 
noxious (clinically required heel lance) and a non‐noxious stimu‐
lus	(control	heel	lance),	compared	with	single	measures.	Secondly,	
we investigated whether including multiple modalities improves 
discrimination between the responses compared with measuring 
single modalities.

2  | METHODS

2.1 | Study design

Behavioral, physiological, and neurophysiological data recorded in 
response to a clinically required noxious heel lance and a non‐nox‐
ious control heel lance in infants were used to build classification 
models to discriminate between the responses to the noxious and 
non‐noxious stimuli. First, models using different measures within 
individual modalities were assessed to ascertain whether particu‐
lar measures provided better discriminative power, and whether 
combining measures increased classification accuracy. Next, a mul‐
timodal classification model was built. This final multimodal model 
was then validated in an independent test set of infants.

2.2 | Subjects

A	total	of	109	infants	were	included	in	this	study.	Infants	were	re‐
cruited for a range of previously published and unpublished stud‐
ies8,25,26 and were not specifically recruited for this study. Infants 
were	recruited	between	2012	and	2017	from	the	Maternity	Ward	
and	 the	 Neonatal	 Unit	 at	 the	 John	 Radcliffe	 Hospital,	 Oxford	
University	Hospitals	NHS	Foundation	Trust,	UK.	Infants	were	eligi‐
ble	for	inclusion	if	they	were	between	34	and	42	+	6	weeks’	gestation	
at the time of the study, were clinically stable, and were not receiv‐
ing analgesics. Infants were excluded if they had an intraventricular 
hemorrhage greater than grade II, or other neurological abnormali‐
ties. Ethical approval was obtained from National Research Ethics 
Service	 (reference:	12/SC/0447	&	11/LO/0350).	 Informed	written	
consent	was	obtained	from	parents	before	each	study.	Studies	were	
carried out in accordance with the Declaration of Helsinki and good 
clinical practice guidelines.

A	training	set	consisting	of	data	from	77	infants	was	used	to	inves‐
tigate the use of multiple measures within individual modalities and 

F I G U R E  1   Data flowchart. Numbers indicate the number of infants with artifact‐free data recorded in each modality in the training and 
test sets
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to build the multimodal model. The multimodal model was validated 
in	an	independent	test	set	of	32	infants.	All	infants	in	the	test	set	had	
all modalities recorded without artifact following the noxious pro‐
cedure, the control procedure, or both. This ensured balance in the 
test set and allowed for unbiased comparisons between the models. 
Infants where not all modalities were recorded (because the primary 
study which they were recruited for did not include all modalities, or 
because modalities were missing due to artifacts) were included in 
the	training	set	(Figure	1).	A	machine	learning	approach	(random	for‐
ests) that can account for missing data were therefore chosen (see 
Random forest algorithm). Infant demographics are given in Table 1. 
The modalities assessed in this study were reflex withdrawal (of both 
the ipsilateral and contralateral limb), change in heart rate, change in 
oxygen saturation, facial expression responses, and noxious‐evoked 
brain	activity	recorded	using	EEG	(electroencephalography).

2.3 | Experimental procedures

Clinically required heel lances were performed using a mechanical 
Quikheel	Lancet	(BD	Microtainer,	Becton,	Dickinson	and	Company).	
Heel lances were only performed if clinically required. None of the 
infants were studied on more than one occasion. Following the lance, 
the	 foot	was	 not	 squeezed	 for	 30	 seconds	 to	 ensure	 that	 the	 re‐
corded responses were related to the noxious input from the lancet 
only. Before the lance, a control lance was performed by rotating a 
lancet by 90°, so that when released the blade did not touch the skin 
but other non‐noxious components of the stimulus were still present.

2.4 | Recording techniques

2.4.1 | Facial expressions

Infants’	facial	responses	were	recorded	with	a	handheld	camera	for	
15 seconds before and 30 seconds after the heel lance and con‐
trol lance, as is the convention in the Premature Infant Pain Profile 
(PIPP)27/ Premature Infant Pain Profile—Revised (PIPP‐R) score.28	A	
LED	light	activated	by	the	experimenter	at	the	time	of	stimulation	
was used to mark the timing of the control lance or heel lance on 
the videos.

2.4.2 | Electrophysiological recordings

Electrophysiological	activity	from	DC	to	400	Hz	was	acquired	with	
a	SynAmps	RT	64‐channel	EEG	system	(Compumedics	Neuroscan).	
Activity	was	sampled	at	2000	Hz	and	recorded	using	CURRYscan7	
neuroimaging	suite	(Compumedics	Neuroscan).	EEG	was	recorded	
using	Ambu	Neuroline	 disposable	Ag/AgCl	 cup	 electrodes	 at	Cz,	
CPz,	C3,	C4,	FCz,	Oz,	T3,	and	T4	according	to	the	modified	interna‐
tional	10‐20	system,	with	a	reference	electrode	at	Fz	and	a	ground	
electrode	on	the	forehead.	To	optimize	contact	with	the	scalp,	the	
skin	was	gently	rubbed	with	EEG	preparation	gel	(NuPrep	gel;	DO	
Weaver	 and	 Co.)	 prior	 to	 electrode	 placement	 and	 EEG	 conduc‐
tive	paste	(Elefix	EEG	paste;	Nihon	Kohden)	was	used.	Bipolar	EMG	
electrodes	 (Ambu	Neuroline	700	 solid	 gel	 surface	electrodes)	on	
the biceps femoris of both legs were used to measure reflexes. 
An	 ECG	 electrode	 (Ambu	 Neuroline	 700	 solid	 gel	 surface	 elec‐
trodes) was placed on the chest and recorded with reference to 
Fz.	 Electrophysiological	 activity	 was	 time‐locked	 to	 the	 control	
lance and the heel lance using an accelerometer as previously 
described.29

2.4.3 | Oxygen saturation

Oxygen saturation was measured with a pulse oximeter placed on 
the infant's foot. For 16 infants, an OxiMax N‐600 pulse oximetry 
monitor (Nellcor) was used. For the other infants, pulse oximetry 
was	acquired	using	an	 IntelliVue	MX800	Philips	patient	monitor.	
Data were downloaded to a computer; in the case of the Philips 
monitor using ixTrend software (ixellence). Data were time‐locked 
to the stimulus using an accelerometer29 or by an investiga‐
tor manually annotating the computer recording at the point of 
stimulation.

2.5 | Analysis

2.5.1 | Facial expressions

Videos were epoched to include 15 seconds before the stimulus and 
30	seconds	afterward,	and	randomized	so	that	the	scorer	was	blinded	
to the stimulus type. Two researchers trained in facial expression scor‐
ing	individually	assessed	the	duration	of	brow	bulge,	eye	squeeze,	and	

TA B L E  1   Infant demographics. Values given are median 
(25th‐75th	percentile)	or	number	(%)

Training set (N = 77) Test set (N = 32)

Gestational	age	at	
birth (wk)

37.0	(32.2‐40.0) 39.7	(37.1‐40.7)

Gestational	age	at	
study (wk)

38.9 (36.6‐40.3) 40.2	(37.6‐41.1)

Postnatal age at 
study (d)

5 (1‐23) 2 (1‐5)

Weight	at	birth	(g) 2830	(1835‐3731) 3460 (3010‐4048)

Weight	at	study	(g) 3045	(2143‐3768) 3460 (2955‐4048)

Sex

Male 40 (52) 16 (50)

Female 37	(48) 16 (50)

Mode of delivery

Spontaneous	
vaginal

26 (34) 12 (38)

Assisted	vaginal 14 (18) 13 (41)

Caesarian section 36	(47) 7	(22)

Unknown 1 (1)

Apgar	score	at	1	min 8 (6‐9) 9	(7‐10)

Apgar	score	at	5	min 10 (9‐10) 10 (9.5‐10)

Infant admitted to 
NICU

37	(48) 2 (6)
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nasolabial furrow in the 30 seconds after the stimulus. These facial 
features were chosen in accordance with the PIPP‐R score.

2.5.2 | ECG

ECG	 traces	 were	 preprocessed	 by	 extracting	 RR	 intervals	 as	 de‐
scribed previously.30 The heart rate in beats per minutes (bpm) was 
calculated at each second according to the mean RR interval in the 
previous 5 seconds. Baseline heart rate was defined as the aver‐
age heart rate in the 15 seconds prestimulus. Different measures 
of heart rate response were compared to assess which was most 
discriminative between the noxious and non‐noxious stimulus. Four 
categories of response were considered and defined as:

• mean change: the difference between the mean heart rate in the 
poststimulus window and the baseline heart rate;

• maximum change: the difference between the maximum heart 
rate in the poststimulus window and the baseline heart rate;

•	 normalized	mean	change:	the	difference	between	the	mean	heart	
rate in the poststimulus window and the baseline heart rate, di‐
vided by the prestimulus standard deviation;

•	 normalized	maximum	change:	 the	difference	between	 the	max‐
imum heart rate in the poststimulus window and the baseline 
heart rate, divided by the prestimulus standard deviation.

Each of these values was calculated for 5, 10, 15, 20, 25, and 30 seconds 
windows poststimulus, giving a total of 24 different heart rate measures.

2.5.3 | Oxygen saturation

Similarly,	 a	 total	of	24	different	measures	of	oxygen	saturation	were	
compared. Baseline oxygen saturation was calculated as the mean in 
the	15	seconds	prestimulus.	Mean	change	and	normalized	mean	change	
were calculated as described for heart rate. The minimum change was 
defined as the difference between the minimum oxygen saturation in 
the poststimulus window and the baseline oxygen saturation; and the 
normalized	minimum	change	was	defined	as	the	difference	between	the	
minimum oxygen saturation in the poststimulus window and the base‐
line oxygen saturation, divided by the prestimulus standard deviation. 
Each of these values was calculated for 5, 10, 15, 20, 25, and 30 seconds 
windows poststimulus, giving a total of 24 different measures.

2.5.4 | EMG

EMG	recordings	were	filtered	between	10	and	500	Hz	with	a	notch	
filter	of	50	Hz	and	harmonics,	and	epoched	from	2	seconds	before	the	
stimulus to 14.5 seconds afterward. Responses were calculated using 
three	 different	 approaches:	 the	 root	mean	 square	 (RMS),	 the	 dura‐
tion, and the amplitude.8	RMS	was	calculated	in	250	ms	windows	after	
the stimulus and then the mean calculated across the first four post‐
stimulus windows (ie, the first second after the stimulus). The dura‐
tion and amplitude of the reflexes were calculated using an algorithm 
as previously described.8 Ipsilateral and contralateral recordings were 

assessed	separately	for	artifacts;	of	the	344	available	EMG	recordings	
from	either	leg	and	to	either	stimulus	a	total	of	57	were	rejected,	43	
due	to	movement	artifacts	in	the	baseline,	6	due	to	ECG	artifacts,	and	8	
because no endpoint of the reflex could be identified by the algorithm.

2.5.5 | EEG

EEG	traces	were	filtered	between	0.5	and	70	Hz	with	a	notch	filter	
of	50	Hz,	epoched	 in	1.5	second	epochs,	with	0.5	seconds	before	
the stimulus, and baseline corrected to the prestimulus mean. Of the 
168	available	EEG	traces,	16	were	rejected	due	to	movement	arti‐
facts.	The	magnitude	of	the	noxious‐evoked	brain	activity	at	the	Cz	
electrode was evaluated using three different approaches:

•	 A	predefined	validated	 template	of	noxious‐evoked	brain	activ‐
ity.16 The template was projected onto individual trials in the time 
window	400‐700	milliseconds	after	the	stimulus	in	each	individ‐
ual trace as previously described.16 This calculates a magnitude of 
the template of noxious‐evoked brain activity within each individ‐
ual trial. To account for the age range in the study population and 
the associated expected variation in latency of the response, the 
individual	traces	were	first	Woody	filtered	by	±100	ms,	identify‐
ing the best alignment with the template.

• Peak‐to‐peak amplitude rated by observers. Two raters assessed 
the presence and peak‐to‐peak amplitude of the noxious‐evoked 
brain activity in the responses. If the raters determined that there 
was no response, then the amplitude was set to 0. If the raters 
determined that there was a response, then they selected the 
negative and positive peaks and the amplitude between them was 
calculated.	The	data	were	first	Woody	filtered	by	±100	ms	in	the	
region	 400‐700	ms	 to	 identify	 the	 best	 alignment	 of	 individual	
trials	with	the	group	average.	The	data	were	randomized	so	that	
the raters were masked to whether the response was following a 
control heel lance or heel lance. For training, the raters assessed 
50%	of	 the	 responses	 together	 initially	and	 then	 independently	
assessed	 the	 remaining	50%	of	 the	data.	 The	 inter‐rater	 agree‐
ment in identifying noxious‐evoked brain activity in the second 
half	of	the	data	was	high	(Cohen's	kappa	0.77,	95%	CI	0.72‐0.82,	
P < .001), and the rated response amplitude of the traces were 
highly correlated between raters (Pearson's R = .88, P < .001). One 
of	the	raters’	results	was	used	in	the	model.

•	 Automated	peak‐to‐peak	amplitude.	The	negative	peak	in	the	time	
window 350‐450 ms and the positive peak in the time window 
450‐650 ms after the stimulus were identified automatically using 
MATLAB,	and	the	amplitude	between	them	was	calculated.	The	data	
were	first	Woody	filtered	by	±100	ms	in	the	region	400‐700	ms	to	
identify the best alignment of individual trials with the group average.

2.5.6 | Random forest algorithm

Since	we	were	interested	in	responses	that	discriminate	between	a	
noxious stimulus and a non‐noxious stimulus of a similar saliency, we 
used classification models to distinguish between the noxious and 
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the non‐noxious test condition. Classification models were created 
with the random forest algorithm,31 with model training and statis‐
tical	analyses	conducted	in	MATLAB	(2014b,	Mathworks).	This	ap‐
proach was chosen as it is known to produce accurate predictions, to 
be robust to overfitting and to be modifiable to account for missing 
data in the training set and test set.31,32 Furthermore, the out‐of‐bag 
predictions derived from the model provide an unbiased estimate 
of classification performance in a new data set. Optimal splitting 
points in decision trees were identified by calculating the impurity of 
the	resulting	nodes	using	the	Gini	diversity	index.33	As	the	current	
study incorporates two conditions per individual, the control heel 
lance and the heel lance, the random forest algorithm was modified 
to bootstrap on subjects instead of observations, similarly to an ap‐
proach proposed by Karpievitch et al.34

Firstly, we investigated the value of different measures within 
the facial expression, heart rate, oxygen saturation, reflex with‐
drawal, and brain activity modalities. Random forest models were 

trained	on	the	duration	of	brow	bulge,	eye	squeeze,	and	nasolabial	
furrow individually, and each was compared to a model based on 
all	three	expressions.	Within	the	heart	rate,	oxygen	saturation,	and	
brain activity modalities, individual models were trained on each dif‐
ferent	measure	and	compared.	Within	the	EMG	modality,	the	values	
of	EMG	RMS,	duration	and	amplitude	were	assessed	in	the	ipsilateral	
leg and the contralateral leg separately.

In the second part of the study, a random forest model was 
trained on all modalities in the 61 infants from the training set for 
whom at least three modalities were available, using the measures 
with highest discrimination that were identified within the models 
of each individual modality. The measure used from each modality 
was selected based on accuracy and the area under the receiver 
operator	characteristic	 (ROC)	curve	(AUC)	 (see	statistical	analysis),	
choosing the measure with higher discriminative power within our 
training data. However, it is important to note that most measures 
within individual modalities had similar discriminative power, so the 

F I G U R E  2  A,	Average	reflex	withdrawal,	heart	rate,	and	EEG	activity	across	infants	in	the	training	set	in	response	to	the	control	heel	
lance	(orange)	and	the	heel	lance	(purple).	Average	raw	EEG	responses	are	shown	with	the	expected	time	window	of	the	noxious‐evoked	
response	shaded	in	gray.	The	(Woody)	filtered	EEG	is	shown	overlaid	with	the	template	of	noxious‐evoked	brain	activity	(in	red).	The	time	
of	the	stimulus	is	indicated	by	the	gray	line	in	each	subplot.	B,	Correlation	matrix	showing	Spearman's	correlation	coefficient	between	the	
different measures and modalities. Measures within a modality are indicated by green lines; ns indicates nonsignificant correlations (P	≥	.05).	
C‐G)	Models	comparing	measures	within	individual	modalities.	C,	ROC	curves	for	the	three	individual	facial	expression	models,	and	the	
model	containing	all	three	facial	expressions.	D,	ROC	curves	for	the	ipsilateral	reflex	withdrawal	models.	E,	Accuracy	of	the	24	different	
heart	rate	models.	Error	bars	represent	95%	confidence	intervals.	F,	Accuracy,	sensitivity,	and	specificity	of	the	oxygen	saturation	minimum	
change (difference between the minimum oxygen saturation in the poststimulus window and the mean baseline oxygen saturation) models 
at	6	time	points.	G,	ROC	curves	of	the	models	measuring	noxious‐evoked	brain	activity.	H,	Multimodal	model;	ROC	curves	showing	the	
performance	of	the	individual	and	the	full	model	on	the	test	set.	(Abbreviations:	BB,	Brow	bulge	duration;	ES,	eye	squeeze	duration;	NF,	
nasolabial	furrow	duration;	EEGt,	magnitude	of	the	noxious‐evoked	response	measured	with	the	validated	template	of	noxious‐evoked	
activity;	EEGa,	automated	peak‐to‐peak	calculation;	EEGr,	magnitude	of	noxious‐evoked	potential	assessed	by	raters;	HR,	heart	rate	
change	from	prestimulus	mean	to	maximum	in	15	s	poststimulus;	SAT,	oxygen	saturation	change	from	prestimulus	mean	to	minimum	in	
30	s	poststimulus;	RMSi,	root	mean	square	of	ipsilateral	reflex	withdrawal;	DURi,	duration	of	ipsilateral	reflex	withdrawal	response;	AMPi,	
amplitude	of	ipsilateral	reflex	withdrawal	response,	and	similarly	for	the	contralateral	leg—RMSc,	DURc,	AMPc.)
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measures chosen may not be the single best measure within each 
modality. In determining the single best measure, other factors may 
also be taken into account (see Discussion). The multimodal model 
was finally validated in the independent test set.

2.6 | Statistical analysis

Spearman	correlation	coefficients	were	calculated	to	quantify	cor‐
relations between measures and modalities. The performance of 
the random forest models was estimated by calculating the accu‐
racy,	 sensitivity,	 specificity,	 and	 the	AUC	of	 the	ROC	 curve.	 95%	
confidence intervals around accuracy, sensitivity, and specificity 
were	computed	using	the	Wilson	score	interval.	Accuracy,	sensitiv‐
ity, and specificity of different models were compared with two‐
sided mid‐P‐value McNemar's tests.35	Where	appropriate,	models	
were compared to chance with the exact binomial test. ROC curves 
and	 AUC	were	 calculated	 by	 plotting	 false‐positive	 rates	 against	
true‐positive	 rates	 for	 different	 thresholds.	 95%	 confidence	 in‐
tervals	for	the	ROC	curve	and	the	AUC	were	computed	by	2000‐
fold	bootstrapping,	and	AUCs	were	compared	with	DeLong's	 test	
for correlated ROC curves.36 The out‐of‐bag predictions of the 
full	model	were	stratified	into	a	group	of	term	infants	(≥37	weeks	
gestation)	 and	 a	 group	 of	 preterm	 infants	 (<37	weeks	 gestation).	
A	 chi‐square	 test	was	 used	 to	 compare	 the	 accuracy	 of	 the	 final	
model in each group. Exact binomial tests and chi‐square tests were 
performed	in	R3.5.2	and	RStudio1.1.463.	ROC	curves	were	calcu‐
lated	and	compared	in	R3.5.2	and	RStudio1.1.463	using	the	pROC	
package.37	All	other	statistical	analysis	was	conducted	in	MATLAB	
(2014b, Mathworks).

3  | RESULTS

Multimodal responses to a noxious and non‐noxious (clinically re‐
quired heel lance and control heel lance) were recorded in 109 infants 
from	34	to	42	weeks’	gestational	age	at	the	time	of	study	(Figure	2A).

3.1 | Assessing different measures within 
individual modalities

The first part of this study investigated the relationships between 
measures within each modality by determining whether multiple 
measures in the same modality could improve discrimination between 
the noxious and non‐noxious stimuli, compared with single measures, 
and whether any single measure performed better than other meas‐
ures.	We	compared	model	accuracy,	specificity,	sensitivity,	and	AUC.	
Statistical	comparisons	were	calculated	as	a	guide,	but	should	not	be	
interpreted as clearly indicating the best option as this is context de‐
pendent. For example, in some situations it may be more important 
to have a model with higher specificity or sensitivity or a balance be‐
tween the two. Consequently, this may mean a different feature to 
the	one	selected	here	is	more	appropriate	in	different	contexts.	We	
constructed models for each of facial expression, heart rate, oxygen 

saturation, reflex withdrawal, and noxious‐evoked brain activity in 
turn.

3.2 | Facial expression

Brow	 bulge,	 eye	 squeeze,	 and	 nasolabial	 furrow	 duration	 were	
highly correlated (Figure 2B). The three facial expressions individu‐
ally could discriminate similarly well between the noxious and the 
non‐noxious conditions and combining all three did not yield higher 
accuracy,	sensitivity,	specificity,	or	AUC	(Figure	2C,	Table	S1).	This	
demonstrates that combining these three measures of facial expres‐
sion did not improve discrimination between the noxious and the 
non‐noxious stimulus over single measures. Nasolabial furrow had 
the	highest	 accuracy	 and	AUC	of	 the	 individual	measures.	As	 this	
feature was the measure with highest discriminative power, it was 
selected for use in the multimodal model.

3.3 | Reflex withdrawal

Reflex withdrawal was quantified by considering the duration, am‐
plitude,	and	RMS	of	the	reflexes	of	the	legs	ipsilateral	and	contralat‐
eral to the site of stimulation (see Methods). For both legs, these 
measures were significantly correlated (Figure 2B). Combining the 
three measures of reflex withdrawal did not improve discrimina‐
tion between the noxious and non‐noxious stimuli over the single 
measure	of	RMS	(Figure	2D,	Table	S1).	Although	the	ipsilateral	and	
contralateral	 RMS	 were	 well	 correlated,	 the	 ipsilateral	 duration	
and amplitude of the reflexes were less well correlated with the 
contralateral	EMG	measures	(Figure	2B).	Both	ipsilateral	and	con‐
tralateral responses were included in the full multimodal model, as 
they are likely to provide added discriminative value.7

3.4 | Physiology

For heart rate and oxygen saturation, we examined whether any sin‐
gle measure of change performed better than others. Four different 
measures of heart rate (mean change, maximum change, normal‐
ized	mean	change,	and	normalized	maximum	change)	were	consid‐
ered across six different time windows, giving a total of 24 models 
(see Methods). The maximum change (the difference between the 
prestimulus mean and the poststimulus peak) in the 15 seconds 
poststimulus	had	the	highest	accuracy	and	the	third	highest	AUC	of	
the	24	models	(Figure	2E,	Table	S2),	consistent	with	the	steep	rise	
in	heart	rate	in	the	first	15	seconds	after	the	stimulus	(Figure	2A).	
Therefore, we selected the maximum change in heart rate in the 
15 seconds poststimulus for inclusion in the final multimodal model.

Oxygen saturation provided poor discrimination, as it was not 
significantly	different	to	the	50%	threshold	that	would	be	expected	
solely	 based	 on	 chance	 (Table	 S3).	 Nevertheless,	 the	 decrease	 in	
oxygen saturation from baseline to the 30 seconds poststimulus 
(part	 of	 the	 PIPP‐R	 score)	 had	 a	 relatively	 high	 specificity	 of	 74%	
(Figure	2F,	Table	S3),	highlighting	 that	when	a	decrease	 in	oxygen	
saturation occurs it is likely indicative of the noxious stimulus.
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3.5 | EEG

Assessment	of	the	magnitude	of	noxious‐evoked	brain	activity	was	
compared using three different approaches: (a) using a validated 
template 16; (b) using automated peak‐to‐peak amplitude detection 
software and (c) observer ratings of amplitude (see Methods for 
further details). The magnitude of noxious‐evoked brain activity as‐
sessed by the validated template was well correlated with automated 
peak‐to‐peak amplitude, but less well correlated with observer rat‐
ings of amplitude (Figure 2B). Using the validated template of nox‐
ious‐evoked brain activity was significantly more accurate than 
automated	peak‐to‐peak	amplitude	calculations	(Table	S4)	and	had	a	
significantly	higher	AUC	than	observer	ratings	(Figure	2G,	Table	S4).	
These findings, combined with the fact that the template provides 
an objective measure, which cannot be biased by an observer and 
does not require expert ratings of the responses, demonstrates the 
appropriateness of using the template.

3.6 | Relationships in a multimodal 
classification model

In the second part of the study, we wanted to address the relation‐
ships between modalities. Overall, correlations between modalities 
were less strong than correlations within modalities (Figure 2B). 
Since	 all	modalities,	 except	 oxygen	 saturation,	 had	 reasonable	 ac‐
curacy	(>70%)	in	discriminating	responses,	it	is	possible	that	the	dif‐
ferent modalities explain distinct components of the variance in the 
evoked responses to the two stimuli. This would imply that combin‐
ing measures would lead to higher discriminative power.

To explore this hypothesis, a final model containing the “best” 
individual measure from each modality was trained on 61 infants 
(Table 2) and validated in an independent test set of 32 infants 
(Table 3). In the training set (out‐of‐bag predictions), model accuracy 
was	0.81	(confidence	interval	0.72‐0.87).	To	test	whether	discrimi‐
native power was affected by age, we divided the training set into 
preterm	(34‐36	weeks	gestational	age)	and	term	(37‐42	weeks	ges‐
tational age) infants. There was no significant difference in accuracy 
at discriminating between noxious and non‐noxious stimuli between 
the two groups (chi‐square test, P = .22, Table 2). In the test set, 
the accuracy of the full model was also 0.81 (confidence interval 
0.70‐0.89)	 and	 the	AUC	was	 0.90	 (confidence	 interval:	 0.78‐0.95)	
signifying a good balance between sensitivity and specificity at 
all	 thresholds.	 This	was	 significantly	 higher	 than	 the	 AUC	 for	 the	

individual models of nasolabial furrow, heart rate, oxygen saturation, 
EEG,	and	contralateral	EMG	and	higher	than	the	AUC	for	the	 ipsi‐
lateral	EMG	(Figure	2H,	Table	3).	This	indicates	that	including	mul‐
tiple modalities improves discrimination between the noxious and 
non‐noxious responses. Moreover, the full model had a significantly 
higher	AUC	than	a	model	with	only	behavioral	and	physiological	re‐
sponses (nasolabial furrow, heart rate change, and oxygen saturation 
change; Table 3). This suggests that discrimination between noxious 
and non‐noxious stimuli is improved with the addition of the neuro‐
physiological measures.

4  | DISCUSSION

In this study, we investigated the multimodal relationships in re‐
sponses to noxious and non‐noxious stimuli in infants aged 34 to 
42	+	6	weeks	at	 the	 time	of	study.	We	quantified	noxious‐evoked	
changes in infant behavior, physiology, reflex withdrawal activity, 
and brain activity and used accuracy of discrimination between a 
noxious and non‐noxious stimulus as a marker to establish the ben‐
efit of including both multiple modalities and multiple measures 
within each modality. Random forests machine learning provided a 
data‐driven approach to assess classification accuracy across differ‐
ent models,31 identifying discriminative patterns first within a train‐
ing set and then validating these patterns within a test set.38 The 
models identify features within the data that can predict whether re‐
sponses are evoked by the noxious or non‐noxious stimuli. Validating 
the model in an independent test set gives an accurate picture as to 
how	the	model	will	perform	with	any	 independent	data.	We	dem‐
onstrate that measures within modalities (eg, multiple measures of 
facial grimacing) are highly correlated and that single measures per‐
form as well as multiple measures. In contrast, measures recorded 
across different modalities are less correlated, and as such, including 
different modalities improves the discrimination between a noxious 
and non‐noxious stimulus. This indicates that there is a benefit to 
including activity recorded across a range of modalities in infant pain 
assessment, which is consistent with recommendations of other au‐
thors examining multimodal responses to pain.21,23

Overall, we find strong relationships between measures within 
modalities and consequently including multiple measures within a 
modality does not improve discrimination compared with using a sin‐
gle measure of reflex withdrawal or facial expression. Nevertheless, 
although we found, for example, that the duration of nasolabial 

TA B L E  2   Model metrics for the full model, obtained in the training set

Model metrics (out‐of‐bag)

Accuracy Sensitivity Specificity AUC

Full model (61 infants, of which 40 term, 
21 preterm, 118 observations)

All	ages 0.81	(0.72‐0.87) 0.76	(0.64‐0.85) 0.85	(0.73‐0.92) 0.89 (0.81‐0.94)

Preterm	(<37	wk) 0.88	(0.74‐0.95) 0.80 (0.58‐0.92) 0.95	(0.77‐0.99) 0.94 (0.81‐0.99)

Term	(≥37	wk) 0.77	(0.66‐0.85) 0.74	(0.59‐0.85) 0.79	(0.64‐0.89) 0.86	(0.75‐0.93)

Out‐of‐bag	accuracy,	sensitivity,	specificity,	and	AUC	(area	under	the	ROC	curve)	are	reported	along	with	confidence	intervals	in	brackets.
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furrow alone had similar discriminative accuracy compared with the 
combination of all three facial expressions, this should not be inter‐
preted to suggest that nasolabial furrow will always be the best facial 
expression measure to use. Other measures might be more appro‐
priate in different contexts; for instance, in ventilated infants, where 
the nose and mouth are obscured from view, brow bulge, or eye 
squeeze	could	be	assessed.	In	this	study,	P‐values were used only as a 
guide to select the best measure for inclusion in our final multimodal 
model. Many infant pain assessment tools make use of multiple mea‐
sures within a single modality, and while these data do not imply that 
existing pain scores should be modified for use in pain assessment (as 
these are validated constructs), it is important to note that multiple 
measures within a single modality may not always add value.

Correlations between measures that span different modali‐
ties were considerably less strong than the correlations observed 
within modalities, and the discriminative power of the model with 
multiple modalities was higher than the models with individual mo‐
dalities. This highlights the benefit of using multimodal assessment 
when attempting to quantify infant pain experience. Behavioral and 
physiological measures of pain are frequently combined in infant 
pain assessment tools.5,20 For example, the well‐validated PIPP‐R 
combines scores from three different facial components, change in 
heart rate, and change in the oxygen saturation, as well as baseline 
behavioral state and gestational age.28	We	find	that	neurophysiolog‐
ical measures are only moderately correlated to the behavioral and 
physiological modalities, implying that noxious‐evoked brain activity 
and reflex withdrawal measure different components of the infant's 
experience, and demonstrating the value of including neurophysio‐
logical measures in infant pain assessment.

As	pain	is	a	subjective	experience	and	necessarily	involves	corti‐
cal activity,39 measuring brain activity can provide important insight 
into how nociceptive input is processed by the brain. However, the 
template of noxious‐evoked brain activity that has previously been 
derived is limited as it does not measure all nociceptive activity that 

takes place across the infant's brain.16 Furthermore, the sensitivity 
and specificity of this measure for individual infants was previously 
noted	to	be	only	moderate	(approximately	65%).16	While	developing	
a validated signature of noxious‐evoked brain activity which incor‐
porates other features (such as the data acquired from fMRI studies 
17,40) will add additional information, inclusion of noxious‐evoked 
brain activity in the full multimodal model in this study (measured 
using the validated template) provided increased power to discrimi‐
nate noxious from non‐noxious procedures.

Some	studies	have	questioned	 the	utility	of	physiological	mea‐
sures in infant pain assessment due to their lack of specificity to 
noxious stimulation.9 Välitalo and colleagues used a graded response 
model to examine individual components of the COMFORT and PIPP 
scales and found that behavioral measures were more informative 
than physiological measures.22 However, here we find that physio‐
logical measures add value. In particular, while oxygen saturation has 
low sensitivity, it has moderately high specificity. Moreover, using a 
poststimulus time window of 15 seconds (shorter than the 30 sec‐
onds used in the PIPP‐R score) improved discrimination based on 
change	in	heart	rate.	While	this	time	window	may	not	be	appropriate	
for longer procedures, and consideration of other non‐noxious con‐
trol stimuli is needed, using a data‐driven approach such as the one 
used here may identify features within physiological responses which 
are accurate surrogate measures of infant pain. Moreover, in the case 
of clinical trials of analgesics, including multiple modalities is bene‐
ficial in the assessment of safety, as well as efficacy, of a drug.41,42

Here, we considered responses to a clinically required heel lance 
and compared them to responses to a non‐noxious control stimulus. 
These stimuli were closely matched, allowing us to identify features 
that could discriminate the noxious component of the procedure. 
However,	the	models’	ability	to	discriminate	these	stimuli	with	rel‐
atively high accuracy does not mean that this would be directly ap‐
plicable to other noxious and non‐noxious procedures which may 
vary in intensity and duration. The specific model produced here 

TA B L E  3   Model metrics and statistics for the individual models and the full model, obtained in the test set

Model metrics (test set)
P‐Values (comparison to 
full model)

Accuracy Sensitivity Specificity AUC Accuracy AUC

Model Nasolabial furrow 0.70	(0.58‐0.80) 0.56	(0.39‐0.72) 0.84 (0.68‐0.93) 0.76	(0.64‐0.85) .022*  .00079* 

Heart rate 0.73	(0.62‐0.83) 0.72	(0.55‐0.84) 0.75	(0.58‐0.87) 0.77	(0.63‐0.87) .21 .027* 

Oxygen saturation 0.55 (0.43‐0.66) 0.44 (0.28‐0.61) 0.66 (0.48‐0.80) 0.52 (0.38‐0.65) .00091*  <.0001* 

EEG 0.64	(0.52‐0.75) 0.59	(0.42‐0.74) 0.69 (0.51‐0.82) 0.75	(0.60‐0.85) .012*  .013* 

Ipsilateral	EMG 0.77	(0.65‐0.85) 0.81 (0.65‐0.91) 0.72	(0.55‐0.84) 0.84	(0.71‐0.92) .50 .34

Contralateral	EMG 0.72	(0.60‐0.81) 0.63	(0.45‐0.77) 0.81 (0.65‐0.91) 0.71	(0.56‐0.82) .21 .0081* 

Facial, HR, saturation 0.75	(0.63‐0.84) 0.75	(0.58‐0.87) 0.75	(0.58‐0.87) 0.80 (0.65‐0.89) .13 .0069* 

Full 0.81	(0.70‐0.89) 0.78	(0.61‐0.89) 0.84 (0.68‐0.93) 0.90	(0.78‐0.95) N/A N/A

Note: Models	of	individual	measures	were	compared	with	the	full	model.	A	model	combining	measures	of	facial	expression	(nasolabial	furrow),	heart	
rate	and	oxygen	saturation	was	also	compared	with	the	full	model.	Accuracy,	sensitivity,	specificity,	and	AUC	(area	under	the	ROC	curve)	in	the	test	
set are reported along with confidence intervals in brackets. P‐values are given for the comparison between the accuracy of the individual models 
and the full model (mid‐P‐value	McNemar's	test)	and	between	the	AUC’s	of	the	individual	models	and	the	full	model	(DeLong's	test).
*Indicates P < .05. 
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was not designed to develop a pain score but rather to investigate 
the relationship between different measures and modalities within 
infant pain assessment. Indeed, if these data were to be used to aid 
in the development of a new pain measurement tool, the importance 
of testing other features, such as the ability for such a tool to detect 
changes in pain intensity after a pain‐reducing intervention has re‐
cently been eloquently highlighted.43

Using the classification approach taken here, a misclassified re‐
sponse is counted as a failure of the model. Ultimately, this is import‐
ant, as we would strive to achieve a model that can identify whether 
an	infant	is	in	pain	with	100%	accuracy.	However,	it	is	currently	un‐
clear what it means when an infant does not mount a response to a 
noxious stimulus in any given modality.44 For example, infants can 
fail to respond behaviorally 25 and it is not well understood whether 
this truly reflects a lack of pain experience or is driven by other 
reasons such as lethargy.44,45 It is possible that a lack of response 
across several modalities, which would lead to misclassification in 
our model, is because the infant does not find the stimulus painful. 
However, interpreting these data are complex and further research 
is warranted.

In	this	study,	we	considered	 infants	from	34	to	42	weeks’	ges‐
tation at the time of study. Infants younger than this are more likely 
to display nonmodality‐specific brain activity responses,46 reflex 
to tactile as well as noxious stimuli,6 and display facial grimacing to 
both noxious and non‐noxious stimuli.25 Moreover, gestational age is 
a strong influential factor in creating automated pain assessment ap‐
proaches 47 and responses to noxious stimulation increase over the 
age range studied here.6,8,25	While	we	did	not	see	a	difference	in	ac‐
curacy of the multimodal model between preterm and term infants, 
an important extension of this work will be to determine how well 
multiple assessment modalities can discriminate between noxious 
and non‐noxious stimuli in younger preterm infants. Deriving an age‐
dependent multimodal pain assessment tool for preterm infants is 
critical given the high burden of pain experienced during the course 
of neonatal treatment. Moreover, many other factors may influence 
infants’	 responses	 to	 noxious	 stimuli,	 including	 sleep	 state,	 mode	
of delivery, current medication, pathology, and type and timing of 
feeding.48,49 Investigating how discrimination between noxious and 
non‐noxious stimuli is influenced by these factors will shed further 
light on the infant pain experience.

In summary, we demonstrate that the inclusion of data recorded 
across multiple modalities in the assessment of infant pain (includ‐
ing pain‐related changes in behavior, reflex withdrawal, physiology, 
and	brain	activity)	improves	our	ability	to	discriminate	infants’	re‐
sponses to noxious and innocuous stimuli. In contrast, inclusion of 
data acquired from taking multiple measures within a single modal‐
ity (eg, alternative measures of facial grimacing) does not improve 
discrimination between noxious and innocuous stimuli. This is par‐
ticularly relevant in the research setting where combining neuro‐
physiological, physiological, and behavioral measures can provide 
better insight into the infant pain experience and lead to a better 
understanding of how analgesic interventions influence nocicep‐
tive processing across all levels of the central nervous system.
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