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Abstract

This study presents an application of machine learning (ML) methods for detecting the presence of stenoses and aneurysms
in the human arterial system. Four major forms of arterial disease—carotid artery stenosis (CAS), subclavian artery stenosis
(SAS), peripheral arterial disease (PAD), and abdominal aortic aneurysms (AAA)—are considered. The ML methods are
trained and tested on a physiologically realistic virtual patient database (VPD) containing 28,868 healthy subjects, adapted
from the authors previous work and augmented to include disease. It is found that the tree-based methods of Random Forest
and Gradient Boosting outperform other approaches. The performance of ML methods is quantified through the F, score
and computation of sensitivities and specificities. When using six haemodynamic measurements (pressure in the common
carotid, brachial, and radial arteries; and flow-rate in the common carotid, brachial, and femoral arteries), it is found that
maximum F; scores larger than 0.9 are achieved for CAS and PAD, larger than 0.85 for SAS, and larger than 0.98 for both
low- and high-severity AAAs. Corresponding sensitivities and specificities are larger than 90% for CAS and PAD, larger
than 85% for SAS, and larger than 98% for both low- and high-severity AAAs. When reducing the number of measurements,
performance is degraded by less than 5% when three measurements are used, and less than 10% when only two measure-
ments are used for classification. For AAA, it is shown that F, scores larger than 0.85 and corresponding sensitivities and
specificities larger than 85% are achievable when using only a single measurement. The results are encouraging to pursue
AAA monitoring and screening through wearable devices which can reliably measure pressure or flow-rates.
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1 Introduction

Two of the most common forms of arterial disease are ste-
nosis, narrowing of an arterial vessel, and aneurysm, an
increase in the area of a vessel. They are estimated to affect
between 1 and 20% of the population (Fowkes et al. 2013;
Shadman et al. 2004; Mathiesen et al. 2001; Li et al. 2013),
and ruptured abdominal aortic aneurysms alone are esti-
mated to cause 6000-8000 deaths per year in the United
Kingdom (Darwood et al. 2012). Current methods for the
detection of arterial disease are primarily based on direct
imaging of the vessels, which can be expensive and hence
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prohibitive for large-scale screening. If arterial disease can
be detected by easily acquirable pressure and flow-rate meas-
urements at select locations within the arterial network, then
large-scale screening may be facilitated.

It is likely that the indicative biomarkers of arterial dis-
ease in the pressure and flow-rate profiles consist of micro
inter- and intra-measurement details. In the past, detection
of arterial disease has been proposed through the analysis
of waveforms in combination with mathematical models
of pulse wave propagation, see for example Sazonov et al.
(2017), Stergiopulos et al. (1992). This, however, requires
specification or identification of patient-specific network
parameters, which is not easy to perform, especially at large
scales.

This study explores the use of machine learning (ML)
methods for the detection of stenoses and aneurysms in
order to facilitate large scale low-cost screening/diagnosis. A
data-driven ML approach is adopted, which does not require
specification of patient-specific parameters. Instead, such

@ Springer


http://orcid.org/0000-0002-3196-6663
http://orcid.org/0000-0001-5956-217X
http://orcid.org/0000-0002-4901-2980
http://orcid.org/0000-0002-2081-308X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10237-021-01497-7&domain=pdf

2098

G. Jones et al.

algorithms learn patterns and biomarkers from a labelled
data set. ML has a history of being used for medical appli-
cations (Kononenko 2001). Classification algorithms have
been shown to be able to predict the presence of irregulari-
ties in heart valves (Comak et al. 2007), arrhythmia (Song
et al. 2005), and sleep apnea (Khandoker et al. 2009) from
recorded time domain data. Recently, a study reported
the successful use of ML methods to estimate pulse wave
velocity from radial pressure wave measurements (Jin et al.
2020). Automatic detection, segmentation, and classification
of AAAs in CT images are presented in Hong and Sheikh
(2016), while severity growth of AAAs is predicted from
CT images in Jiang et al. (2020). A previous study (Chak-
shu et al. 2020) has applied deep-learning methods to AAA
classification, using a synthetic data set created by varying
seven parameters. In this study, accuracies of ~ 99.9% are
reported for binary classification of AAA based on three
pressure measurements. Furthermore, Wang et al. (2021)
achieved a sensitivity of 86.8% and a specificity of 86.3% for
early detection of AAA from the photoplethysmogram pulse
waves—using a synthetic data set created by finding the
mean and standard deviation of six cardiovascular properties
for subjects of each age decade from 55 to 75 years, and then
varying each property in combination with each other by +
1 standard deviation from their age-specific mean values.
These studies motivate the application of ML to detect arte-
rial disease—both stenosis and aneurysms—using only pres-
sure and flow-rate measurements at select locations in the
arterial network. A previous proof-of-concept study (Jones
et al. 2021c) showed promising results that ML classifiers
can detect stenosis in a simple three vessel arterial network
using only measurements of pressures and flow-rates. Here,
these ideas are extended to a significantly larger, physiologi-
cally realistic, network of the human arterial system. All the
ML methods are trained and tested on the virtual healthy
subject database proposed in Jones et al. (2021a), which is
augmented to introduce disease into the virtual subjects.

This study is organised as follows. It begins by briefly
explaining the healthy VPD proposed in Jones et al. (2021a).
Modifications to this database to create four different forms
of arterial disease are presented next, along with the param-
eterisation of disease forms. This is followed by presentation
of the ML methodology and metrics used for quantification
of classification accuracies. Finally, these accuracies are
assessed when using different combinations of pressure and
flow-rate measurements, along with the analysis of patterns
and behaviours observed in the ML classifiers.
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2 Methodology

The ML algorithms are trained and tested on a data set con-
taining both healthy subjects and diseased patients.

2.1 Healthy subjects

A physiologically realistic VPD containing healthy sub-
jects is created in Jones et al. (2021a) and forms the start-
ing point of this study. This database is available in Jones
et al. (2021b). The arterial network contains 71 vessel
segments and is shown in Fig. 1, along with the loca-
tions where disease occurs in high prevalence, and where
measurements of pressure and flow-rate can potentially be
acquired (Jones et al. 2021a). The healthy patient database
of Jones et al. (2021a) contains 28,868 VPs and is referred

—0— CAy
—0— SAg
o AA4
—o0— PA

Fig.1 The connectivity of the arterial network, taken from Jones
et al. (2021a). The location of the four forms of disease (see
Sect. 2.2.1); and six pressure and flow-rate measurements (see
Sect. 2.3) are highlighted
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as VPDy. Disease is introduced into these healthy arterial
networks as described next.

2.2 Creation of unhealthy VPDs
2.2.1 Disease forms

The four most common forms of arterial disease are
carotid artery stenosis (CAS), subclavian artery stenosis
(SAS), peripheral arterial disease (PAD, a form of steno-
sis), and abdominal aortic aneurysm (AAA) (Jones et al.
2021a; Dyken et al. 1974; Kullo and Rooke 2016; Aboyans
et al. 2010; Chen et al. 2013; Li et al. 2013). Their preva-
lence is restricted to the following vessels and shown in
Fig. 1:

— CAS is assumed to only affect the common carotid arter-
ies. For simplification and consistency of notation, these
vessels are referred to as the carotid artery chains (CA,
).

— SAS is assumed to affect the first and second subclavian
segments. These two chains of vessels (one on the right
and left side) are referred to as the subclavian artery
chains (SA,).

— PAD is assumed to affect the common iliacs; external
iliacs; first and second femoral segments; and the first
popliteal segments. These chains are referred to as the
peripheral artery chains (PA,).

— AAA is assumed to affect the first to forth abdominal
aorta segment. This chain of vessels is referred to as the
abdominal aortic chain (AA,).

It is assumed that each diseased VP has only one of the four
forms of arterial disease. Four complementary databases
corresponding to VPDy are constructed, each pertaining to
one form of arterial disease. To create the diseased VPD
corresponding to CAS, referred to as VPD,, for every sub-
ject in VPDy, disease is introduced in CA, (i.e. the left or
right carotid artery). This is achieved by taking the arterial
network of a subject from VPDy, artificially introducing a
stenosis in CA,, and then using a one-dimensional pulse-
wave propagation model—which has previously been widely
employed, tested, and validated (Boileau et al. 2015; Forma-
ggia et al. 2003; Alastruey et al. 2012; Olufsen et al. 2000;
Reymond et al. 2009; Matthys et al. 2007)—to compute the
pressure and flow-rate waveforms. Note that this model has
also been used to study haemodynamics in both stenosis
(Boileau et al. 2018; Carson et al. 2019; Jin and Alastruey
2021) and aneurysms (Sazonov et al. 2017; Chakshu et al.
2020; Jin and Alastruey 2021). The numerical implementa-
tion of the pulse-wave propagation model employed here is
outlined in Jones et al. (2021a) and validated against a dis-
continuous Galerkin (DCG) scheme (Alastruey et al. 2012),

which in turn has been successfully validated against a 3D
model of blood-flow through stenosed arterial vessels (Boi-
leau et al. 2018).

Thus, VPD,¢ contains 28,868 VPs with CAS. Similarly,
the databases corresponding to SAS, PAD, and AAA are
created, and referred to as VPDg,g, VPDyp,py, and VPD 44,
respectively. The disease severities, locations, and shapes are
varied randomly across these databases as described next.

2.2.2 Parameterisation of diseased vessels

The severity of stenoses (percentage reduction in area) is
varied between 50 and 95%. The lower 50% limit is set for
the stenoses to be haemodynamically significant (Aboy-
ans et al. 2010; Subramanian et al. 2005) and the upper
limit of 95% reflects near total occlusion. For aneurysms,
based on (Ernst 1993) and (Davis et al. 2013), an allowa-
ble range of AAA severities of 4cm—6¢cm diameters is cho-
sen. This corresponds to a cross-sectional area variation
0f 12.56 cm?-28.27 cm?. With the abdominal aortic area in
the reference network (Jones et al. 2021a) between 1.76
and 1.09 cm?, the corresponding AAA severities are set to
vary between 713% (12.56/1.76) and 2,593% (28.27/1.09).
With the above ranges, parameterisation of area increase/
reduction proposed in Jones et al. (2021c) is adopted, see
Fig. 2. For a chain of diseased vessels (CA,, SA,, PA,, or
AA,), the normalised area A, as a function of the normal-
ised x-coordinate, x,, is represented as:

2(x, = b
A= <11§>igcos ((xn—b)zr> forb<x,<e

n € —

1 otherwise

ey

where S represents the severity, b represents the normalised
starting location of the disease in the vessel chain, e repre-
sents the normalised end location, A, is normalised with
respect to the healthy version of the vessel in VPDy, and +
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Fig.2 An example of a stenosis of severity 0.6 and aneurysm of
severity 8.0 is shown. These disease profiles are created with a start
location of 0.2 and an end location of 0.8
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creates an aneurysm or stenosis, respectively. In CA,, SA,,
and PA,, the left and right side vessels are chosen with equal
probability.

The disease severity S, start location b, and end location
e are assigned uniform distributions based on physical con-
siderations. To sample values for these parameters, a fourth
parameter, the reference location of the disease (represented
by r) is introduced. This is included to impose a minimum
length of 10% of the chain length on the disease profiles.
Thus, the parameters for disease are sampled sequentially
from uniform distributions within the following bounds:

02<r<038,
0.1 <b<r-0.05,
Bounds:{ r+0.05 <e <£0.9, 2)
05<8<0095 for stenoses,
{ 7.13<5<2593 for aneurysms.

Based on the above parameterisation, examples of healthy
and diseased SA,, PA,, and AA, area profiles are shown in
the left and right columns of Fig. 3, respectively.
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= > P :

2 i =1 SAx
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Fig. 3 Examples of healthy and diseased SA,, PA,, and AA, area pro-
files. The geometrical boundaries between vessel segments that form
the chains are indicated by red dashed lines
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2.3 Measurements

A review of potential measurements that can be acquired in the
network is presented in Jones et al. (2021a). Based on this, the
locations at which time-varying pressure and flow-rate meas-
urements can be acquired are shown in Fig. 1 and described
below.

— Pressure in the carotid and radial arteries measured using
applanation tonometry (Adji et al. 2006; O’rourke 2015).
To simplify annotation and description, the right and left
carotid artery pressures are referred as PiR) and P(IL), respec-
tively. Similarly, the radial artery pressures are referred to
PgR) and PgL), respectively.

— Pressure in the brachial arteries estimated through recon-
struction of finger arterial pressure (Guelen et al. 2008).
The right and left brachial artery pressures are referred to
as P(zR) and P(zL) , respectively.

— Flow-rate in the carotid, brachial, and femoral arteries
measured using Doppler ultrasound (Bystrom et al. 1998;
Oglat et al. 2018; Radegran 1997). The right and left
carotid artery, brachial, and femoral flow-rates are referred

to as Q(R), Q(L); Q;R), Q(L); and Q(R) , Q(L) , respectively.

2.3.1 Provision of measurements to ML classifiers

Unless specified otherwise, the measurements to ML classi-
fiers are bilateral, i.e. when Q is specified it is implied that
both right and left carotid flow-rates are used:

0, = {0, 0"} 3)

There are, therefore, a total of by six bilateral measurements
available: three pressure and three flow-rates. To reduce
the dimensionality required to describe each pressure or
flow-rate measurement, the periodic profiles are described
through a Fourier series (FS) representation:

N
u(t) = )" a, sin(nar) + b, cos(nwr), )

n=0

where u represents any pressure or flow-rate profile; a,, and
b, represent the nth sine and cosine FS coefficients, respec-
tively; N represents the truncation order; and w = 27 /T,
with T as the time period of the cardiac cycle. It is found
in Jones et al. (2021c) that haemodynamic profiles can be
described by a FS truncated at N = 5. Thus, each individual
measurement is described by 11 FS coefficients, and each
bilateral measurement by 22 FS coefficients.
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2.4 Machine learning classifiers

A model mapping a vector of input measurements, x, to a
discrete output classification, y, can be described as:

y=mx) ye{c".c?}, ®

where CV represents the jth possible classification. In the
context of this study, the measured inputs, x, represent
the FS coefficients of a user defined combination of the
haemodynamic measurements {Q,, Q,, O3, P, P,, P;} (see
Sect. 2.3.1) taken from VPs, and the output classification
represents the corresponding health of those VPs : CV=
‘healthy’ and C®'= ‘diseased’. To account for large dif-
ferences in magnitudes of the components of x, they are
individually transformed with the Z-score standardisation
method (Mohamad and Usman 2013) to have zero-mean and
unit variance.

As previously stated, it assumed that in a patient disease
is limited to only one of the four forms. As a first exploratory
study, the ML classifiers are created for each form indepen-
dently. All classifiers are therefore binary (see Jones et al.
2021c), i.e. four independent classifiers are trained to predict
the following questions independently: “Does a VP belong
to VPDy or VPD,”, where x can be either CAS, SAS, PAD,
or AAA.

2.4.1 Training and test sets

Each VP in VPD,g, VPDgug, VPDpap, and VPD, 4 o shares
an identical underlying arterial network, apart from the
diseased chain, with the corresponding healthy subject in
VPDy,. It is, therefore, important to ensure that the same
subset of VPs is not included in the both healthy and dis-
eased data sets used for ML classifiers. As each form of
disease is mutually exclusive, four independent training and
test sets, each corresponding to one form of the disease, are
constructed in the following three stages:

— Step 1: Half of the available VPs are randomly selected
from VPDy for inclusion within the ML data set; this
is referred to as VPDy .. The unhealthy VPs corre-
sponding to the remaining unused half are taken from
the appropriate unhealthy VPD (VPD(,g, VPDgys,
VPDp,p, or VPD,4,) and incorporated into the ML
data set. These data sets are referred to as VPDag v
VPDgps.m1» VPDpap.mir» OF VPD g g A mr-

— Step 2: The data sets of Step 1 are combined to create
four complete data sets each containing 50% healthy and
50%, unhealthy VPs:

1. VPDy i U VPDepg L

2. VPDy i U VPDgag v
3. VPDy i U VPDpap it
4. VPDH-ML U VPDAAA—ML

— Step 3: The four data sets of Step 2 are randomly split
into a training set containing 2/3 of all the VPs in the data
set, and a test set containing 1/3 of all the VPs.

The performance of all ML classifiers is evaluated using a
fivefold validation. For each fold, the same data set from
Step 2 is used, but different subsets are sampled in Step 3
for training and testing.

2.4.2 ML methods

The purpose of this study is to perform an initial exploratory
investigation into the possibility of using ML classifiers to
detect different forms of arterial disease. Focus is, there-
fore, on uncovering patterns and behaviours—such as which
haemodynamic measurements are particularly informa-
tive—rather than optimisation to achieve increasingly higher
accuracies. With consideration for this objective, it is not
feasible to perform extensive optimisation and analysis on
every single ML classifier trained and tested. Thus, the ML
methods used are chosen based on their “robustness”—i.e.
minimal sensitivity to the hyper-parameters and minimal
susceptibility to problems such as overfitting—relative to
more complex deep learning methods. Five different ML
methods are employed. These five methods are random for-
est, gradient boosting, naive Bayes’, support vector machine,
and logistic regression. These methods encompass a range
of probabilistic and non-probabilistic applications of dif-
ferent modelling approaches, see Table 1, while fulfilling
the aforementioned characteristics. Along with these five
ML methods, one deep learning method is also employed
for comparison. This method is multi-layer perceptron. It
is a priori expected that multi-layer perceptron classifiers
will not perform to their full potential in this study, as they
are more reliant on complex hyper-parameter optimisation
and monitoring for overfitting than the five ML methods.
The use of multi-layer perceptrons will, however, provide
some, albeit limited, comparison of ML and deep learning
methods. Since standard versions and implementations of

Table 1 The four different modelling approaches and how each clas-
sification method aligns with these approaches

Modelling approach Non-probabilistic Probabilistic

Tree-based RF GB
Kernel-based SVM
Bayesian NB

Neuron-based LR, MLP
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these methods are employed without any modifications,
methodological details of these methods are not presented
in this study. Instead, the reader is referred to the following
references for methodological details:

1. Random Forest (RF) (Liaw and Wiener 2002; Breiman
2001)

2. Gradient Boosting (GB) (Friedman 2001; Elith et al.
2008)

3. Naive Bayes’ (NB) (Rish et al. 2001b, a)

4. Support Vector Machine (SVM) (Kecman 2005)

5. Logistic Regression (LR) (Sperandei 2014; Hilbe 2009;
Jones et al. 2021c¢)

6. Multi-layer Perceptron (MLP) (Murtagh 1991)

All implementations of the above algorithms in the Python
package Scikit-learn (Pedregosa et al. 2011) are used.
Some of these methods require optimisation of the hyper-
parameters. This is described after presenting performance
quantification metrics in the next section.

2.4.3 Quantification of results

Classifier performance is assessed by two metrics: sen-
sitivity and specificity in combination; and the F| score.
Figure 4 shows the definition of sensitivity, specificity, and
F, score, along with the related concepts of precision and
recall commonly used in the assessment of classifiers. It

Healthy  Unhealthy
VPs VPs
[ I 1 I 1
TN )
FN | VPs predicted

to be healthy

Recall (R) = Sensitivity (Se)= %
_ TP
Precision (P) = 15135

Specificity (Sp) = %

_ 2PR
= PR

Fig.4 The relationship between sensitivity, specificity, recall, and
precision. TP: True Positive, representing VPs belonging to a clas-
sification correctly identified; FN: False Negative, representing VPs
belonging to a classification incorrectly identified: FP: False Positive,
representing VPs not belonging to a classification incorrectly iden-
tified; and TN: True Negative, representing VPs not belonging to a
classification correctly identified
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is desirable to have both sensitivities and specificities to
be high. Similarly, a higher F| score is desirable. Since the
F| score is a single scalar metric that balances both preci-
sion and recall, it is a good metric to compare classifiers
when tuning the hyper-parameters of ML algorithms. For
a discussion on these metrics and their relevance, please
refer to Jones et al. (2021c¢).

2.5 Hyper-parameter optimisation

The architecture of LR, NB, and SVM classifiers can all be
considered to be problem independent. While these three
algorithms are able to undergo varying levels of problem
specific optimisation, the underlying structure of the classi-
fier usually does not change. The architectures of RF, MLP,
and GB classifiers, however, are dependent on the specific
problem. The architecture choices for the classifiers and
associated hyper-parameter optimisation are described next.
For all six methods, all hyper-parameters that are neither
optimised nor specified in the text are set to their default
values within Scikit-learn (Pedregosa et al. 2011).

2.5.1 LR,SVM, and NB

For LR, the ‘LIBLINEAR’ solver offered by the Scikit-learn
(Pedregosa et al. 2011) package is chosen. In the case of
SVM, a kernel is typically chosen to map the input meas-
urements to a higher order feature space (Jakkula 2006). All
SVM classifiers use a radial basis function kernel (Scholkopf
et al. 1997), with the Scikit-learn hyper-parameter ‘gamma’
set to ‘scale’. In the case of NB, the distribution of input
measurements across the data set is chosen to be normal
(Murphy et al. 2006).

2.5.2 Random Forest

In the case of RF, the number of trees in the ensemble and
the maximum depth of each tree is optimised. Other hyper-
parameters that can be tuned include the minimum number
of data points allowed in a leaf node, and the maximum
number of different features considered for splitting each
node. However, the effect of these is not investigated here.
To optimise the two hyper-parameters, a grid search is car-
ried out. A grid is constructed by discretising the possible
number of trees within the ensemble between 10 and 400 at
intervals of 10, and the possible depth of each tree between
20 and 200 at intervals of 10. RF classifiers are trained for
every combination with all six pressure and flow-rate meas-
urements (see Sect. 2.3.1) across all the four forms of arte-
rial disease. The hyper-parameters describing the architec-
ture that produces the highest F| score are found for each
form of disease, and this combination of hyper-parameters
is then chosen for all subsequent classifiers. The optimal
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Table 2 The hyper-parameters

o . Disease Trees Depth F,
describing the architecture of

the RF classifiers that produce CAS 100 80 0.8878
the highest F'| scores, when
. . SAS 150 80 0.8292
using all six pressure and flow-
rate measurements PAD 100 100 0.8935
AAA 100 50 0.9912

hyper-parameters for each of the four forms of disease are
shown in Table 2, along with the F| score achieved by each.

It is unlikely that a single architecture will consistently
produce the best results when varying the combination of
input measurements. In this study, re-optimisation of the
hyper-parameters when varying the input measurement com-
bination is not performed, to minimise computational cost. It
is found that when using all six pressure and flow-rate meas-
urements, the F| score produced is relatively insensitive to
the hyper-parameters used. Thus, it is likely that a reasonable
representation of the maximum achievable accuracy can be
obtained for various input measurement combinations by a
single architecture. It should be noted, however, that further
improvements in classification accuracy may be possible
with such re-optimisation.

2.5.3 Gradient Boosting

Similar to the RF architecture, the GB architecture is opti-
mised by varying the number of trees within the ensemble
and the maximum depth of each tree. Other hyper-parame-
ters which may be varied, however, are not considered here,
are the minimum number of data points allowed in a leaf
node, the maximum number of different features considered
for splitting each node, and the impact of each tree on the
final outcome (i.e. the learning rate). A grid search is carried
out to find the combination producing the highest F score
when using all the six input measurements. It is common for
GB classifiers to use weaker, shallower decision trees (rela-
tive to RF classifiers) to deliberately create high bias and low
variance (Hastie et al. 2009). The possible depth of each tree
is, therefore, discretised between 2 and 20 at intervals of 1.
As a high number of trees is not required to compensate for
over fitting, contrary to the RF method, the possible number
of trees within the ensemble is discretised between 10 and
100 at intervals of 10. The optimal hyper-parameters for
each of the four forms of disease are shown in Table 3.

2.5.4 Multi-layer perceptron

As is common with deep learning methods, relative to ML
methods, there are significantly more hyper-parameters
which can be optimised for the MLP classifiers relative to
Gradient Boosting or Random Forest. Examples of hyper-
parameters that significantly affect the performance of an
MLP classifier include batch-size, learning rate, activation
functions, drop-out, and individual units per hidden layers.
With consideration for the exploratory stance of this study,
it is chosen to only optimise the number of neurons within
each hidden layer and the number of hidden layers. For sim-
plification, it is assumed that all the hidden layers contain an
identical number of neurons. A logistic activation function is
used for all the hidden layers. It is likely that this simplistic
hyper-parameter optimisation will limit the accuracy of clas-
sification achieved by MLP classifiers.

Similar to the RF and GB methodology, the hyper-param-
eters that produce the highest F; score are found through
a grid search. The number of neurons within each layer is
discretised between 10 and 200 at intervals of 10, and the
number of hidden layers is discretised between 1 and 6 at
intervals of 1. The optimal hyper-parameters found for each
of the four forms of disease are shown in Table 4. It shows
that relative to RF and GB, there is less consistency in the
maximum F; scores achieved by MLP—it classifies AAA
and CAS to high levels of accuracies, but performs relatively
poorly for SAS and PAD.

2.6 Input measurement combination search

There are 63 possible combinations of input measurements
that can be provided to a ML classifier from the six bilateral
pressure and flow-rate measurements (see Sect. 2.3.1). A
combination search is performed for each of the four forms
of disease. For every combination of input measurements,
all the six ML classification methods are trained, and then
subsequently tested to quantify their performance. The aver-
age F| score, sensitivity, and specificity for each case across
five folds are recorded. Combinations of interest are then
further analysed.

Table 4 The hyper-parameters describing the architecture of the MLP
classifiers that produce the highest F, scores, when using all six pres-
sure and flow-rate measurements

Table 3 The hyper-parameters

describing the architecture of Disease Trees Depth F), Disease Neurons Depth F,

the GB classifiers that produce CAS 100 0.9343 CAS 60 4 0.7785

the highest £ scores, when SAS 100 7 08574  SAS 190 2 0.6040

using all six pressure and flow-

rate measurements PAD 100 10 0.9187 PAD 120 2 0.6681
AAA 80 7 0.9970 AAA 30 2 0.9785
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2.7 Overfitting and early stopping criterion

To assess any overfitting by the ML and deep-learning
methods, the log loss costs across the training and test
sets are recorded at each sequential iteration of the train-
ing process (up to the 200th iteration). At a low number
of training iterations, both the training and test costs
are expected to be high as the classifiers can neither fit
the training data nor generalise to the test data. As the
training process progresses, the training and test costs
are both expected to decay before converging to stable
values in the absence of overfitting. However, in the
case of overfitting, while the training costs continue to
decrease, after a minima in the test costs, overfitting
results in successively increasing test costs. In such
cases, an early stopping criterion (Prechelt 1998; Yao
et al. 2007) is adopted to avoid overfitting. A third par-
tition to the available data (the validation set) is intro-
duced. The combined healthy and unhealthy data sets
described in Sect. 2.4.1 are split so that the training set
contains 50%, the validation set 25%, and the test set
25% of the available data. Classifiers are trained on the
training set; however, stopping criterion is based on the
log loss cost in the validation set. At each sequential
iteration in the training process, the average log loss

cost is computed across the validation set. If more than
75 iterations have been performed, and the improvement
in the log loss cost across the validation set between
two consecutive iterations is less than 1 x 1073, training
is stopped. The final classifier accuracy is assessed on
the test set.

3 Results and discussion

The full tables of results achieved for CAS, SAS, PAD, and
AAA classification are shown in Appendices A, B, C and D,
respectively. The score achieved by each ML method and
combination of input measurements are visually shown for
CAS, SAS, PAD, and AAA classification in Figs. 5, 6, 7,
and 8, respectively. They show that for all forms of arte-
rial disease, NB and LR classifiers consistently produce low
accuracy. It has previously been shown in the PoC (Jones
et al. 2021c) that the partition between the pressure and
flow-rate profiles taken from healthy and stenosed patients is
likely to be nonlinear. The fact that LR consistently produces
low accuracy results supports this finding, as LR is the only
linear classification method used. The finding that NB clas-
sifiers produce low accuracy classification is also consistent
with the results of the PoC (Jones et al. 2021c¢), which found
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Fig.5 The F, scores achieved for CAS using each combination of bilateral input measurements are shown. Measurements included within each

combination are highlighted with a black square
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Fig.6 The F, scores achieved for SAS using each combination of bilateral input measurements are shown. Measurements included within each

combination are highlighted with a black square

that the NB method is poorly suited to the problem of distin-
guishing between haemodynamic profiles. On the contrary,
across all the four forms of disease, the tree-based methods
(RF and GB) consistently produce high accuracy results.
This finding is in contradiction to the finding in the PoC
(Jones et al. 2021c¢) and is likely due to the inadequate archi-
tecture optimisation or because of the unsuitability of RF
on a smaller network used in the PoC (Jones et al. 2021c¢).
The fact that both RF and GB classifiers are producing high
accuracy classification in this study suggests that not only
are tree-based methods well suited to distinguishing between
haemodynamic profiles, but also emphasises the importance
of adequate architecture optimisation.

There is less consistency in the results achieved by
SVM and MLP classifiers when detecting different forms
of disease. SVM classifiers produce accuracies comparable
with RF and GB classifiers in the case of AAA detection;
however, low accuracy results for the three other forms of
disease. MLP classifiers produce accuracies comparable
with RF and GB classifiers in the case of CAS and AAA
detection; however, relatively low accuracy results for SS
and PAD classification. Overall, it is found that tree-based
methods of RF and GB perform best, with GB performance
slightly superior to that of RF. It is important to remember,
however, that the results presented here do not necessarily

capture the full potential of each method, and instead only
reflect the accuracies achieved within the limitations of the
simplistic hyper-parameter optimisation—a consideration
particularly important for MLP.

3.1 Measurement combinations

To investigate the importance of both the number of input
measurements provided to the ML algorithms and the spe-
cific combination of measurements, the average F, scores
achieved by all classifiers when providing only one, two,
three, four, five, or six input measurements are found. In
each case, the specific combinations that achieve the maxi-
mum and minimum F; scores are also recorded. These
results for different forms of disease are presented next.

3.1.1 CAS classification

The average, maximum and minimum F, score achieved
when providing different number of input measurements
for CAS classification are shown in Fig. 9.

It shows that NB and LR classifiers consistently pro-
duce an F| score of approximately 0.5, which is comparable
to naive classification, i.e. randomly assigning the health
of VPs with an equal probability to each outcome. SVM
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Fig.7 The F, scores achieved for PAD using each combination of bilateral input measurements are shown. Measurements included within each

combination are highlighted with a black square

performs slightly better with F; scores averaging 0.5 — 0.6.
The other three classification methods (RF, MLP, and GB)
perform significantly better with F| scores generally aver-
aging between 0.7 and 0.95 and showing a clear increase
in the average F score as the number of input measure-
ments increases. While the average and minimum F; score
achieved by RF and GB classifiers continuously increases,
the maximum F; score achieved can be seen to quickly
reach a plateau (at one input measurement for RF and three
input measurements for GB). For a fixed number of meas-
urements, the wide range of F; scores in Fig. 9 across all
classifiers suggests that specific combinations of measure-
ments may be more important than others for optimal clas-
sification. To explore this further, the combinations of input
measurements that produce the highest F, scores and the
corresponding accuracies when employing the RF and GB
methods are shown in Table 5. Two observations are made
from this table. First that for a fixed number of measure-
ments, the best combinations are not identical for the two
methods. For example, when two measurements are used the
best combination for RF is (Q,, Q,), while the best combina-
tion for GB is (P,, P,). This suggests that the best combina-
tion of measurements is likely dependent on the particular
ML method chosen. Second, some patterns stand out with
respect to which measurements may be more informative

@ Springer

than others. For example, across Table 5, Q, appears in 11
out of 12 combinations, and P, appears in 8 out of 12 com-
binations. This suggests that O, is most informative about
identifying the presence of CAS followed by P,. Physiologi-
cally, this is not surprising as Q, and P, are flow-rates and
pressures in the carotid arteries and the disease under con-
sideration is carotid artery stenosis. It is encouraging that
the ML methods are indeed placing more importance to the
relevant physiological measurements. In fact, it is remark-
able that RF and GB both achieve F scores above 0.85 and
sensitivities and specificities larger than 85% with only one
measurement. Also notable is that these accuracies can be
taken to beyond 93% (see GB row for 3 measurements in
Table 5) when adding 2 more measurements as long as the
additional two measurements are carefully chosen.

An interesting pattern to note is that while the average and
minimum F score achieved by MLP classifiers continuously
increases in Fig. 9, the maximum F, score decreases beyond
three input measurements. The maximum F scores achieved
by MLP classifiers, and the corresponding sensitivities and
specificities, when using three to six input measurements are
shown in Table 6. It shows that the decrease in F, scores is
also accompanied by an associated decrease in both the sen-
sitivities and specificities, as opposed to the balance between
them (increase in sensitivity and decrease in specificity and
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Fig.8 The F| scores achieved for AAA using each combination of bilateral input measurements are shown. Measurements included within each

combination are highlighted with a black square

0.9 1 -+ <+ hd
- = -
T A
——".——
0.8 1 -
,””. ________ B
o e o
2074+ W o +
1] . -
S pe .-
- ¥ 2
=~ 0.6 i il |
T = T
0.5 8mm==s - : *
B
0.4 1
1 2 3 4 5 6
Number of input measurements
-®- NB SVM -®- MLP
LR -®- RF GBM

Fig. 9 The average, maximum, and minimum F, score achieved by all
classifiers trained using different numbers of input measurements are
shown for carotid artery stenosis classification. The central markers
represent the average score achieved, while the error bars indicate the
upper and lower limits

vice versa). This behaviour is unusual as intuitively more
input measurements should generally provide more informa-
tion. This finding may suggest that MLP classifiers are able
to extract maximum information from the haemodynamic
profiles when using as little as three input measurements,
and may be susceptible to over fitting when using more than
three measurements, thereby leading to less generalisation
capabilities and consequently decreased accuracies.

To investigate any overfitting, the log loss costs for the
training and test sets during the training process are shown
in Fig. 10 for the best measurement combinations identi-
fied by the MLP, GB, and RF method classifiers (Tables 5
and 6). It shows that the RF and GB methods show no signs
of overfitting. However, for the MLP, while the three-meas-
urement case also shows no overfitting, the cases with four,
five, and six measurements show an increase in test costs
beyond 50-100 training iterations, implying overfitting, the
extent of which worsens as the number of measurements
increases. Such behaviour for the MLP is also observed for
SAS and PAD, and thus for the MLP method an early stop-
ping criterion is adopted (see Sect. 2.7), the results of which
are presented in Sect. 3.6.
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Tal?le 5 The combinations Number of input Method Combination F, score Sens. Spec.
of input measurgments that measurements
produce the maximum F; scores
when providing one to six input 1 RF Q) 0.8809 0.8704 0.8893
measurements and employing
the RF and GB methods o GB (O] 0.8521 0.8547 0.8502
detect CAS 2 RF (0,,0) 0.8913 0.8765 0.9032
GB (Py, P) 0.8950 0.9026 0.8889
3 RF (05,0, Py 0.8941 0.8825 0.9035
GB (Q,, Py, P) 0.9389 0.9433 0.9351
4 RF (0,,0,, P,, P) 0.8944 0.8858 0.9015
GB (05,0, P,, P) 0.9395 0.9417 0.9376
5 RF (05.0,,0,, P, P) 0.8934 0.8858 0.8996
GB (05,0, P53, P,, P) 0.9391 0.9416 0.9370
6 RF (05,05, 0y, P53, Py, P) 0.8878 0.8747 0.8984
GB 0.9343 0.9364 0.9325
The corresponding sensitivities and specificities are also included
Table 6 The combinations of input measurements that produce the
maximum F| scores when providing three to six input measurements Z
and employing the MLP method to detect CAS ©
g
Number of Combination F,score Sensitivity Specificity &0
input measure- - -
ments 0= —
10° 10! 10? Testing
T with six
3 (P, Py, P) 0.8831 0.8731 0.8911 Number of trees Training
77T with six
(04,0, P,,P) 0.8683 0.8538 0.8545 _o06q \ _ Testing
5 (05,05, P5, P,, 0.8463  0.8308 0.8577 g ' Wi_“_‘ five
"
6 (03.0,,0,,P;, 07785 0.7916 0.7703 éﬂ 0o — &fﬁ“}ﬁ’m
PZ’ P]) ____ Training
with four
The corresponding sensitivities and specificities are also included Ef:fl”;ﬁm
Training
with three
% 1.04
3.1.2 SAS classification 8
i 0.5 N
The results of the analysis for SAS classification are shown 3 MLP e
B e
in Fig. 11. As is seen in the case of CAS classification, 0.0 1 , . i)
0 50 100 150 200

Fig. 11 shows that NB, LR, and SVM classifiers consistently
produce accuracies comparable to naive classification, irre-
spective of the number of input measurements used. A clear
difference between Figs. 9 and 11 is the accuracy achieved
by MLP classifiers. Compared to the CAS case, the MLP
performance is further degraded for SAS, while still being
better than NB, LR, and SVM, although only marginally. It
is important to consider, however, that the MLP classifiers
are experiencing overfitting, as highlighted in Sect. 3.1.1.
Results with overfitting avoided by adopting an early stop-
ping criterion are presented in Sect. 3.6.

A high degree of similarity can be seen between the
behaviours of RF and GB classifiers for CAS and SAS.
Figure 11 shows that the average and minimum F; score
achieved by RF and GB classifiers continuously increases
as the number of input measurements used increases. The
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Training iterations

Fig. 10 The average log loss cost across the training and test sets dur-
ing the training process when using the combination of three to six
input measurements that achieve highest accuracies for RF, GB, and
MLP methods (Tables 5 and 6)

maximum F score achieved is seen to quickly reach an
asymptotic limit (at three input measurements for both RF
and GB classifiers). Peak F score of approximately 0.85 is
achieved by GB, along with sensitivities and specificities
higher than 85%.

The combination of input measurements that produce
the highest F, scores and the corresponding accuracies are
shown in Table 7. It shows a higher degree of consistency
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Fig. 11 The average, maximum, and minimum F, score achieved by
all classifiers trained using different numbers of input measurements
are shown for SAS classification. The central markers represent the
average score achieved, while the error bars indicate the upper and
lower limits

between the best combinations for the two methods rela-
tive to the case for CAS, i.e. the best combinations are
generally identical (or with minimal differences) between
RF and GB. It also shows that Q, is particularly informa-
tive, with this measurement appearing in all of the best
combinations. Physiologically this may be due to its prox-
imity to the disease location.

3.1.3 PAD classification

The results for PAD classification are shown in Fig. 12.
Comparing Figs. 11 and 12, a high degree of similarity is

seen between the behaviours of SAS and PAD classifica-
tion. As is previously seen for SAS classification, Fig. 12
shows that the NB, LR, and SVM methods are all consist-
ently producing accuracies comparable to naive classifica-
tion. While the MLP method performs slightly better than
the naive classification, the accuracy still remains relatively
low. High accuracy can be seen in Fig. 12 for the two tree-
based methods of RF and GB. As has been previously seen
for CAS and SAS, while the average and minimum £, score
achieved by the RF and GB methods increases as the num-
ber of input measurements increases, the maximum F; score
achieved quickly reaches an asymptotic limit (at 3 input
measurements for both the RF and GB methods).

The combination of input measurements that produce the
highest F'; scores for PAD classification when employing the
RF and GB methods are shown in Table 8. It not only shows
good consistency between the combinations of input meas-
urements that produce the highest F'; scores when employ-
ing each of the two ML methods, but also good agreement
with the combinations presented in Table 7. Very similar
combinations of input measurements (with some minor dif-
ferences) can be seen to produce the highest F'; score when
providing all numbers of input measurements. As has previ-
ously been observed in Tables 5 and 7, the input measure-
ment Q, appears to be most informative, appearing in all the
best scoring classifiers. Since the location of Q, is far from
the location of disease, it is not obvious why this measure-
ment is particularly informative of PAD.

3.1.4 AAA dlassification

The results for AAA classification are shown in Fig. 13. As
has been previously seen for all of the three other forms
of disease, the NB and LR classifiers consistently produce
accuracies comparable to naive classification, irrespective of

Table 7 The combinations

of input measurements that Number of input Method Combination F| score Sens. Spec.
produce the maximum F; scores measurements
when providing OCIl'le to slix .input 1 RF ©) 0.7779 0.7582 0.7905
e i i oy ine GB ©@) 0.7529 07224 07714
detect SAS 2 RF ©,.0) 0.8450 0.8374 0.8507
GB Q5. 0) 0.8461 0.8293 0.8585
3 RF (03,05, 0) 0.8447 0.8271 0.8576
GB (@3, 05, Q) 0.8552 0.8453 0.8626
4 RF (03,0,,0,, Py 0.8432 0.8303 0.8527
GB (03,0,,04, Py 0.8585 0.8487 0.8660
5 RF (03,0,,0,, P3, P) 0.8399 0.8256 0.8504
GB (03,05,0y, Py, P) 0.8600 0.8525 0.8657
6 RF (03,0,,0,, P53, P, P) 0.8292 0.8102 0.8427
GB 0.8574 0.8504 0.8627

The corresponding sensitivities and specificities are also included
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Fig. 12 The average, maximum, and minimum F, score achieved by
all classifiers trained using different numbers of input measurements
are shown for PAD classification. The central markers represent the
average score achieved, while the error bars indicate the upper and
lower limits

the number of input measurements used. The consistency of
this finding (as seen in Figs. 9, 11, and 12) irrespective of the
form of disease being classified, highlights both the impor-
tance of nonlinear partitions between healthy and unhealthy
VPs and the unsuitability of the NB method for distinction
between haemodynamic profiles.

In the case of AAA classification, the SVM, RF, MLP,
and GB methods consistently produce good accuracies.
Figure 13 shows that these methods produce high accura-
cies even with a single input measurement. While there is
some increase in the average F score as the number of input
measurements increases, due to the very high initial average

— While the severities of aneurysms cannot be directly
compared to severities of stenosis, it may be that the
severity of aneurysms in VPD, 4, is disproportionately
large relative to the severities of stenoses. The signifi-
cance of any indicative biomarkers introduced into pres-
sure and flow-rate profiles is likely to be proportional
to the severity of the change in area. This implies that
the increase in vessel area of 712-2,593% in VPD 5 4 is
perhaps on the extreme end of aneurysm severity, thereby
making the classifications relatively easier. This is further
explored in Sect. 3.4.

The combination of input measurements that produce the
highest F, scores when providing one to six input measure-
ments and employing the RF and GB methods are shown for
AAA classification in Table 9. It shows that F; scores range
from 0.97-0.997 and sensitivities and specificities range
from 96.5% to 99.8%. Due to the high accuracies across
all the number of measurements, the analysis of specific
combinations is not very meaningful. However, the meas-
urement Q; again appears in all the best combinations. It
should also be noted that the high accuracies for AAA clas-
sification are also consistent with those reported in Chakshu

Table 8 The combinations

of input measurements that Number of input Method Combination F| score Sens. Spec.
produce the maximum F; scores measurements
when providing OCIl'le to slix .input 1 RF ©) 0.8240 0.8959 0.8320
e i i oy ine GB ©@) 0.8183 08126 08214
detect PAD 2 RF (03,9 0.8140 0.8825 0.9068
GB 03,9y 0.9041 0.8950 0.9117
3 RF (03,05, 0) 0.9061 0.8885 0.9208
GB (@3, 05, Q) 0.9168 0.9055 0.9265
4 RF (03,0,,0,, Py 0.8997 0.8868 0.9104
GB (03,0,,0,, P) 0.9196 0.9068 0.9306
5 RF (03,05, 0y, P3, Py) 0.8971 0.8802 0.9110
GB (03,05, 0y, Py, P) 0.9170 0.9041 0.9281
6 RF (03,0,,0,, P53, P, P) 0.8935 0.8813 0.9035
GB 0.9187 0.9102 0.9261

@ Springer

The corresponding sensitivities and specificities are also included
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Fig. 13 The average, maximum, and minimum F, score achieved by
all classifiers trained using different numbers of input measurements
are shown for AAA classification. The central markers represent the
average score achieved, while the error bars indicate the upper and
lower limits

et al. (2020)— where deep-learning methods are applied
on a VPD created by varying seven network parameters,
and classification accuracies of & 99.9% are reported—and
(Wang et al. 2021)—where machine learning methods are
applied on a VPD, and sensitivities and specificities of
~ 86% are reported.

Overall, the results show that the physiological changes
to the waveforms induced by both stenosis and aneurysms
(Stergiopulos et al. 1992; Low et al. 2012) are well captured
by the data-driven machine learning methods.

3.2 Importance of carotid artery flow-rate

Appendices A-D, along with the above analysis show that
classifiers trained using flow-rates in the common carotid
arteries (Q,) consistently produce the highest accuracy. To
analyse this further, the F; scores of classifiers with combi-
nations that include and exclude Q, are separated and com-
pared for CAS, SAS, PAD, and AAA in Figs. 14, 15, 16,
and 17, respectively. These figures show the the histograms
of the F scores, i.e. the number of occurrences/classifiers/
combinations including and excluding Q, against F score
buckets. For each disease form, results are only shown for
the classification methods that consistently produce good
results for the corresponding disease form. The figures show
a clear positive shift in the histograms when Q, is included,
pointing to the particularly informative nature of Q,. Other
behaviours observed from these figures are:

— While there is generally an increase in F| score when
including Q,, it is also simultaneously observed that the
maximum accuracies are relatively less sensitive to the
inclusion of Q.

— The greatest distinction between F| scores when includ-
ing or excluding Q, is seen for CAS classification when
using the RF method. There is no overlap between the
two RF histograms in Fig. 14.

— Observing the lower plots in Figs. 15 and 16, a clear
subgroup of low-accuracy classifiers can be seen when
excluding Q, for SAS and PAD, which does not exist
when including Q.

Table 9 The combinations

of input measurements that Number of input Method Combination F| score Sens. Spec.
produce the maximum F; scores measurements

when providing OCIl'le to slix .input 1 RF ©) 0.9741 0.9654 0.9825
e i oy ine GB ©@) 0.9805 09799 09811
detect AAA 2 RF ©,.0) 0.9868 0.9810 0.9926
GB Q5. 0) 0.9928 0.9919 0.9938
3 RF (03,05, 0) 0.9912 0.9864 0.9961
GB (@3, 05, Q) 0.9962 0.9954 0.9970
4 RF (03,0,,0,, Py 0.9923 0.9879 0.9967
GB (053, 0,,0,, Py) 0.9972 0.9959 0.9986
5 RF (03,0,,0,, P3, P) 0.9920 0.9873 0.9967
GB (03,05, 0y, P3, Py) 0.9970 0.9959 0.9981
(O3, 05,0y, P53, P) 0.9963 0.9978
6 RF (03,0,,0,, P53, P, P) 0.9912 0.9861 0.9964
GB 0.9970 0.9959 0.9981

The corresponding sensitivities and specificities are also included
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Fig. 14 The histograms of the F scores achieved for CAS classifica-
tion are shown for all input measurement combinations that include
Q, in the upper plot and exclude Q, in the lower plot

3.3 Feature importance

An important aspect of the GB method is that the meas-
urement importance, which determines the influence that
individual measurements have towards classification, can
be computed. This split-improvement feature importance
(Zhou and Hooker 2020) of a feature can be thought of as
the contribution of that feature to the total information gain
achieved in a decision tree, averaged across all the trees in
the ensemble. A high feature importance suggests that the
given feature is contributing heavily to the classification
accuracies achieved. As the features provided to the GB clas-
sifiers are the FS coefficients describing the haemodynamic
profiles, the total importance of each bilateral pressure or
flow-rate measurement is found by summing the feature
importance of the associated 22 FS coefficients. The total
importance of each input measurement for each disease form
is shown in Table 10.
Three important observations from this table are:

— The input measurement Q, consistently produces the

highest importance for all forms of disease. This finding
supports the findings of Sect. 3.2.
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Fig. 15 The histograms of the F, scores achieved for SAS classifica-
tion are shown for all input measurement combinations that include
0, in the upper plot and exclude O, in the lower plot

— The importance of each input measurement changes
between disease forms based on the spatial proximity
to the disease location. Generally, the measurements
in close proximity to the disease location have higher
importance. For example, the importance of O (flow-rate
in the femoral arteries) is highest for PAD classification
(see Fig. 1 for locations of disease and measurements).
Similarly, P, (pressure in carotid arteries) has highest
importance for CAS and SAS.

— The feature importances, when viewed in collection, also
shed some light on why Q, is important for SAS and PAD
even though the measurement location is far from the dis-
ease location. For SAS, the two most informative meas-
urements are O, and Q,, and for PAD, these are Q; and
Q5. From Fig. 1, it is clear that these combinations form
pairs of flow-rates before and after/at the disease loca-
tion. Thus, the measurement locations bound the disease
location to provide more information on the presence of
disease.
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Fig. 16 The histograms of the F; scores achieved for PAD classifica-
tion are shown for all input measurement combinations that include
Q, in the upper plot and exclude Q, in the lower plot

3.4 Lower severity aneurysms

In Sect. 3.1.4, it is found that AAAs can be classified to a
very high levels of accuracy with only one input measure-
ment. Whether these accuracies are affected when lower
severity aneurysms are considered is assessed here. For this
assessment, a new lower severity AAA VPD, referred to as
VPDysa.1» 1s created in an identical manner to the other
diseased databases (see Sect. 2.2), with the following two
differences:

— The severity of aneurysms introduced into the virtual
subjects (see Sect. 2.2.2) is sampled from a uniform dis-
tribution bounded as follows: 3.0 < Seyrysm < 7.0

— To reduce the computational expense associated with
the creation of virtual patients, the size of VPD 4,51 1S

restricted to 5,000 VPs.

A combination search is carried out with only the GB
method as it is the best overall method. The F| scores, sen-
sitivities, and specificities achieved by all the measurement
combinations are presented in Appendix E. For comparison,

30 4 SVM
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8 20 A
=
8 .
§ 15 4 Including Q;
o
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5 -
0 T T T T
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154 GBM
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0.80 0.85 0.90 0.95 1.00
Fj score

Fig. 17 The histograms of the F, scores achieved for AAA classifica-
tion are shown for all input measurement combinations that include
Q, in the upper plot and exclude Q, in the lower plot

the GB F| scores for all forms of disease (including AAA-
L) are shown in Appendix F. The ratios of the GB F, scores
achieved for AAA-L classification relative to AAA classifi-
cation are shown in Fig. 18.

The observations from this figure are:

— The F, scores for AAA-L classification are consistently
lower (ranging from 1% to 10% lower) than that for AAA
classification. This finding supports the physiological
expectation that the significance of biomarkers in pres-
sure and flow-rate profiles is proportion to the severity.

— The ratios of F| scores are lowest for combinations of
inputs that predominantly rely on pressure measure-
ments. This suggests that pressure measurements are, in
general, less informative about disease severity. This is
in support of the, generally, lower feature importance of
pressure measurements in Table 10.

— The F, score ratios are highest for input combinations
that include Q. This finding further suggests that Q, con-
tains consistent biomarkers.

— The ratios range between 0.9 and 0.99, implying a maxi-
mum degradation of only 10% relative to high-severity
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Fig. 18 The ratios of the F, scores for AAA-L classification relative t

o AAA classification, when providing each combination of input measure-

ments are shown. Measurements included within each combination are highlighted with a black square

classification accuracies. Thus, even in the low-severity
aneurysms, many combinations of classifiers achieve F
scores higher than 0.95 and corresponding sensitivities
and specificities larger than 95%.

3.5 Unilateral aneurysm measurement tests

Hitherto, all ML classifiers used bilateral measurements,
i.e. both the right and left instances of each measurement
were simultaneously provided. Here, the ability of unilat-
eral measurements, i.e. only the right or left instance of a
measurement, to detect AAAs is assessed. This analysis is
restricted to the GB method as it consistently outperforms
other methods.

GB classifiers are trained and tested to detect AAAs using
four different unilateral measurements:

Flow-rate in the right carotid artery, shown in Fig. 1 as
R

o

Flow-rate in the left carotid artery, shown in Fig. 1 as
L

o.

Pressure in the right radial artery, shown in Fig. 1 as P(3R)

(L)

Pressure in the left radial artery, shown in Fig. 1 as P,
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Carotid artery flow-rate is chosen as it has been shown to be
the best measurement for disease classification. Radial artery
pressure is chosen due to the location of the radial artery
on the human wrist. Recent advancements have resulted in
wearable devices capable of measuring continuous radial
pressure profiles, such as the TLT Sapphire monitor (Taril-
ian Laser Technologies, Welwyn Garden City, U.K.) (Lobo
et al. 2019), and thus if AAAs can be detected to satisfactory
accuracies using these measurements, it may suggest the
possibility of future home monitoring of abdominal aortic
health through such wearables. The sensitivities and spe-
cificities achieved by the four unilateral GB classifiers are
shown in Table 11. It shows that relative to the bilateral case,
while there is a decrease in the classification accuracies, the
magnitude of the decrease is less than 10%. This finding
suggests that there may be sufficient biomarkers of AAA
presence captured within the intra-measurement details of
a single pressure or flow-rate profile. The fact that similar
accuracies are achieved with either the right or left instances
of any measurement is likely due to physiological symmetry.
While there are some minor asymmetries between the right
and left upper extremities, due to the topology of the arterial
network (as shown in Fig. 1) changes to the cross-sectional
area of the abdominal aorta are expected to produce rela-
tively consistent changes in both the right and left side of
the body.
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Table 11 The sensitivities and specificities achieved when using the
measurements of flow-rate in the right, left, and both CAs and pres-
sure in the right, left, and both radial arteries

Side Sensitivity Specificity
Carotid Right 0.9369 0.9161
Flow-rate Left 0.9065 0.9146
((oD)) Both 0.9799 0.9811
Radial Right 0.8356 0.8533
Pressure Left 0.8633 0.8605
(P3) Both 0.9202 0.9248

3.6 MLP early stopping to avoid overfitting

It is shown in Sect. 3.1.1 that the accuracy of MLP classifiers
is hindered by the presence of overfitting. Thus, the early
stopping criterion outlined in Sect. 2.7 is adopted for the
combinations of three to six measurements that hitherto pro-
duced best results without early stopping. Here, the hyper-
parameters describing the MLP architecture—the number of
neurons per layer and the number of layers (depth)—for each
such case are also individually re-optimised on the valida-
tion data set with early stopping criterion enabled. Thus,

for each combination in the grid search, the best validation
set F; score is computed with early stopping enabled during
training, and the architecture producing the maximum F,;
score is selected. Subsequently, for this optimal architecture,
the test scores are computed on the test data set. This analy-
sis is performed for CAS and AAA as the behaviour of SAS
and PAD is very similar to that of CAS.

3.6.1 CAS: early stopping

The hyper-parameters describing the optimum architec-
tures with early stopping criterion for best combinations are

Table 12 The hyper-parameters describing the architecture of the
MLP classifiers that produce the highest F; scores on the validation
set with early stopping criterion for CAS classification, when using
the best performing combinations of three to six input measurements

No. measurements & combi-  Neurons # of layers F, (validation)
nation per layer

3-(P;, Py, P) 140 3 0.8817
4-(03 0, Py, P) 180 4 0.8824
5-(03, 0y, P3, P, P) 180 4 0.8355

6 —(03,0,,0,, P53, Py, P) 180 4 0.8464

Fig. 19 MLP: the log loss cost
profiles across the training and ) . N
S . 0.6 1 Three measurements 0.6 - Four measurements
validation sets when using the : :
best performing combination 2 2
containing three to six input 8 8
measurements for CAS clas- 2 0.4+ gz 047
. . . S S
sification and employing early "o oo
stopping 3 3 |
0.2 1 0.2
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shown in Table 12. It shows a remarkable degree of con-
sistency between the optimum hyper-parameters for vary-
ing number of input measurements: for four measurements
and above the optimal architecture is identical. This finding
supports the previous simplification of using a single archi-
tecture for all the MLP classifiers. An interesting finding
to note, however, is that there is less consistency with the
previous optimum hyper-parameters presented in Table 4,
which found that four layers containing 60 neurons produced
the highest F; score when providing six input measurements.

The cost profiles for the optimal architectures with early
stopping are shown in Fig. 19. It shows that generally the
early stopping criteria fulfil its purpose of stopping the train-
ing process near to the minimum validation cost point, thus
minimising overfitting. It is observed that for all numbers of
input measurements, training is stopped as soon as the 75
minimum iterations have been completed. While this early
stopping criteria greatly reduce overfitting in all the cases, it
is seen that the minimum number of training iterations (75)
is too high for the six measurement case (the validation cost
has already started to significantly rise), suggesting further
refinement may reduce the validation and test costs even
further.

A comparison between the F; scores achieved with and
without early stopping is shown in Table 13. While early
stopping has reduced the log loss cost across the validation
and test sets, this does not necessarily translate to improve-
ments in the F| score. The log loss cost will decrease with-
out increasing the F, score if easy to classify patients are
predicted with a higher degree of certainty (for example,
predicting 95% probability rather than 75%) even if no new
additional patients are correctly classified. For the six-meas-
urement case, however, some increase in F; score is clearly
observed as a benefit of early stopping.

Table 13 MLP: F, scores on the test dataset when using the best three
to six input measurement combinations found to produce the high-
est accuracies for CAS with (Sect. 3.6.1) and without early stopping
(Sect. 3.1.1)

Table 14 The hyper-parameters describing the architecture of the
MLP classifiers that produce the highest F; scores on the validation
set with early stopping criterion for AAA classification, when using
the best performing combinations of three to six input measurements

No. measurements & combi-  Neurons # of layers F, (validation)
nation per layer

3-(Qy, P, Py) 140 2 0.9889
4-(0,.0,, Py, P) 60 2 0.9858
5-(0,, 0y, P3, P,, P) 150 1 0.9915
6-(03, 05,01, P3, Py, P) 160 1 0.9870

3.6.2 AAA: early stopping

The hyper-parameters describing theoptimum architec-
tures with early stopping criterion for best combinations
are shown in Table 14. The consistency of best architec-
ture for AAA across the number of measurements is less
when compared to that for CAS. It is again observed that
the new hyper-parameters are inconsistent with the old
(Table 4). Initially, this finding may seem to undermine
early stopping and individual architecture optimisation for
varying number of input measurements. However, while
the optimum hyper-parameters are inconsistent, the F
scores achieved are very similar—0.9785 in Table 4 and
0.9870 in Table 14. This similarity in F| scores may sug-
gest an insusceptibility to the architecture used, i.e. the
F, score plane in the two-dimensional grid-search space
is relatively flat for this problem. This again supports the
earlier simplification of using a single architecture for all
the classifiers.

The cost profiles for the optimal architectures with early
stopping are shown in Fig. 20. It shows no major signs of
overfitting when using MLP classifiers to detect AAA. As
a result, the employment of an early stopping criteria has
little affect on the final log loss cost achieved across all
training and validation data sets. Thus, when comparing
the with and without early stopping test scores in Table 15,

Table 15 MLP: F, scores on the test dataset when using the best three
to six input measurement combinations found to produce the high-
est accuracies for AAA with (Sect. 3.6.2) and without early stopping
(Sect. 3.1.4)

Number of input Combination F| score (test) B —
measurements Number of input  Combination F score
measurements - -
Without With Without With
early stop- early early stop- early
ping stopping ping stopping
3 (P3, Py, Py) 0.8831 0.8621 3 Q. P, P) 0.9827 0.9852
4 (@3, 0y, Py, P 0.8683 0.8693 4 (0,0, Py, Py) 0.9800 0.9784
5 (Q3, Q,, P3, Py, P)) 0.8463 0.7975 5 (0,5, 0y, P3, Py, P) 0.9808 0.9876
6 (03,05, 0y, P35, P,,P) 0.7785 0.8394 6 (03,05, 0y, P3, P,, P) 09785 0.9836
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no significant differences in the F, scores achieved are
observed for AAA classification.

The aforementioned findings with early stopping ena-
bled for both CAS and AAA classification, suggest that
to substantially improve the accuracy of MLP classifiers,
a more extensive hyper-parameter optimisation strategy,
which tunes many other hyper-parameters, is required, and
should be adopted in future studies.

4 Conclusions

The main conclusion of this study is that machine learning
methods have the potential to detect arterial disease—both
stenoses and aneurysms—from peripheral measurements of
pressure and flow-rates across the network. Amongst various
ML methods, it is found that tree-based methods of Random
Forest and Gradient Boosting perform best for this applica-
tion (within the limitations of the classifier specific optimi-
sation performed). Across the different forms of disease,
the Gradient Boosting method outperforms Random Forest,
Support Vector Machine, Naive Bayes, Logistic Regression,
and even the deep learning method of Multi-layer Perceptron
in the setting adopted. It should be noted, however, that the

Training iterations

Training post-stopping

Validation post-stopping

multi-layer perceptron results could be improved by problem
specific optimisation of architecture and fine-tuning of fur-
ther hyper-parameters. This, however, would come at added
complexity and computational costs against the easier-to-
train machine-learning methods of Random Forest and Gra-
dient Boosting.

It is demonstrated that maximum F| scores larger than
0.9 are achievable for CAS and PAD, larger than 0.85 for
SAS, and larger than 0.98 for both low- and high-severity
AAAs. The corresponding sensitivities and specificities
are also both larger than 90% for CAS and PAD, larger
than 85% for SAS, and larger than 98% for both low- and
high-severity AAAs. While these maximum scores are for
the case when all the six measurements are used, it is also
shown that the performance degradation is less than 5%
when using only three measurements and less than 10%
when using only two measurements, as long as the these
measurements are carefully chosen in specific combina-
tions. For the case of AAA, it is further demonstrated
that when only a single measurement (either on the left
or right side) is used, F scores larger than 0.85 and cor-
responding sensitivities and specificities larger than 85%
are achievable. This aspect encourages the application of
AAA monitoring and/or screening through the use of a
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wearable device, such at the TLT Sapphire monitor (Taril-
ian Laser Technologies, Welwyn Garden City, U.K.) (Lobo
et al. 2019). Confidence in this is further strengthened by
the similar very high accuracies reported for AAA classifi-
cation by Chakshu et al. (2020) (~ 99.9%) and Wang et al.
(2021) (sensitivities and specificities of ~ 86%). However,
multi-class classifier accuracies, as opposed to only the
binary classifiers assessed here, remain unknown and
should be considered to fully assess the ability of machine
and deep learning methods for arterial disease detection.

Finally, it is shown through the analysis of several
classifiers and feature-importance that, among the meas-
urements, the carotid artery flow-rate is a particularly
informative measurement to detect the presence of all the
four forms of disease considered.

5 Limitations & future work

While high accuracy classification has been achieved, all
classifiers are binary (i.e. disease are treated mutually
exclusively). A logical next step, to further the results
presented here, is to relax the assumption of mutually
exclusive disease. Thus, classifiers should be built to
detect not only the presence of disease, but also identify
the type of disease (potentially concomitant disease in
multiple locations), its location, and its severity. This fur-
ther analysis can be completed in two stages:

1. The previously created unhealthy VPDs (each contain-
ing only one form of disease) can be used to created
mixed disease data sets, i.e. each VP has only one form
of disease; however, the data sets contain multiple forms
of disease. Binary ML classifiers can then be created to
predict if a VP is subject to a particular form of disease,
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and multiclass classifiers to determine which form of
disease a VP has.

2. New VPDs can be created, in which each VP may con-
tain more than one form of disease. In this case, binary
classifiers can be created to predict the presence of each
individual form of disease within a VP, and multiclass
classifiers to predict the combination of disease forms
present.

While the results are encouraging, they are produced on
a virtual cohort of subjects. Even though the database
is physiologically realistic and carefully constructed, it
may be that real patient behaviour differs from those in
the VPD. Therefore, future steps should be in applying
the trained classifiers here directly to a small cohort of
real-patient measurements. The effect of measurement
errors and biases is ignored in this study. This aspect can
also be considered in future studies. Further improve-
ments can be also made, to aim for higher accuracies
with fewer, potentially noise- and bias-corrupted, meas-
urements, by:

— Further optimising the architectures of the machine
and deep learning methods (particularly MLP classi-
fiers).

— Further monitoring individual classifiers for signs of
overfitting, and minimising this when needed.

CAS combination search results

The F, scores, sensitivities, and specificities achieved for
CAS classification when using each of the six ML methods
are shown in Tables 16, 17, and 18, respectively.
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Tab!e 16 The F, scores o Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.5547 0.5110 0.5157 0.5807 0.4365 0.5606
0, 0.5105 0.5080 0.4955 0.6858 0.4410 0.6565
0, 0.5676 0.5033 0.5953 0.8809 0.6459 0.8521
P, 0.4927 0.5023 0.4991 0.5441 0.4805 0.5131
P, 0.4413 0.5066 0.5260 0.5628 0.3741 0.5412
P, 0.5473 0.4917 0.5712 0.6681 0.7013 0.7082
05,0, 0.5684 0.4955 0.5104 0.6955 0.4915 0.6889
05,0, 0.4831 0.5050 0.5544 0.8790 0.6944 0.8629
05, Py 0.5213 0.4935 0.5124 0.5825 0.4929 0.5659
05, P, 0.5853 0.5018 0.5142 0.5918 0.4904 0.5849
05, P, 0.5048 0.5034 0.5576 0.6601 0.6864 0.7105
0,,0,; 0.4600 0.4975 0.5540 0.8913 0.6648 0.8824
0,, P, 0.4304 0.4940 0.5109 0.6333 0.4158 0.6805
0,, P, 0.5290 0.5037 0.5125 0.6836 0.5618 0.6908
0,, P, 0.4434 0.4978 0.5597 0.7204 0.6741 0.7562
0,, Py 0.4470 0.4990 0.5595 0.8732 0.6860 0.8577
0,, P, 0.5341 0.5029 0.5629 0.8774 0.7090 0.8684
0,, P, 0.4927 0.5018 0.6233 0.8837 0.7822 0.8850
P;, P, 0.5507 0.5117 0.5263 0.5581 0.5313 0.5431
P;, P, 0.5266 0.4963 0.5725 0.6837 0.7384 0.7539
P,, P, 0.5089 0.4944 0.6885 0.7938 0.8878 0.8950
05, 0,,0, 0.4299 0.4995 0.5425 0.8907 0.6838 0.8868
03, 0,, P4 0.4822 0.4980 0.5058 0.6910 0.5300 0.7072
0;,0,, P, 0.5346 0.4975 0.5204 0.6962 0.5211 0.7102
0;,0,, P, 0.5267 0.5024 0.5428 0.7229 0.6084 0.7693
03,0, P, 0.4636 0.5016 0.5317 0.8685 0.6699 0.8660
05,0, P, 0.5186 0.4960 0.5580 0.8751 0.6469 0.8728
0,0, P, 0.5257 0.5020 0.5888 0.8843 0.7532 0.8903
05, P53, P, 0.4493 0.5032 0.5119 0.5923 0.5418 0.5888
0;, P3, P, 0.5019 0.4892 0.5527 0.6751 0.7159 0.7602
05, Py, P, 04312 0.5042 0.6303 0.7564 0.8623 0.8923
0,,0,, P3 0.5222 0.5041 0.5300 0.8840 0.6354 0.8776
0,0, P, 0.5155 0.4957 0.5586 0.8847 0.7001 0.8844
0,,0,, P, 0.5251 0.4940 0.6039 0.8941 0.7611 0.8968
0,, P;, P, 0.4893 0.5041 0.5241 0.6824 0.5335 0.6929
0,, P;, P, 0.4067 0.4965 0.5421 0.7249 0.7185 0.8064
0,, Py, P, 0.5479 0.4858 0.6415 0.7740 0.8735 0.9040
0., P3, P, 0.4766 0.4969 0.5505 0.8700 0.7048 0.8651
0,, P;, P, 0.5037 0.4908 0.5975 0.8777 0.7645 0.8956
0,, P,, P, 0.4997 0.4972 0.6772 0.8872 0.8680 0.9389
P, Py, P, 0.5090 0.4997 0.6451 0.7694 0.8831 0.8936
05,0,,0,, Ps 0.4569 0.4921 0.5408 0.8835 0.6258 0.8855
04,0, 0, P, 0.4253 0.5022 0.5462 0.8871 0.6655 0.8887
05,0,,0,, P, 0.4934 0.5068 0.5783 0.8925 0.7163 0.9004
05,05, P35, P, 0.4875 0.5026 0.5234 0.6852 0.5483 0.7145
05, 0,, P5, P, 0.4481 0.4945 0.5399 0.7231 0.6714 0.8125
05, 0,, P, P, 0.4329 0.5034 0.6043 0.7619 0.8618 0.9025
04,0, P, P, 0.4934 0.4972 0.5400 0.8717 0.6299 0.8761
05,0, P5, P, 0.5365 0.5011 0.5802 0.8789 0.7197 0.8978
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Input combination

Classification method

NB LR SVM RF MLP GB
05,0y, P,, P, 0.5068 0.4974 0.6338 0.8852 0.8542 0.9395
05, P53, Py, Py 0.4329 0.4980 0.6137 0.7393 0.8471 0.8906
05,0, P3, Py 0.5669 0.4933 0.5468 0.8822 0.6524 0.8844
05,0, P53, P, 0.5193 0.4978 0.5783 0.8878 0.7207 0.9065
05,0, Py, P, 0.4638 0.5037 0.6413 0.8944 0.8683 0.9383
Q,, P3, P,, P, 0.4868 0.4999 0.6142 0.7694 0.8503 0.9084
0, P, P, P, 0.4735 0.5025 0.6320 0.8807 0.8547 0.9353
05,0,,0,, P3, P, 0.5005 0.5015 0.5387 0.8848 0.6322 0.8927
05,0,,0,, P3, P, 0.4652 0.4962 0.5760 0.8875 0.7079 0.9093
05, 0,,0,, P,, P, 0.5108 0.4994 0.6088 0.8934 0.8313 0.9381
05, 0,, P53, Py, P, 0.4994 0.5105 0.5808 0.7540 0.8463 0.9052
05,0y, P3, Py, P, 0.5330 0.5024 0.6108 0.8849 0.8380 0.9364
05, 0,, P3, P,, P, 0.4899 0.5054 0.6026 0.8900 0.8371 0.9391
05,0,,0,, P, P,, P, 0.4634 0.5018 0.5862 0.8878 0.7785 0.9343
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Tab!e 17 The sensitivitie§ . Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.1531 0.5527 0.4283 0.5572 0.6084 0.5736
0, 0.6641 0.5097 0.6418 0.6575 0.6228 0.6744
0, 0.5426 0.4525 0.5694 0.8704 0.4243 0.8547
P, 0.5024 0.5098 0.4999 0.5139 0.5355 0.5158
P, 0.6490 0.4979 0.5052 0.5366 0.7038 0.5491
P, 0.2410 0.4992 0.6588 0.6510 0.7052 0.7215
05,0, 0.5055 0.5035 0.5651 0.6655 0.5439 0.7044
05,0, 0.7217 0.5094 0.5461 0.8681 0.6288 0.8661
05, Py 0.4462 0.5091 0.4944 0.5615 0.5226 0.5583
05, P, 0.3652 0.5090 0.5111 0.5731 0.5572 0.5777
05, P, 0.3032 0.5049 0.6510 0.6411 0.7334 0.7149
0,,0,; 0.4543 0.5091 0.5770 0.8765 0.6372 0.8845
0,, Py 0.5395 0.5117 0.5263 0.6555 0.6691 0.6926
0,, P, 0.6043 0.4987 0.5436 0.6563 0.3867 0.7117
0,, P, 0.5766 0.4905 0.6442 0.6962 0.6879 0.7668
0,, Py 04718 0.5003 0.5461 0.8679 0.7167 0.8601
0,, P, 0.3903 0.5068 0.5438 0.8672 0.7467 0.8664
0,, P, 0.6488 0.4978 0.6672 0.8798 0.8290 0.88438
P;, P, 0.4744 0.5034 0.5251 0.5383 0.4863 0.5335
P;, P, 0.3334 0.4815 0.6303 0.6599 0.7469 0.7842
P,, P, 0.4943 0.5001 0.6699 0.7762 0.8995 0.9026
03,05, 0, 0.4935 0.4812 0.5598 0.8789 0.6425 0.8896
03, 0,, P4 0.5586 0.4913 0.5454 0.6647 0.5014 0.7219
0;,0,, P, 0.4348 0.5091 0.5336 0.6788 0.5298 0.7313
0;,0,, P, 0.2964 0.5165 0.6068 0.6975 0.6471 0.7783
03,0, P, 0.4427 0.5021 0.5321 0.8620 0.6388 0.8677
05,0, P, 0.4268 0.4974 0.5605 0.8718 0.6645 0.8721
0,0, P, 0.5134 0.4687 0.6341 0.8735 0.7474 0.8936
05, P53, P, 0.6823 0.4939 0.5076 0.5698 0.4853 0.5905
0;, P3, P, 0.3887 0.4941 0.5882 0.6691 0.6907 0.7866
05, Py, P, 0.6288 0.4919 0.6251 0.7473 0.8593 0.8928
0,,0,, P3 0.4599 0.5056 0.5474 0.8735 0.6999 0.8819
0,0, P, 0.4296 0.5085 0.5728 0.8766 0.6703 0.8853
0,,0,, P, 0.5235 0.5037 0.6393 0.8825 0.7635 0.8991
0,, P;, P, 0.3581 0.4902 0.5484 0.6566 0.5249 0.7098
0,, P;, P, 0.6042 0.4816 0.6079 0.7001 0.7140 0.8277
0,, Py, P, 0.5758 0.4826 0.6481 0.7516 0.8780 09114
0., P3, P, 0.4530 0.4984 0.5521 0.8616 0.6733 0.8651
0,, P;, P, 0.4760 0.4859 0.6233 0.8721 0.7403 0.8993
0,, P,, P, 0.4610 0.4917 0.6744 0.8807 0.8797 0.9433
Py, P,, P, 0.4001 0.5159 0.6442 0.7562 0.8731 0.8930
05,0,,0,, Ps 0.5792 0.4903 0.5548 0.8700 0.6711 0.8916
05,0,,0,, P, 0.6211 0.4961 0.5726 0.8788 0.6622 0.8933
05,0,,0,, P, 0.5018 0.4831 0.5948 0.8837 0.7442 0.9015
05,05, P35, P, 0.5499 0.4981 0.4938 0.6722 0.4844 0.7277
05,05, P35, P, 0.4381 0.5052 0.5948 0.7055 0.6997 0.8337
05, 0,, P, P, 0.7010 0.5049 0.6401 0.7463 0.8600 0.9129
05,0, P, P, 0.4629 0.5000 0.5424 0.8597 0.6331 0.8747
05,0, P5, P, 0.4436 0.4937 0.6099 0.8747 0.7555 0.9017
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Input combination

Classification method

NB LR SVM RF MLP GB
05,0y, P,, P, 0.5362 0.5062 0.6300 0.8761 0.8538 0.9417
05, P53, Py, Py 0.6073 0.5011 0.6165 0.7243 0.8391 0.8993
05,0, P3, Py 0.4973 0.5056 0.5779 0.8729 0.6427 0.8874
05,0, P53, P, 0.4225 0.5065 0.6115 0.8813 0.7596 0.9100
05,0, Py, P, 0.5115 0.4954 0.6345 0.8858 0.8618 0.9416
Q,, P3, P,, P, 0.5582 0.4877 0.6266 0.7498 0.8573 0.9133
0, P, P, P, 0.5769 0.4891 0.6309 0.8674 0.8667 0.9375
05,0,,0,, P3, P, 0.5446 0.4929 0.5686 0.8759 0.6487 0.8949
05,0,,0,, P3, P, 0.4676 0.4933 0.6021 0.8775 0.7169 09117
05, 0,,0,, P,, P, 0.5403 0.5015 0.6142 0.8858 0.8288 0.9415
05, 0,, P53, Py, P, 0.6396 0.5042 0.6070 0.7375 0.8308 0.9120
05,0y, P3, Py, P, 0.5330 0.4920 0.6171 0.8795 0.8345 0.9399
05, 0,, P3, P,, P, 0.4640 0.4919 0.6149 0.8774 0.8273 0.9416
05,0,,0,, P, P,, P, 0.6224 0.5116 0.6012 0.8747 0.7916 0.9364
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Tab!e 18 The speciﬁcitie§ . Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.7090 0.4968 0.5462 0.5904 0.3886 0.5556
0, 0.4579 0.5075 0.4474 0.7006 0.3896 0.6479
0, 0.5776 0.5204 0.6063 0.8893 0.7517 0.8502
P, 0.4896 0.4998 0.4989 0.5555 0.4632 0.5122
P, 0.3826 0.5096 0.5335 0.5732 0.2983 0.5384
P, 0.6628 0.4893 0.5363 0.6767 0.6993 0.7010
05,0, 0.5935 0.4929 0.4917 0.7116 0.4745 0.6808
05,0, 0.4072 0.5036 0.5576 0.8876 0.7293 0.8605
05, Py 0.5478 0.4884 0.5187 0.5912 0.4832 0.5690
05, P, 0.6764 0.4995 0.5153 0.5998 0.4687 0.5879
05, P, 0.5730 0.5030 0.5215 0.6696 0.6619 0.7081
0,,0, 0.4618 0.4937 0.5453 0.9032 0.6786 0.8808
0,, P, 0.4618 0.4883 0.5057 0.6978 0.3494 0.6743
0,, P, 0.5020 0.5055 0.5018 0.6978 0.6303 0.6798
0,, P, 0.4055 0.5003 0.5269 0.7341 0.6672 0.7498
0,, Py 0.4399 0.4987 0.56438 0.8774 0.6701 0.8560
0,, P, 0.5865 0.5016 0.5704 0.8855 0.6883 0.8701
0,, P, 0.4417 0.5032 0.6035 0.8869 0.7522 0.8853
P;, P, 0.5798 0.5146 0.5268 0.5659 0.5477 0.5467
P;, P, 0.5958 0.5013 0.5494 0.6961 0.7335 0.7356
P,, P, 0.5140 0.4926 0.6983 0.8054 0.8785 0.8889
05, 0,,0, 0.4125 0.5057 0.5361 0.9002 0.7054 0.8846
03, 0,, P4 0.4580 0.5003 0.4925 0.7049 0.5404 0.6992
0;,0,, P, 0.5711 0.4937 0.5158 0.7055 0.5181 0.6986
0;,0,, P, 0.6091 0.4977 0.5190 0.7374 0.5915 0.7638
03,0, P, 0.4700 0.5015 0.5316 0.8735 0.6857 0.8648
05,0, P, 0.5508 0.4956 0.5571 0.8777 0.6386 0.8734
0,0, P, 0.5302 0.5132 0.5699 0.8929 0.7568 0.8877
05, P53, P, 0.3818 0.5064 0.5135 0.6018 0.5629 0.5882
0;, P3, P, 0.5399 0.4877 0.5392 0.6782 0.7300 0.7441
05, Py, P, 0.3769 0.5084 0.6328 0.7620 0.8646 0.8920
0,,0,, P3 0.5443 0.5037 0.5238 0.8924 0.6055 0.8743
0,0, P, 0.5454 0.4916 0.5531 0.8913 0.7162 0.8838
0,,0,, P, 0.5258 0.4909 0.5886 0.9035 0.7597 0.8950
0,, P;, P, 0.5319 0.5088 0.5156 0.6959 0.5367 0.6840
0,, P;, P, 0.3563 0.5015 0.5177 0.7390 0.7211 0.7921
0,, Py, P, 0.5374 0.4869 0.6385 0.7882 0.8701 0.8979
0., P3, P, 0.4840 0.4965 0.5500 0.8766 0.7220 0.8651
0,, P;, P, 0.5131 0.4924 0.5866 0.8822 0.7795 0.8927
0,, P,, P, 0.5126 0.4991 0.6787 0.8925 0.8592 0.9351
Py, P,, P, 0.5462 0.4944 0.6456 0.7777 0.8911 0.8942
05,0,,0,, Ps 0.4208 0.4928 0.5357 0.8943 0.6053 0.8807
05,0,,0,, P, 0.3725 0.5043 0.5363 0.8938 0.6672 0.8852
05,0,,0,, P, 0.4907 0.5149 0.5716 0.8996 0.7008 0.8995
05,05, P35, P, 0.4675 0.5042 0.5340 0.6921 0.5725 0.7072
05, 0,, P5, P, 0.4510 0.4911 0.5196 0.7331 0.6572 0.7981
05, 0,, P, P, 0.3589 0.5029 0.5888 0.7716 0.8632 0.8941
05,0, P, P, 0.5034 0.4963 0.5392 0.8811 0.6285 0.8773
05,0, P5, P, 0.5706 0.5037 0.5681 0.8823 0.6997 0.8947
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Table 18 (continued)

Input combination

Classification method

NB LR SVM RF MLP GB
05,0y, P,, P, 0.4969 0.4946 0.6357 0.8926 0.8545 0.9376
05, P53, Py, Py 0.3848 0.4970 0.6126 0.7481 0.8530 0.8837
05,0, P3, Py 0.5945 0.4893 0.5352 0.8896 0.6571 0.8822
05,0, P53, P, 0.5533 0.4950 0.5648 0.8930 0.6989 0.9037
05,0, Py, P, 0.4495 0.5065 0.6446 0.9015 0.8734 0.9355
Q,, P3, P,, P, 0.4639 0.5040 0.6088 0.7818 0.8452 0.9045
0, P, P, P, 0.4415 0.5070 0.6326 0.8912 0.8458 0.9335
05,0,,0,, P3, P, 0.4859 0.5044 0.5277 0.8919 0.6246 0.8911
05,0,,0,, P3, P, 0.4646 0.4972 0.5655 0.8956 0.7031 0.9073
05, 0,,0,, P,, P, 0.5008 0.4988 0.6065 0.8996 0.8332 0.9351
05, 0,, P53, Py, P, 0.4528 0.5127 0.5701 0.7641 0.8577 0.8996
05,0y, P3, Py, P, 0.5331 0.5060 0.6081 0.8892 0.8406 0.9334
05, 0,, P3, P,, P, 0.4984 0.5101 0.5974 0.9002 0.8442 0.9370
05,0,,0,, P, P,, P, 0.4155 0.4986 0.5800 0.8984 0.7703 0.9325

SAS combination search results

The F scores, sensitivities, and specificities achieved for SAS
classification when using each of the six ML methods are
shown in Tables 19, 20, and 21, respectively.
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Tab!e 19 The F, scores o Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.5041 0.5288 0.4897 0.5723 0.5403 0.5592
0, 0.4681 0.5004 0.4839 0.7577 0.5691 0.7415
0, 0.3799 0.5028 0.4923 0.7779 0.6176 0.7529
P, 0.4931 0.4972 0.5097 0.5530 0.5474 0.5331
P, 0.4698 0.4990 0.5528 0.5627 0.4895 0.5453
P, 0.5344 0.5023 0.5035 0.5171 0.5571 0.5060
05,0, 0.4529 0.5136 0.5075 0.7623 0.4939 0.7608
05,0, 0.4588 0.4893 0.5053 0.7814 0.5414 0.7758
05, P, 0.4992 0.4963 0.5207 0.5824 0.5463 0.5746
05, P, 0.5497 0.5068 0.5306 0.5869 0.5215 0.5850
05, P, 0.4195 0.5099 0.4992 0.5685 0.4776 0.5627
0,,0,; 0.5064 0.5010 0.5025 0.8450 0.5853 0.8461
0,, P, 0.4318 0.5020 0.5294 0.7555 0.6054 0.7694
0,, P, 0.5116 0.5020 0.5405 0.7586 0.5454 0.7711
0,, P, 0.5468 0.4913 0.5353 0.7568 0.5124 0.7609
0,, Py 0.4564 0.4963 0.5252 0.7697 0.5067 0.7522
0,, P, 0.5209 0.4986 0.5388 0.7708 0.5833 0.7606
0,, P, 0.5186 0.5005 0.5327 0.7744 0.5426 0.7751
P;, P, 0.5450 0.5031 0.5256 0.5695 0.4960 0.5626
P;, P, 0.5464 0.4996 0.5282 0.5450 0.5510 0.5338
P,, P, 0.5399 0.5041 0.5447 0.5669 0.5133 0.5766
05, 0,,0, 0.4574 0.5081 0.5284 0.8447 0.5866 0.8552
03, 0,, P4 0.5499 0.4925 0.5254 0.7624 0.5847 0.7830
0;,0,, P, 0.4591 0.4936 0.5272 0.7629 0.5742 0.7829
0;,0,, P, 0.4240 0.4980 0.5099 0.7627 0.4969 0.7800
03,0, P, 0.4810 0.4994 0.5173 0.7808 0.5511 0.7691
05,0, P, 0.4098 0.5069 0.5354 0.7749 0.5611 0.7750
0,0, P, 0.5414 0.4999 0.5095 0.7761 0.5230 0.7880
05, P53, P, 0.4492 0.5021 0.5330 0.5892 0.5636 0.5900
0;, P3, P, 0.4912 0.4971 0.5248 0.5767 0.5253 0.5759
05, Py, P, 0.4476 0.4914 0.5259 0.5883 0.5758 0.5961
0,,0,, P3 0.5243 0.5008 0.5154 0.8381 0.5874 0.8427
0,0, P, 0.4994 0.5029 0.5349 0.8402 0.6139 0.8469
0,,0,, P, 0.4988 0.5042 0.5279 0.8413 0.5861 0.8492
0,, P;, P, 0.5272 0.4992 0.5284 0.7549 0.5760 0.7802
0,, P;, P, 0.4351 0.5048 0.5351 0.7479 0.5724 0.7726
0,, Py, P, 0.5318 0.5081 0.5316 0.7563 0.5258 0.7752
0., P3, P, 0.5152 0.5030 0.5454 0.7624 0.5782 0.7579
0,, P;, P, 0.4607 0.5022 0.5235 0.7690 0.5069 0.7680
0,, P,, P, 0.5437 0.5019 0.5319 0.7670 0.5930 0.7733
Py, P,, P, 0.5314 0.4984 0.5352 0.5661 0.5518 0.5826
05,0,,0,, Ps 0.4910 0.4925 0.5169 0.8407 0.5706 0.8541
05,0,,0,, P, 0.5113 0.5036 0.5301 0.8432 0.5952 0.8585
05,0,,0,, P, 0.5097 0.5078 0.5191 0.8404 0.5828 0.8558
05,05, P35, P, 0.4738 0.4968 0.5206 0.7549 0.5628 0.7879
05, 0,, P5, P, 0.4721 0.4944 0.5224 0.7545 0.5605 0.7857
05, 0,, P, P, 0.5592 0.5081 0.5331 0.7616 0.5854 0.7911
05,0, P, P, 0.4762 0.4987 0.5259 0.7738 0.5791 0.7711
05,0, P5, P, 0.4558 0.5108 0.5339 0.7749 0.5766 0.7850
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Table 19 (continued) Input combination Classification method
NB LR SVM RF MLP GB

05,0, P,, P, 0.4066 0.4957 0.5279 0.7719 0.5785 0.7813
05, P53, P, P, 0.5257 0.4878 0.5395 0.5866 0.5695 0.5988
0,,0,,P;, P, 0.5318 0.4975 0.5487 0.8357 0.6064 0.8488
0,,0,, P, P, 0.5348 0.4987 0.5326 0.8350 0.5879 0.8516
0,,0,, Py, P, 0.5537 0.5113 0.5337 0.8362 0.6258 0.8545
0,, P;, P,, P, 0.4363 0.4966 0.5394 0.7458 0.6102 0.7797
0,, P, Py, P, 04711 0.5010 0.5358 0.7635 0.6088 0.7738
03,.0,,0,, P53, P, 0.4763 0.5038 0.5312 0.8330 0.5966 0.8534
05,0,,0,, P53, P, 0.4953 0.4998 0.5212 0.8399 0.5809 0.8571
05,0,,0,, Py, P, 0.4917 0.5099 0.5304 0.8390 0.6070 0.8600
03, 0,, P35, P,, P, 0.5344 0.5069 0.5292 0.7540 0.5963 0.7913
05,0y, P53, Py, P, 0.5205 0.4991 0.5309 0.7734 0.5740 0.7828
0,,0,, P53, P,, P, 0.4912 0.5012 0.5353 0.8325 0.6302 0.8502
05,0,,0,, P53, Py, P, 0.4642 0.5016 0.5301 0.8292 0.6040 0.8574
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Tab!e 20 The sensitivitie§ . Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.2997 0.4576 0.5129 0.5678 0.4059 0.5585
0, 0.5460 0.5348 0.6918 0.7517 0.3839 0.7366
0, 0.7074 0.4613 0.6338 0.7582 0.1873 0.7224
P, 0.4402 0.5127 0.5616 0.5453 0.3978 0.5431
P, 0.5140 0.4981 0.4783 0.5629 0.5704 0.5717
P, 0.4446 0.4836 0.4741 0.5177 0.3803 0.5244
05,0, 0.5683 0.4928 0.5411 0.7612 0.5901 0.7585
05,0, 0.4887 0.4947 0.5036 0.7630 0.4709 0.7504
05, Py 0.6479 0.5019 0.5147 0.5720 0.4578 0.5808
05, P, 0.5719 0.4985 0.5163 0.5849 0.5223 0.5999
05, P, 0.6081 0.4947 0.4958 0.5633 0.5570 0.5788
0,,0,; 0.6572 0.5008 0.6082 0.8374 0.4909 0.8293
0,, Py 0.5785 0.4860 0.5626 0,.7505 0.4320 0.7710
0,, P, 0.4241 0.4801 0.5294 0.7560 0.6660 0.7763
0,, P, 0.2405 0.5006 0.5127 0.7500 0.5838 0.7601
0,, Py 0.5330 0.4970 0.5596 0.7534 0.5809 0.7305
0,, P, 0.4943 0.5180 0.5282 0.7545 0.4384 0.7434
0,, P, 0.5761 0.4991 0.5430 0.7516 0.6004 0.7549
P;, P, 0.4714 0.4939 0.5388 0.5668 0.6677 0.5744
P;, P, 0.5408 0.4954 0.5252 0.5406 0.4456 0.5421
P,, P, 0.4115 0.4958 0.4761 0.5761 0.6175 0.6056
05, 0,,0, 0.5695 0.5019 0.5106 0.8271 0.5303 0.8453
03, 0,, P4 0.5651 0.5115 0.5075 0.7621 0.5044 0.7826
0;,0,, P, 0.5768 0.5219 0.5101 0.7590 0.5941 0.7882
0;,0,, P, 0.6416 0.5013 0.5350 0.7494 0.5963 0.7766
03,0, P, 0.4649 0.5074 0.5237 0.7550 0.5783 0.7491
05,0, P, 0.6031 0.50 0.5056 0.7584 0.5796 0.7514
0,0, P, 0.3262 0.4942 0.5535 0.7527 0.6028 0.7677
05, P53, P, 0.5316 0.4904 0.5184 0.5924 0.4985 0.6109
0;, P3, P, 0.3543 0.4949 0.5116 0.5765 0.5444 0.5855
05, Py, P, 0.5225 0.5038 0.5041 0.5864 0.5018 0.6186
0,,0,, P3 0.4531 0.4826 0.5427 0.8186 0.6309 0.8303
0,0, P, 0.4642 0.5029 0.5481 0.8277 0.6178 0.8312
0,,0,, P, 0.5179 0.5049 0.5544 0.8268 0.5788 0.8388
0,, P;, P, 0.5155 0.4806 0.5642 0.7500 0.6050 0.7757
0,, P;, P, 0.6119 0.4972 0.5365 0.7486 0.5358 0.7752
0,, Py, P, 0.5590 0.5214 0.5403 0.7578 0.7119 0.7791
0., P3, P, 0.4890 0.5159 0.5345 0.7414 0.5886 0.7437
0,, P;, P, 0.5256 0.5041 0.5548 0.7498 0.6421 0.7479
0, P,, P, 0.4038 0.5014 0.5175 0.7490 0.5995 0.7621
Py, P,, P, 0.4461 0.4995 0.5216 0.5697 0.6360 0.6026
05,0,,0,, Ps 0.6262 0.5155 0.5310 0.8274 0.6144 0.8411
05,0,,0,, P, 0.4646 0.5158 0.5531 0.8303 0.6113 0.8487
05,0,,0,, P, 0.4913 0.5011 0.5522 0.8242 0.5723 0.8466
05,05, P35, P, 0.5435 0.4831 0.54 0.7566 0.64 0.7924
05,05, P35, P, 0.5466 0.4884 0.5173 0.7534 0.5521 0.7874
05, 0,, P, P, 0.4776 0.5022 0.5413 0.7555 0.5892 0.7900
05,0, P, P, 0.5274 0.5010 0.5377 0.7587 0.5758 0.7545
05,0, P5, P, 0.4177 0.4823 0.5051 0.7560 0.5163 0.7675
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Table 20 (continued) Input combination Classification method
NB LR SVM RF MLP GB

05,0, P,, P, 0.5806 0.5103 0.5087 0.7550 0.5940 0.7735
05, P53, P, P, 0.46 0.5052 0.5204 0.5857 0.6047 0.6121
0,,0,,P;, P, 0.4529 0.5117 0.5461 0.8241 0.6431 0.8413
0,,0,, P, P, 0.2714 0.4964 0.5150 0.8186 0.6153 0.8437
0,,0,, P,, P, 0.5132 0.5057 0.5357 0.8214 0.6157 0.8386
0,, P;, P,, P, 0.4464 0.5042 0.5606 0.7407 0.6294 0.7833
0,, P, Py, P, 0.4715 0.5032 0.5476 0.7439 0.6014 0.7599
05,0,,0,, P35, P, 0.44 0.4889 0.5266 0.8175 0.5881 0.8510
05,0,,0,, P53, P, 0.3896 0.4988 0.5447 0.8256 0.6080 0.8443
05,0,,0,, Py, P, 0.5676 0.50 0.5270 0.8274 0.6084 0.8525
03, 0,, P35, P,, P, 0.4376 0.5137 0.5454 0.7499 0.6264 0.7859
05,0y, P53, Py, P, 0.4463 0.4941 0.5332 0.7509 0.6137 0.7634
0,,0,, P53, P,, P, 0.6175 0.4940 0.5561 0.8159 0.5996 0.8451
05,0,,0,, P53, Py, P, 0.5047 0.4996 0.5342 0.8102 0.6133 0.8504
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Tab!e 21 The speciﬁcitie§ . Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.5731 0.5544 0.4823 0.5742 0.5901 0.5596
0, 0.4444 0.4890 0.4176 0.7615 0.6429 0.7445
0, 0.3032 0.5168 0.4462 0.7905 0.8099 0.7714
P 0.5105 0.4921 0.4920 0.5560 0.6038 0.5295
P, 0.4563 0.4993 0.5814 0.5627 0.4633 0.5355
P, 0.5672 0.5087 0.5135 0.5170 0.6254 0.4999
05,0, 0.4192 0.5208 0.4962 0.7631 0.4624 0.7623
05,0, 0.4499 0.4876 0.5059 0.7932 0.5676 0.7920
05, P, 0.4498 0.4945 0.5229 0.5867 0.5796 0.5722
0, P, 0.5414 0.5097 0.5359 0.5878 0.5213 0.5789
05, P, 0.3695 0.5152 0.5004 0.5706 0.4528 0.5565
0,,0,; 0.4553 0.5012 0.4671 0.8507 0.6244 0.8585
0,, P, 04512 0.5074 0.5175 0.7586 0.6807 0.7685
0,, P, 0.5418 0.5094 0.5447 0.7603 0.5002 0.7679
0,, P, 0.6622 0.4884 0.5436 0.7610 0.4879 0.7614
0,, Py 0.4338 0.4961 0.5130 0.7800 0.4816 0.7653
0,, P, 0.5303 0.4922 0.5428 0.7811 0.6224 0.7712
0,, P, 0.4985 0.5010 0.5290 0.7889 0.5211 0.7880
P;, P, 0.5726 0.5062 0.5209 0.5707 0.4394 0.5581
P;, P, 0.5486 0.5011 0.5293 0.5467 0.5912 0.5309
P,, P, 0.5874 0.5069 0.5704 0.5633 0.4774 0.5649
05, 0,,0, 0.4242 0.5103 0.5348 0.8576 0.6101 0.8626
03, 0,, P4 0.5442 0.4864 0.5319 0.7626 0.6180 0.7834
0;,0,, P, 0.4241 0.4844 0.5334 0.7654 0.5662 0.7795
0;,0,, P, 0.3655 0.4970 0.5014 0.7710 0.4641 0.7822
03,0, P, 0.4862 0.4968 0.5152 0.7974 0.5408 0.7816
05,0, P, 0.3600 0.5093 0.5464 0.7854 0.5539 0.7900
0,0, P, 0.6213 0.5018 0.4945 0.7911 0.4948 0.8013
05, P53, P, 0.4254 0.5061 0.5384 0.5879 0.5892 0.5813
0;, P3, P, 0.5358 0.4979 0.5295 0.5769 0.5186 0.5721
05, Py, P, 0.4261 0.4874 0.5338 0.5892 0.6058 0.5866
0,,0,, P3 0.5497 0.5069 0.5060 0.8522 0.5694 0.8519
0,0, P, 0.5112 0.5029 0.5301 0.8494 0.6123 0.8585
0,,0,, P, 0.4925 0.5040 0.5184 0.8519 0.5892 0.8569
0,, P;, P, 0.5315 0.5055 0.5156 0.7579 0.5643 0.7831
0,, P;, P, 0.3860 0.5075 0.5347 0.7476 0.5871 0.7710
0,, Py, P, 0.5220 0.5036 0.5285 0.7555 0.4595 0.7728
0., P3, P, 0.5244 0.4987 0.5495 0.7755 0.5740 0.7667
0,, P5, P, 0.4414 0.5016 0.5125 0.7810 0.4611 0.7806
0, P,, P, 0.5960 0.5021 0.5372 0.7782 0.5904 0.7804
Py, P,, P, 0.5624 0.4981 0.5403 0.5647 0.5198 0.5745
05, 0,,0,, P, 0.4471 0.4850 0.5120 0.8504 0.5532 0.8638
05,0,,0,, P, 0.5274 0.4996 0.5219 0.8527 0.5884 0.8660
05,0,,0,, P, 0.5160 0.5102 0.5076 0.8522 0.5872 0.8627
04,0, P5, P, 0.4522 0.5014 0.5138 0.7540 0.5326 0.7851
05, 0,, P5, P, 0.4492 0.4964 0.5243 0.7553 0.5639 0.7847
05, 0,, P, P, 0.5909 0.5102 0.5302 0.7654 0.5839 0.7919
05,0, P, P, 0.4603 0.4980 0.5218 0.7834 0.5805 0.7816
05,0, P5, P, 0.4671 0.5206 0.5444 0.7869 0.6011 0.7964

@ Springer



2130

G. Jones et al.

Table 21 (continued)

Input combination

Classification method

NB LR SVM RF MLP GB
05,0y, P,, P, 0.3623 0.4910 0.5348 0.7826 0.5723 0.7864
05, P53, Py, Py 0.5492 0.4823 0.5466 0.5870 0.5555 0.5932
05,0, P3, Py 0.5604 0.4929 0.5497 0.8441 0.5905 0.8545
05,0, P53, P, 0.6311 0.4995 0.5390 0.8468 0.5765 0.8575
05,0, Py, P, 0.5693 0.5133 0.5330 0.8469 0.6304 0.8664
Q,, P3, P,, P, 0.4992 0.4941 0.5316 0.7489 0.6018 0.7774
0, P, P, P, 0.4710 0.5003 0.5315 0.7757 0.6121 0.7826
05,0,,0,, P3, P, 0.4877 0.5089 0.5329 0.8442 0.6003 0.8552
05,0,,0,, P3, P, 0.5301 0.5002 0.5130 0.8504 0.5699 0.8668
05, 0,,0,, P,, P, 0.4670 0.5133 0.5317 0.8475 0.6064 0.8657
05, 0,, P53, Py, P, 0.5697 0.5046 0.5234 0.7566 0.5836 0.7950
05,0y, P3, Py, P, 0.5467 0.5008 0.5302 0.7876 0.5581 0.7954
05, 0,, P3, P,, P, 0.4502 0.5037 0.5278 0.8444 0.6443 0.8540
05,0,,0,, P, P,, P, 0.4520 0.5023 0.5287 0.8427 0.60 0.8627

PAD combination search results

The F, scores, sensitivities, and specificities achieved for
PAD classification when using each of the six ML methods
are shown in Tables 22, 23, and 24 respectively.
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Tab!e 22 The F scores o Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.5017 0.5115 0.6645 0.8224 0.6897 0.8169
0, 0.5621 0.5222 0.5266 0.7127 0.4734 0.7076
0, 0.3927 0.4822 0.5310 0.8240 0.4713 0.8183
P, 0.5162 0.5053 0.5182 0.5613 0.4131 0.5406
P, 0.5030 0.4954 0.5242 0.5753 0.4741 0.5529
P, 0.4290 0.5031 0.5038 0.5517 0.5487 0.5335
05,0, 0.4740 0.5099 0.5926 0.8480 0.7040 0.8557
05,0, 0.5355 0.4965 0.5786 0.8959 0.7254 0.9041
05, P, 0.4800 0.4932 0.5808 0.8050 0.6676 0.8151
05, P, 0.5118 0.4998 0.5824 0.8152 0.7057 0.8201
05, P, 0.5672 0.4979 0.5768 0.8103 0.7206 0.8221
0,,0,; 0.5236 0.4962 0.5239 0.8556 0.5610 0.8637
0,, Py 0.4929 0.4980 0.5069 0.7134 0.6117 0.7200
0,, P, 0.5323 0.4956 0.5133 0.7126 0.5233 0.7255
0,, P, 0.4602 0.5075 0.5222 0.7117 0.5585 0.7221
0,, Py 0.5293 0.5116 0.5420 0.8136 0.5602 0.8204
0,, P, 0.5335 0.4926 0.5406 0.8187 0.5818 0.8314
0,, P, 0.5549 0.5011 0.5417 0.8181 0.6514 0.8307
P;, P, 0.4829 0.4996 0.5319 0.5810 0.5386 0.5733
P;, P, 0.4823 0.4976 0.5142 0.5624 0.5141 0.5559
P,, P, 0.5434 0.5035 0.5145 0.5904 0.4662 0.6002
05, 0,,0, 0.5209 0.4891 0.5619 0.9061 0.7004 0.9168
03, 0,, P4 04717 0.5146 0.5605 0.8370 0.6864 0.8556
0;,0,, P, 0.4651 0.5049 0.5640 0.8424 0.7074 0.8606
0;,0,, P, 0.4643 0.5064 0.5610 0.8408 0.7040 0.8592
03,0, P, 0.4947 0.4976 0.5679 0.8833 0.7148 0.9009
05,0, P, 0.5615 0.4984 0.5741 0.8858 0.7100 0.9022
0,0, P, 0.4149 0.4941 0.5760 0.8850 0.7361 0.9046
05, P53, P, 0.4800 0.5065 0.5598 0.8005 0.6804 0.8215
0;, P3, P, 0.5214 0.5050 0.5642 0.8005 0.6886 0.8179
05, Py, P, 0.4792 0.5065 0.5630 0.8004 0.7104 0.8178
0,,0,, P3 0.5208 0.5006 0.5334 0.8469 0.6300 0.8617
0,0, P, 0.4874 0.4974 0.5318 0.8472 0.5992 0.8703
0,,0,, P, 0.5340 0.4938 0.5311 0.8472 0.6472 0.8682
0,, P;, P, 0.5306 0.4996 0.5162 0.7147 0.5581 0.7379
0,, P;, P, 0.5012 0.4989 0.5152 0.7062 0.5165 0.7311
0,, Py, P, 0.5165 0.4983 0.5232 0.7118 0.5659 0.7322
0., P3, P, 0.5324 0.4941 0.5382 0.8086 0.6117 0.8302
0,, P;, P, 0.4632 0.5047 0.5322 0.8116 0.6127 0.8324
0,, P,, P, 0.4524 0.4930 0.5429 0.8146 0.6441 0.8380
Py, P,, P, 0.5016 0.5023 0.5262 0.5838 0.5654 0.6078
05,0,,0,, Ps 0.5480 0.5086 0.5600 0.8992 0.6988 0.9138
05,0,,0,, P, 0.4505 0.4997 0.5564 0.8997 0.7017 09164
05,0,,0,, P, 0.4973 0.5053 0.5601 0.8990 0.7030 0.9196
05,05, P35, P, 0.3998 0.4993 0.5601 0.8376 0.6688 0.8612
05,05, P35, P, 0.5253 0.4973 0.5558 0.8330 0.6738 0.8556
05, 0,, P,, P, 0.4726 0.4972 0.5650 0.8385 0.6811 0.8597
05,0, P, P, 0.5030 0.4976 0.5684 0.8803 0.6845 0.8999
05,0, P5, P, 0.5189 0.5019 0.5595 0.8839 0.6849 0.9013
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Table 22 (continued)
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Input combination

Classification method

NB LR SVM RF MLP GB
05,0y, P,, P, 0.5692 0.4994 0.5715 0.8805 0.6962 0.9025
05, P53, Py, Py 0.4801 0.4991 0.5576 0.7940 0.6746 0.8170
05,0, P3, Py 0.4681 0.4966 0.5404 0.8417 0.6239 0.8624
05,0, P53, P, 0.5009 0.5015 0.5278 0.8378 0.6146 0.8677
05,0, Py, P, 0.5278 0.4979 0.5304 0.8433 0.6327 0.8690
Q,, P3, P,, P, 0.5242 0.5024 0.5180 0.7022 0.5806 0.7376
0, P, P, P, 0.4996 0.5033 0.5355 0.8087 0.6158 0.8328
05,0,,0,, P3, P, 0.5012 0.5006 0.5495 0.8971 0.6889 0.9169
05,0,,0,, P3, P, 0.5025 0.4969 0.5562 0.8952 0.6887 0.9151
05, 0,,0,, P,, P, 0.5023 0.5019 0.5502 0.8969 0.6895 0.9170
05, 0,, P53, Py, P, 0.4946 0.4923 0.5488 0.8279 0.6545 0.8597
05,0y, P3, Py, P, 0.4489 0.4972 0.5666 0.8758 0.6688 0.9042
05, 0,, P3, P,, P, 0.5377 0.4995 0.5391 0.8389 0.6154 0.8655
05,0,,0,, P, P,, P, 0.4479 0.4974 0.5573 0.8935 0.6681 0.9187
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Tab!e 23 The sensitivitie§ . Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.3598 0.5048 0.6806 0.8219 0.5998 0.8188
0, 0.5441 0.4878 0.5879 0.6858 0.5536 0.6922
0, 0.5735 0.5026 0.6065 0.8126 0.5959 0.8140
P 0.4246 0.4935 0.5472 0.5358 0.6388 0.5425
P, 0.4565 0.4985 0.5368 0.5532 0.5572 0.5576
P, 0.6253 0.5001 0.5571 0.5245 0.3899 0.5261
05,0, 0.5595 0.4912 0.6297 0.8414 0.7176 0.8532
05,0, 0.4753 0.5087 0.6324 0.8825 0.7460 0.8950
05, P, 0.6086 0.5025 0.5980 0.8021 0.6523 0.8173
05, P, 0.3310 0.4895 0.5919 0.8089 0.7679 0.8269
05, P, 0.3079 0.5280 0.6021 0.8051 0.7461 0.8266
0,,0,; 0.4323 0.4902 0.5878 0.8346 0.6016 0.8521
0,, Py 0.5419 0.4877 0.5744 0.6826 0.2813 0.7126
0,, P, 0.5505 0.5051 0.5776 0.6862 0.5169 0.7275
0,, P, 0.6100 0.4976 0.5697 0.6875 0.4716 0.7127
0,, Py 0.3309 0.4971 0.5476 0.8001 0.5911 0.8168
0,, P, 0.5495 0.5063 0.5827 0.8019 0.5508 0.82838
0,, P, 0.3834 0.4930 0.5778 0.8059 0.6787 0.8272
P;, P, 0.4789 0.4946 0.5458 0.5569 0.5443 0.5709
P;, P, 0.5309 0.5066 0.5642 0.5425 0.5406 0.5484
P,, P, 0.5325 0.4961 0.5863 0.5651 0.6096 0.5998
05, 0,,0, 0.49438 0.5163 0.5976 0.8885 0.7801 0.9055
03, 0,, P4 0.3895 0.4985 0.5568 0.8323 0.7286 0.8572
0;,0,, P, 0.5612 0.5051 0.5851 0.8388 0.6953 0.8545
0;,0,, P, 0.4521 0.4890 0.5787 0.8278 0.7259 0.8559
03,0, P, 0.5637 0.5045 0.5826 0.8707 0.7050 0.8913
05,0, P, 0.4240 0.5030 0.5974 0.8710 0.7409 0.8923
0,0, P, 0.6578 0.5094 0.6104 0.8663 0.6902 0.8928
05, P53, P, 0.3869 0.4995 0.5834 0.7984 0.6967 0.8211
0;, P3, P, 0.2820 0.5009 0.5706 0.7914 0.6994 0.8208
05, Py, P, 0.5814 0.4880 0.5824 0.7970 0.6789 0.8163
0,,0,, P3 0.3260 0.4775 0.5663 0.8303 0.5969 0.8540
0,0, P, 0.4239 0.4959 0.5625 0.8309 0.6028 0.8636
0,,0,, P, 0.3205 0.5176 0.5610 0.8289 0.6418 0.8595
0,, P;, P, 0.4276 0.4900 0.5714 0.6920 0.5968 0.7328
0,, P;, P, 0.5554 0.4896 0.5560 0.6859 0.6252 0.7136
0,, Py, P, 0.4250 0.5134 0.5664 0.6845 0.5546 0.7245
0., P3, P, 0.5668 0.4987 0.5330 0.7935 0.5752 0.8208
0,, P;, P, 0.4876 0.5104 0.5537 0.7998 0.6082 0.8287
0, P,, P, 0.6109 0.4885 0.5572 0.8022 0.5978 0.8313
P, Py, P, 0.3959 0.4901 0.5652 0.5688 0.5532 0.6022
05,0,,0,, Ps 0.3678 0.4879 0.5510 0.8819 0.7136 0.9035
05,0,,0,, P, 0.4522 0.5111 0.5909 0.8868 0.7224 0.9085
05,0,,0,, P, 0.5593 0.4867 0.5680 0.8846 0.7250 0.9068
05,05, P35, P, 0.5688 0.4972 0.5879 0.8231 0.7166 0.8574
05, 0,, P5, P, 0.4517 0.5112 0.5707 0.8201 0.7036 0.8504
05, 0,, P,, P, 0.5414 0.4904 0.5642 0.8247 0.7091 0.8526
05,0, P, P, 0.6603 0.4851 0.5512 0.8655 0.7055 0.8936
05,0, P5, P, 0.3708 0.4993 0.5781 0.8655 0.7178 0.8951
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Table 23 (continued)
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Input combination

Classification method

NB LR SVM RF MLP GB
05,0y, P,, P, 0.4094 0.4967 0.5752 0.8612 0.7042 0.8926
05, P53, Py, Py 0.5180 0.5097 0.5724 0.7834 0.6593 0.8182
05,0, P3, Py 0.3984 0.4901 0.5564 0.8199 0.6451 0.8568
05,0, P53, P, 0.3787 0.5159 0.5556 0.8243 0.6639 0.8587
05,0, Py, P, 0.4432 0.5153 0.5587 0.8324 0.6442 0.8633
Q,, P3, P,, P, 0.4612 0.4878 0.5385 0.6811 0.5837 0.7262
0, P, P, P, 0.4762 0.4917 0.5679 0.7953 0.6449 0.8315
05,0,,0,, P3, P, 0.3675 0.5049 0.5659 0.8802 0.6844 0.9133
05,0,,0,, P3, P, 0.3552 0.4925 0.5784 0.8766 0.6848 0.9073
05, 0,,0,, P,, P, 0.4635 0.4996 0.5754 0.8829 0.6910 0.9041
05, 0,, P53, Py, P, 0.4797 0.5169 0.5518 0.8142 0.6891 0.8544
05,0y, P3, Py, P, 0.5274 0.5069 0.5507 0.8625 0.6738 0.8986
05, 0,, P3, P,, P, 0.3947 0.4911 0.5493 0.8258 0.6190 0.8556
05,0,,0,, P, P,, P, 0.6385 0.4859 0.5511 0.8813 0.6588 0.9102
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Tab!e 24 The speciﬁcitie§ . Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.5493 0.5139 0.6566 0.8228 0.7371 0.8157
0, 0.5692 0.5344 0.5047 0.7276 0.4486 0.7161
0, 0.3486 0.4758 0.5038 0.8320 0.4329 0.8214
P, 0.5481 0.5093 0.5081 0.5713 0.3544 0.5399
P, 0.5187 0.4945 0.5198 0.5843 0.4484 0.5512
P, 0.3754 0.5042 0.4859 0.5622 0.6088 0.5362
05,0, 0.4475 0.5164 0.5770 0.8529 0.6967 0.8576
05,0, 0.5576 0.4926 0.5568 0.9068 0.7137 09117
05, P, 0.4395 0.4902 0.5738 0.8070 0.6754 0.8137
05, P, 0.5740 0.5033 0.5785 0.8196 0.6718 0.8155
05, P, 0.6699 0.4880 0.5666 0.8140 0.7063 0.8190
0,,0,; 0.5561 0.4983 0.5013 0.8714 0.5452 0.8726
0,, Py 0.4769 0.5015 0.4840 0.7305 0.7573 0.7243
0,, P, 0.5257 0.4926 0.4912 0.7273 0.5257 0.7245
0,, P, 0.4155 0.5109 0.5055 0.7252 0.5922 0.7275
0,, Py 0.6008 0.5166 0.5400 0.8229 0.5482 0.8230
0,, P, 0.5277 0.4882 0.5251 0.8305 0.5946 0.8334
0,, P, 0.6209 0.5039 0.5284 0.8266 0.6383 0.8333
P;, P, 0.4842 0.5013 0.5269 0.5910 0.5365 0.5743
P;, P, 0.4669 0.4947 0.4970 0.5703 0.5050 0.5589
P,, P, 0.5476 0.5061 0.4897 0.6010 0.4227 0.6004
05, 0,,0, 0.5302 0.4803 0.5480 0.9208 0.6575 0.9265
03, 0,, P4 0.4972 0.5203 0.5620 0.8405 0.6644 0.8545
0;,0,, P, 0.4360 0.5049 0.5558 0.8451 0.7141 0.8653
0;,0,, P, 0.4681 0.5123 0.5541 0.8504 0.6922 0.8618
03,0, P, 0.4721 0.4954 0.5622 0.8933 0.7204 0.9088
05,0, P, 0.6153 0.4970 0.5648 0.8976 0.6931 0.9104
0,0, P, 0.3514 0.4892 0.5621 0.9000 0.7629 0.9144
05, P53, P, 0.5095 0.5090 0.5507 0.8020 0.6720 0.8218
0;, P3, P, 0.6059 0.5064 0.5617 0.8066 0.6830 0.8159
05, Py, P, 0.4470 0.5129 0.5555 0.8028 0.7279 0.8189
0,,0,, P3 0.5894 0.5084 0.5215 0.8592 0.6453 0.8677
0,0, P, 0.5079 0.4979 0.5207 0.8593 0.5977 0.8755
0,,0,, P, 0.6118 0.4860 0.5203 0.8607 0.6498 0.8749
0,, P;, P, 0.5679 0.5029 0.4971 0.7274 0.5432 0.7410
0,, P;, P, 0.4831 0.5021 0.5011 0.7173 0.4787 0.7413
0,, Py, P, 0.5484 0.4934 0.5080 0.7270 0.5704 0.7368
0., P3, P, 0.5200 0.4927 0.5402 0.8190 0.6278 0.8369
0,, P;, P, 0.4559 0.5028 0.5245 0.8198 0.6148 0.8351
0,, P,, P, 0.4061 0.4945 0.5376 0.8232 0.6662 0.8430
Py, P,, P, 0.5371 0.5064 0.5123 0.5900 0.5703 0.6103
05,0,,0,, Ps 0.6161 0.5157 0.5636 0.9135 0.6910 0.9226
05,0,,0,, P, 0.4501 0.4960 0.5432 0.9104 0.6906 0.9231
05,0,,0,, P, 0.4769 0.5116 0.5571 0.9108 0.6911 0.9306
05,05, P35, P, 0.3576 0.5001 0.5493 0.8481 0.6448 0.8642
05,05, P35, P, 0.5516 0.4927 0.5502 0.8423 0.6587 0.8596
05, 0,, P,, P, 0.4514 0.4995 0.5654 0.8485 0.6667 0.8652
05,0, P, P, 0.4502 0.5018 0.5753 0.8920 0.6736 0.9052
05,0, P5, P, 0.5708 0.5029 0.5523 0.8986 0.6678 0.9065
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Table 24 (continued)

Input combination

Classification method

NB LR SVM RF MLP GB
05,0y, P,, P, 0.6328 0.5003 0.5701 0.8957 0.6920 0.9107
05, P53, Py, Py 0.4682 0.4956 0.5519 0.8011 0.6825 0.8163
05,0, P3, Py 0.4894 0.4988 0.5346 0.8577 0.6144 0.8667
05,0, P53, P, 0.5418 0.4968 0.5179 0.8477 0.5928 0.8747
05,0, Py, P, 0.5582 0.4922 0.5202 0.8513 0.6274 0.8734
Q,, P3, P,, P, 0.5467 0.5073 0.5109 0.7137 0.5794 0.7443
0, P, P, P, 0.5075 0.5073 0.5237 0.8179 0.6029 0.8338
05,0,,0,, P3, P, 0.5460 0.4992 0.5434 0.9110 0.6913 0.9201
05,0,,0,, P3, P, 0.5520 0.4984 0.5477 0.9103 0.6909 0.9218
05, 0,,0,, P,, P, 0.5154 0.5028 0.5407 0.9084 0.6888 0.9281
05, 0,, P53, Py, P, 0.4996 0.4843 0.5478 0.8377 0.6378 0.8638
05,0y, P3, Py, P, 0.4262 0.4940 0.5729 0.8862 0.6664 0.9089
05, 0,, P3, P,, P, 0.5904 0.5024 0.5354 0.8485 0.6138 0.8732
05,0,,0,, P, P,, P, 0.3930 0.5013 0.5597 0.9035 0.6729 0.9261

AAA combination search results

The F, scores, sensitivities, and specificities achieved for
AAA classification when using each of the six ML methods
are shown in Tables 25, 26 and 27 respectively.
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Tab!e 25 The F scores o Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.4670 0.4881 0.8454 0.9095 0.8606 0.9294
0, 0.5754 0.4952 0.8246 0.9516 0.9092 0.9640
0, 0.4440 0.4843 0.9481 0.9741 0.9697 0.9805
P, 0.4999 0.5102 0.8664 0.9027 0.8692 0.9226
P, 0.5782 0.4944 0.8717 0.9087 0.8793 0.9311
P, 0.4790 0.4826 0.8212 0.8771 0.8416 0.8884
05,0, 0.3850 0.4983 0.8895 0.9753 0.9249 0.9843
05,0, 0.4982 0.5029 0.9521 0.9840 0.9749 0.9919
05, P, 0.5126 0.4960 0.9215 0.9483 0.9249 0.9767
0, P, 0.6111 0.4958 0.9355 0.9543 0.9385 0.9770
0,, P, 0.4737 0.4971 0.9286 0.9498 0.9448 0.9702
0,,0,; 0.5523 0.4970 0.9523 0.9868 0.9718 0.9928
0,, P, 0.5080 0.4994 0.9305 0.9604 0.9430 0.9805
0,, P, 0.4756 0.4996 0.9371 0.9712 0.9552 0.9849
0,, P, 0.4032 0.4975 0.9168 0.9689 0.9413 0.9828
0,, Py 0.5350 0.5046 0.9630 0.9808 0.9741 0.9870
0,, P, 0.4613 0.4981 0.9681 0.9820 0.9756 0.9900
0,, P, 0.4909 0.5003 0.9747 0.9798 0.9801 0.9852
P;, P, 0.5343 0.5018 0.9247 0.9335 0.9305 0.9677
P;, P, 0.4357 0.5078 0.9321 0.9345 0.9311 0.9675
P,, P, 0.5431 0.5039 0.9213 0.9365 0.9405 0.9625
05, 0,,0, 0.4890 0.5164 0.9603 0.9912 0.9729 0.9962
03, 0,, P4 0.5485 0.4993 0.9452 0.9771 0.9436 0.9905
0;,0,, P, 0.5359 0.4998 0.9542 0.9791 0.9568 0.9910
0;,0,, P, 0.4374 0.5070 0.9518 0.9803 0.9503 0.9906
03,0, P, 0.5193 0.5085 0.9663 0.9861 0.9740 0.9936
05,0, P, 0.5325 0.5034 0.9747 0.9884 0.9784 0.9939
0,0, P, 0.4819 0.4943 0.9781 0.9850 0.9796 0.9936
05, P53, P, 0.4106 0.4991 0.9479 0.9586 0.9434 0.9807
0;, P3, P, 0.4291 0.4901 0.9560 0.9598 0.9491 0.9846
05, Py, P, 0.4537 0.4948 0.9492 0.9647 0.9515 0.9804
0,,0,, P3 0.5071 0.5051 0.9685 0.9877 0.9795 0.9944
0,0, P, 0.4853 0.4951 0.9724 0.9893 0.9797 0.9957
0,,0,, P, 0.4459 0.4994 0.9752 0.9885 0.9816 0.9952
0,, P;, P, 0.4060 0.4932 0.9566 0.9714 0.9576 0.9873
0,, P;, P, 0.5857 0.4972 0.9577 0.9722 0.9582 0.9882
0,, Py, P, 0.4776 0.5030 0.9497 0.9755 0.9671 0.9892
0., P3, P, 0.4224 0.4974 0.9729 0.9823 0.9788 0.9904
0,, P5, P, 0.4944 0.4987 0.9747 0.9813 0.9797 0.9897
0, P,, P, 0.5362 0.5051 0.9756 0.9828 0.9827 0.9917
Py, P,, P, 0.4406 0.5001 0.9479 0.9455 0.9517 0.9750
05,0,,0,, Ps 0.5284 0.5135 0.9711 0.9914 0.9756 0.9965
05,0,,0,, P, 0.5279 0.5066 0.9784 0.9923 0.9794 0.9972
05,0,,0,, P, 0.4331 0.4983 0.9790 0.9903 0.9792 0.9961
05,05, P35, P, 0.5090 0.5041 0.9636 0.9797 0.9582 0.9930
05,05, P35, P, 0.5250 0.4963 0.9665 0.9784 0.9633 0.9922
05, 0,, P, P, 0.4600 0.4887 0.9646 0.9829 0.9724 0.9937
05,0, P, P, 0.4994 0.5003 0.9759 0.9880 0.9771 0.9939
05,0, P5, P, 0.5058 0.5060 0.9779 0.9867 0.9782 0.9942
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Table 25 (continued)
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Input combination

Classification method

NB LR SVM RF MLP GB
05,0y, P,, P, 0.4981 0.4974 0.9781 0.9869 0.9778 0.9950
05, P53, Py, Py 0.4679 0.5050 0.9634 0.9651 0.9595 0.9856
05,0, P3, Py 0.4910 0.4989 0.9776 0.9901 0.9759 0.9954
05,0, P53, P, 0.4893 0.5041 0.9794 0.9892 0.9772 0.9948
05,0, Py, P, 0.4849 0.4994 0.9771 0.9911 0.9800 0.9957
Q,, P3, P,, P, 0.4963 0.5081 0.9644 0.9748 0.9684 0.9903
0, P, P, P, 0.5090 0.5054 0.9763 0.9857 0.9788 0.9910
05,0,,0,, P3, P, 0.4588 0.4997 0.9781 0.9915 0.9739 0.9970
05,0,,0,, P3, P, 0.5224 0.4957 0.9800 0.9920 0.9767 0.9970
05, 0,,0,, P,, P, 0.5003 0.4947 0.9823 0.9912 0.9808 0.9966
05, 0,, P53, Py, P, 0.4667 0.4900 0.9708 0.9828 0.9668 0.9948
05,0y, P3, Py, P, 0.5322 0.4962 0.9801 0.9874 0.9775 0.9938
05, 0,, P3, P,, P, 0.4450 0.5064 0.9801 0.9892 0.9808 0.9961
05,0,,0,, P, P,, P, 0.5083 0.4991 0.9820 0.9912 0.9785 0.9970
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Tab!e 26 The sensitivitie§ . Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.5683 0.5120 0.8568 0.8878 0.8661 0.9300
0, 0.5738 0.5089 0.8136 0.9355 0.9100 0.9638
0, 0.4451 0.4962 0.9517 0.9654 0.9673 0.9799
P, 0.4846 0.5035 0.8785 0.8765 0.8660 0.9202
P, 0.4451 0.5110 0.8712 0.9005 0.8818 0.9352
P, 0.6616 0.4902 0.8491 0.8514 0.8308 0.8770
05,0, 0.5927 0.4676 0.8868 0.9652 0.9308 0.9835
05,0, 0.5541 0.5333 0.9508 0.9757 0.9747 0.9907
05, Py 0.4269 0.4894 0.9222 0.9282 0.9266 0.9746
0, P, 0.4746 0.5016 0.9325 0.9382 0.9379 0.9819
05, P, 0.5850 0.4760 0.9213 0.9317 0.9462 0.9694
0,,0,; 0.2504 0.5034 0.9534 0.9810 0.9738 0.9919
0,, P, 04111 0.4591 0.9285 0.9464 0.9439 0.9793
0,, P, 0.5865 0.5093 0.9345 0.9604 0.9544 0.9836
0,, P, 0.5669 0.4940 0.9227 0.9552 0.9471 0.9817
0,, Py 0.4266 0.4741 0.9626 0.9729 0.9743 0.9850
0,, P, 0.5075 0.4991 0.9664 0.9743 0.9780 0.9895
0,, P, 0.5143 0.5055 0.9742 0.9715 0.9806 0.9841
P;, P, 0.4414 0.4981 0.9287 0.9209 0.9379 0.9673
P;, P, 0.5355 0.4956 0.9461 0.9109 0.9337 0.9631
P,, P, 0.4090 0.4957 0.9311 0.9260 0.9359 0.9596
05, 0,,0, 0.65438 0.5014 0.9592 0.9864 0.9760 0.9954
03, 0,, P4 0.4363 0.4885 0.9445 0.9689 0.9482 0.9897
0;,0,, P, 0.5720 0.5284 0.9506 0.9704 0.9620 0.9904
0;,0,, P, 0.4962 0.5110 0.9455 0.9723 0.9511 0.9914
03,0, P, 0.5329 0.4857 0.9666 0.9793 0.9774 0.9913
05,0, P, 0.3570 0.4931 0.9701 0.9820 0.9794 0.9929
0,0, P, 0.3667 0.5022 0.9771 0.9755 0.9805 0.9924
05, P53, P, 0.6250 0.5064 0.9434 0.9445 0.9426 0.9822
0;, P3, P, 04716 0.4865 0.9564 0.9413 0.9473 0.9843
05, Py, P, 0.5103 0.4982 0.9447 0.9522 0.9575 0.9819
0,,0,, P3 0.4499 0.4986 0.9676 0.9815 0.9797 0.9933
0,0, P, 0.6389 0.4936 0.9689 0.9838 0.9795 0.9947
0,,0,, P, 0.6675 0.5043 0.9741 0.9817 0.9811 0.9945
0,, P;, P, 0.5890 0.4948 0.9564 0.9609 0.9598 0.9864
0,, P;, P, 0.4238 0.5033 0.9606 0.9619 0.9578 0.9868
0,, Py, P, 0.5582 0.5024 0.9540 0.9660 0.9686 0.9881
0., P3, P, 0.5561 0.4904 0.9703 0.9736 0.9786 0.9898
0,, P;, P, 0.6229 0.5165 0.9753 0.9725 0.9799 0.9881
0,, P,, P, 0.4489 0.5084 0.9753 0.9750 0.9837 0.9896
P, Py, P, 0.6036 0.5139 0.9563 0.9278 0.9522 0.9726
05,0,,0,, Ps 0.4318 0.5058 0.9684 0.9870 0.9803 0.9953
04,0, 0, P, 0.5271 0.4841 0.9751 0.9879 0.9791 0.9959
05,0,,0,, P, 0.6257 0.4871 0.9768 0.9848 0.9794 0.9944
05,05, P35, P, 0.4330 0.5113 0.9615 0.9692 0.9620 0.9922
05,05, P35, P, 0.4955 0.4973 0.9639 0.9675 0.9661 0.9925
05, 0,, P,, P, 0.4783 0.4925 0.9610 0.9737 0.9660 0.9930
04,0, P, P, 0.4914 0.4957 0.9741 0.9818 0.9795 0.9932
05,0, P5, P, 0.5768 0.5028 0.9778 0.9794 0.9788 0.9928
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Table 26 (continued)
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Input combination

Classification method

NB LR SVM RF MLP GB
0.0, P,. P, 0.4613 0.4924 0.9749 0.9805 0.9771 0.9940
Q5. P, P,. P, 0.6938 05114 0.9619 0.9516 0.9633 0.9856
0,.0,. P, P, 0.5969 04915 0.9770 0.9861 0.9772 0.9944
0,.0,. Ps. P, 0.5361 0.5044 0.9800 0.9846 0.9770 0.9938
0,.0,,P,, P, 0.5999 0.5042 0.9753 0.9867 0.9815 0.9944
0,. Py, P, P, 0.4892 0.4885 0.9676 0.9650 0.9693 0.9887
0, Ps, Py, P, 0.3810 0.5027 0.9761 0.9790 0.9791 0.9887
05.0,.0,. P, P, 0.5180 0.5006 0.9749 0.9866 0.9752 0.9959
05.0,,0,. Py, P, 0.4600 04811 0.9805 0.9873 0.9794 0.9963
05.0,.0,. Py, P, 0.4965 0.5034 0.9824 0.9870 0.9808 0.9952
0. 0,, P5, Py, P, 0.4020 0.5030 0.9704 0.9745 0.9692 0.9944
0,.0,. P5, P, P, 0.4284 0.5086 0.9809 0.9804 0.9763 0.9925
0,.0,. P5, P,. P, 0.5795 0.4863 0.9812 0.9836 0.9811 0.9949
0.0, 0,, Py, Py, P, 0.4242 0.5024 0.9802 0.9861 0.9778 0.9959
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Tab!e 27 The speciﬁcitie§ . Input combination Classification method

achieved across the combination

search by each of the six NB LR SVM RF MLP GB

classification methods
05 0.4362 0.4805 0.8371 0.9276 0.8565 0.9290
0, 0.5761 0.4908 0.8324 0.9663 0.9087 0.9643
0, 0.4437 0.4806 0.9450 0.9825 0.9720 0.9811
P, 0.5050 0.5126 0.8572 0.9244 0.8718 0.9248
P, 0.6324 0.4890 0.8722 0.9156 0.8775 0.9277
P, 0.4215 0.4803 0.8018 0.8972 0.8496 0.8976
05,0, 0.3355 0.5086 0.8917 0.9851 0.9200 0.9851
05,0, 0.4797 0.4927 0.9533 0.9922 0.9751 0.9931
05, Py 0.5422 0.4982 0.9210 0.9666 0.9235 0.9788
05, P, 0.6712 0.4939 0.9383 0.9691 0.9392 0.9724
05, P, 0.4392 0.5041 0.9351 0.9662 0.9436 0.97103
0,,0,; 0.6675 0.4949 0.9514 0.9926 0.9701 0.9938
0,, P, 0.5410 0.5129 0.9324 0.9735 0.9423 0.9817
0,, P, 0.4411 0.4964 0.9394 0.9815 0.9561 0.9862
0,, P, 0.3619 0.4987 09119 0.9819 0.9363 0.9840
0,, Py 0.5747 0.5149 0.9635 0.9885 0.9741 0.9890
0,, P, 0.4475 0.4979 0.9697 0.9896 0.9734 0.9906
0,, P, 0.4834 0.4986 0.9753 0.9879 0.9797 0.9863
P;, P, 0.5682 0.5031 0.9213 0.9447 0.9241 0.9681
P;, P, 0.4698 0.5120 0.9199 0.9552 0.9289 0.9718
P,, P, 0.5932 0.5067 0.9130 0.9459 0.9446 0.9652
05, 0,,0, 0.4354 0.5217 0.9615 0.9961 0.9700 0.9970
03, 0,, P4 0.5910 0.5030 0.9460 0.9850 0.9396 0.9914
0;,0,, P, 0.5227 0.4904 0.9575 0.9876 0.9522 0.9917
0;,0,, P, 0.4210 0.5057 0.9576 0.9880 0.9496 0.9899
03,0, P, 0.5146 0.5163 0.9662 0.9928 0.9708 0.9960
05,0, P, 0.5963 0.5069 0.9792 0.9947 0.9775 0.9950
0,0, P, 0.5186 0.4918 0.9792 0.9944 0.9789 0.9949
05, P53, P, 0.3553 0.4967 0.9520 0.9716 0.9442 0.9794
0;, P3, P, 0.4176 0.4913 0.9557 0.9769 0.9509 0.9850
05, Py, P, 0.4371 0.4938 0.9533 0.9764 0.9461 0.9791
0,,0,, P3 0.5266 0.5074 0.9695 0.9939 0.9794 0.9956
0,0, P, 0.4362 0.4957 0.9758 0.9948 0.9799 0.9967
0,,0,, P, 0.3824 0.4979 0.9764 0.9952 0.9822 0.9959
0,, P;, P, 0.3595 0.4928 0.9568 0.9814 0.9557 0.9882
0,, P;, P, 0.6529 0.4952 0.9552 0.9821 0.9586 0.9896
0,, Py, P, 0.4524 0.5033 0.9460 0.9847 0.9658 0.9903
0., P3, P, 0.3867 0.4998 0.9754 0.9908 0.9791 0.9910
0,, P;, P, 0.4523 0.4929 0.9743 0.9898 0.9796 0.9913
0, P,, P, 0.5683 0.5040 0.9759 0.9904 0.9819 0.9939
P, Py, P, 0.3946 0.4955 0.9405 0.9614 0.9513 0.9774
05,0,,0,, Ps 0.5631 0.5162 0.9738 0.9958 0.9713 0.9977
05,0,,0,, P, 0.5282 0.5143 0.9816 0.9967 0.9797 0.9986
05,0,,0,, P, 0.3799 0.5021 0.9813 0.9958 0.9792 0.9978
05,05, P35, P, 0.5350 0.5018 0.9657 0.9899 0.9548 0.9939
05,05, P35, P, 0.5356 0.4960 0.9690 0.9890 0.9608 0.9921
05, 0,, P, P, 0.4546 0.4875 0.9680 0.9918 0.9785 0.9944
05,0, P, P, 0.5021 0.5019 0.9777 0.9941 0.9749 0.9947
05,0, P5, P, 0.4818 0.5072 0.9781 0.9939 0.9778 0.9956
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Table 27 (continued)

Input combination

Classification method

NB LR SVM RF MLP GB
05,0y, P,, P, 0.5104 0.4991 0.9813 0.9932 0.9785 0.9961
05, P53, Py, Py 0.3990 0.5029 0.9648 0.9777 0.9561 0.9856
05,0, P3, Py 0.4566 0.5014 0.9782 0.9942 0.9748 0.9964
05,0, P53, P, 0.4742 0.5041 0.9789 0.9938 0.9774 0.9958
05,0, Py, P, 0.4481 0.4979 0.9790 0.9955 0.9786 0.9970
Q,, P3, P,, P, 0.4987 0.5149 0.9615 0.9843 0.9677 0.9919
0, P, P, P, 0.5527 0.5064 0.9765 0.9924 0.9787 0.9933
05,0,,0,, P3, P, 0.4412 0.4995 0.9813 0.9965 0.9727 0.9981
05,0,,0,, P3, P, 0.5446 0.5006 0.9796 0.9967 0.9743 0.9978
05, 0,,0,, P,, P, 0.5016 0.4919 0.9823 0.9955 0.9808 0.9981
05, 0,, P53, Py, P, 0.4864 0.4858 0.9712 0.9910 0.9647 0.9952
05,0y, P3, Py, P, 0.5699 0.4922 0.9794 0.9944 0.9788 0.9951
05, 0,, P3, P,, P, 0.4066 0.5133 0.9792 0.9947 0.9806 0.9973
05,0,,0,, P, P,, P, 0.5370 0.4981 0.9839 0.9964 0.9792 0.9981

AAA-L combination search results

The F, scores, sensitivities, and specificities achieved for
AAA-L classification when employing the GB method are

shown in Table 28.
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Table 28 The F, scores, sensitivities and specificities achieved across Table 28 (continued)
the combination search by the GB method —

Input combination F, Sen. Spec.
Input combination F, Sen. Spec.

0;, Py, P, 0.9217 0.9163 0.9265
0; 0.8633 0.8561 0.8689  0,,0, P, 0.9770 0.9788 0.9753
0, 0.9010 0.9103 08934 0, 0,.P, 0.9715 0.9729 0.9702
0, 0.9528 0.9630 09436  0,,0, P, 0.9737 0.9762 0.9714
Py 0.8305 0.8383 08250 @, P, P, 0.9327 0.9434 0.9234
P, 0.8380 0.8529 08274 0, P, P, 0.9285 0.9299 0.9273
P, 0.8005 0.7700 08209  0,, P, P, 0.9345 0.9304 0.9381
050, 0.9387 0.9390 09385 0, P, P, 0.9606 0.9640 0.9575
0;, 0, 0.9683 0.9681 09685 g, P, P, 0.9637 0.9676 0.9601
0s, P; 0.9045 0.8968 09109 9, P, P, 0.9607 0.9625 0.9592
0;. P, 09151 0.9127 09172 p, P, P, 0.8996 0.9038 0.8963
0;. P 0.8989 0.8942 09028  0,,0,,0, P, 0.9767 0.9781 0.9755
05,0, 0.9711 0.9741 09683  0..0,,0, P, 0.9788 0.9786 0.9791
Q). P; 0.9176 0.9256 09109  0.,0,,0,, P, 0.9759 0.9791 0.9729
0, P, 0.9229 0.9328 09145 0.,0,,P;, P, 0.9484 0.9510 0.9462
0, P, 0.9234 0.9258 09215 Q,,0,, P, P, 0.9487 0.9525 0.9453
0, Py 0.9569 0.9558 09580 0,0, P,, P, 0.9472 0.9529 0.9421
Q. Py 0.9606 0.9645 09570 0., 0,, P, P, 0.9670 0.9654 0.9685
Q. P 0.9618 0.9609 09628 0.0, P;, P, 0.9673 0.9678 0.9669
Py, Py 0.8852 0.8889 08824 .. 0,P, P 0.9704 0.9683 0.9724
P, Py 0.8877 0.8889 0.8869 0., P, P, P, 0.9217 0.9227 0.9210
Py, P, 0.884 0.8858 0.8838  0,,0,, P, P, 0.9754 0.9781 0.9729
03, 05, 0 0.9777 0.9788 09767  0,,0Q,, P;, P, 0.9774 0.9784 0.9765
03,0y, P3 0.9454 0.9513 09402 0,,0,, P,, P, 0.9772 0.9776 0.9770
03, 05, Py 0.9455 0.9498 09417 @,, P, P,, P, 0.9352 0.9436 0.9280
03, 0. Py 0.9481 0.9537 09431 9, P, P, P, 0.9587 0.9659 0.9522
03,0, P; 0.9693 0.9743 09647  0.,0,.0, P;, P, 0.9744 0.9731 0.9758
03,0, P, 0.9695 0.9748 09647 0..0,.0,, P, P, 0.9820 0.9834 0.9808
0;5, 01, P 0.9668 0.9642 09693 0. 0,,0,, P,, P, 0.9802 0.9796 0.9808
03, P3, Py 09148 0.9105 09186 0., 0,,P;, P,, P, 0.9513 0.9541 0.9489
0s, Py, P 09178 0.9232 09133 .. 0,, P;, P, P, 0.9725 0.9712 0.9738

0,,0,, P, P,, P, 0.9757 0.9815 0.9702

03,0,.0,, P3, Py, P, 0.9809 0.9808 0.9810
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GB results for all disease forms

The F, scores achieved for all forms of disease classification
(including AAA-L) when providing each combination of input
measurements are shown when employing the GB method in
Fig. 21.

107 5 X XXxxXXxXxXXxXXXXXXXxXXxxxxxxxxxxxxXXXXxxxxxxxxxxxxxxxxxxx
X X X Xxxx wxxxxx
0.9 + X x x L% Xxx XxXX X ¥xxX X X
X X g xX X ExX X xXxx KRR XXXX X
X X
0.8 -
X XXX X Xx
X X X X XX¥yx™ X XXX seX x X Xx
o XX X X XXX X XX
8 X X
2 074 Xx o XX % X
< X
0.6 - » % X X % X AAA
Xy XX %y X X AAA-L
§* XX X CAS
0.5 X X SAC
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Fig.21 The F, scores achieved for all disease forms when employing the GB method. Measurements included within each combination are

highlighted with a black square
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