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Abstract
This study presents an application of machine learning (ML) methods for detecting the presence of stenoses and aneurysms 
in the human arterial system. Four major forms of arterial disease—carotid artery stenosis (CAS), subclavian artery stenosis 
(SAS), peripheral arterial disease (PAD), and abdominal aortic aneurysms (AAA)—are considered. The ML methods are 
trained and tested on a physiologically realistic virtual patient database (VPD) containing 28,868 healthy subjects, adapted 
from the authors previous work and augmented to include disease. It is found that the tree-based methods of Random Forest 
and Gradient Boosting outperform other approaches. The performance of ML methods is quantified through the F

1
 score 

and computation of sensitivities and specificities. When using six haemodynamic measurements (pressure in the common 
carotid, brachial, and radial arteries; and flow-rate in the common carotid, brachial, and femoral arteries), it is found that 
maximum F

1
 scores larger than 0.9 are achieved for CAS and PAD, larger than 0.85 for SAS, and larger than 0.98 for both 

low- and high-severity AAAs. Corresponding sensitivities and specificities are larger than 90% for CAS and PAD, larger 
than 85% for SAS, and larger than 98% for both low- and high-severity AAAs. When reducing the number of measurements, 
performance is degraded by less than 5% when three measurements are used, and less than 10% when only two measure-
ments are used for classification. For AAA, it is shown that F

1
 scores larger than 0.85 and corresponding sensitivities and 

specificities larger than 85% are achievable when using only a single measurement. The results are encouraging to pursue 
AAA monitoring and screening through wearable devices which can reliably measure pressure or flow-rates.
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1  Introduction

Two of the most common forms of arterial disease are ste-
nosis, narrowing of an arterial vessel, and aneurysm, an 
increase in the area of a vessel. They are estimated to affect 
between 1 and 20% of the population (Fowkes et al. 2013; 
Shadman et al. 2004; Mathiesen et al. 2001; Li et al. 2013), 
and ruptured abdominal aortic aneurysms alone are esti-
mated to cause 6000–8000 deaths per year in the United 
Kingdom (Darwood et al. 2012). Current methods for the 
detection of arterial disease are primarily based on direct 
imaging of the vessels, which can be expensive and hence 

prohibitive for large-scale screening. If arterial disease can 
be detected by easily acquirable pressure and flow-rate meas-
urements at select locations within the arterial network, then 
large-scale screening may be facilitated.

It is likely that the indicative biomarkers of arterial dis-
ease in the pressure and flow-rate profiles consist of micro 
inter- and intra-measurement details. In the past, detection 
of arterial disease has been proposed through the analysis 
of waveforms in combination with mathematical models 
of pulse wave propagation, see for example Sazonov et al. 
(2017), Stergiopulos et al. (1992). This, however, requires 
specification or identification of patient-specific network 
parameters, which is not easy to perform, especially at large 
scales.

This study explores the use of machine learning (ML) 
methods for the detection of stenoses and aneurysms in 
order to facilitate large scale low-cost screening/diagnosis. A 
data-driven ML approach is adopted, which does not require 
specification of patient-specific parameters. Instead, such 
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algorithms learn patterns and biomarkers from a labelled 
data set. ML has a history of being used for medical appli-
cations (Kononenko 2001). Classification algorithms have 
been shown to be able to predict the presence of irregulari-
ties in heart valves (Çomak et al. 2007), arrhythmia (Song 
et al. 2005), and sleep apnea (Khandoker et al. 2009) from 
recorded time domain data. Recently, a study reported 
the successful use of ML methods to estimate pulse wave 
velocity from radial pressure wave measurements (Jin et al. 
2020). Automatic detection, segmentation, and classification 
of AAAs in CT images are presented in Hong and Sheikh 
(2016), while severity growth of AAAs is predicted from 
CT images in Jiang et al. (2020). A previous study (Chak-
shu et al. 2020) has applied deep-learning methods to AAA 
classification, using a synthetic data set created by varying 
seven parameters. In this study, accuracies of ≈ 99.9% are 
reported for binary classification of AAA based on three 
pressure measurements. Furthermore, Wang et al. (2021) 
achieved a sensitivity of 86.8% and a specificity of 86.3% for 
early detection of AAA from the photoplethysmogram pulse 
waves—using a synthetic data set created by finding the 
mean and standard deviation of six cardiovascular properties 
for subjects of each age decade from 55 to 75 years, and then 
varying each property in combination with each other by ± 
1 standard deviation from their age-specific mean values. 
These studies motivate the application of ML to detect arte-
rial disease—both stenosis and aneurysms—using only pres-
sure and flow-rate measurements at select locations in the 
arterial network. A previous proof-of-concept study (Jones 
et al. 2021c) showed promising results that ML classifiers 
can detect stenosis in a simple three vessel arterial network 
using only measurements of pressures and flow-rates. Here, 
these ideas are extended to a significantly larger, physiologi-
cally realistic, network of the human arterial system. All the 
ML methods are trained and tested on the virtual healthy 
subject database proposed in Jones et al. (2021a), which is 
augmented to introduce disease into the virtual subjects.

This study is organised as follows. It begins by briefly 
explaining the healthy VPD proposed in Jones et al. (2021a). 
Modifications to this database to create four different forms 
of arterial disease are presented next, along with the param-
eterisation of disease forms. This is followed by presentation 
of the ML methodology and metrics used for quantification 
of classification accuracies. Finally, these accuracies are 
assessed when using different combinations of pressure and 
flow-rate measurements, along with the analysis of patterns 
and behaviours observed in the ML classifiers.

2 � Methodology

The ML algorithms are trained and tested on a data set con-
taining both healthy subjects and diseased patients.

2.1 � Healthy subjects

A physiologically realistic VPD containing healthy sub-
jects is created in Jones et al. (2021a) and forms the start-
ing point of this study. This database is available in Jones 
et al. (2021b). The arterial network contains 71 vessel 
segments and is shown in Fig. 1, along with the loca-
tions where disease occurs in high prevalence, and where 
measurements of pressure and flow-rate can potentially be 
acquired (Jones et al. 2021a). The healthy patient database 
of Jones et al. (2021a) contains 28,868 VPs and is referred 

Fig. 1   The connectivity of the arterial network, taken from Jones 
et  al. (2021a). The location of the four forms of disease (see 
Sect.  2.2.1); and six pressure and flow-rate measurements (see 
Sect. 2.3) are highlighted
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as VPDH . Disease is introduced into these healthy arterial 
networks as described next.

2.2 � Creation of unhealthy VPDs

2.2.1 � Disease forms

The four most common forms of arterial disease are 
carotid artery stenosis (CAS), subclavian artery stenosis 
(SAS), peripheral arterial disease (PAD, a form of steno-
sis), and abdominal aortic aneurysm (AAA) (Jones et al. 
2021a; Dyken et al. 1974; Kullo and Rooke 2016; Aboyans 
et al. 2010; Chen et al. 2013; Li et al. 2013). Their preva-
lence is restricted to the following vessels and shown in 
Fig. 1:

–	 CAS is assumed to only affect the common carotid arter-
ies. For simplification and consistency of notation, these 
vessels are referred to as the carotid artery chains ( CA

�

).
–	 SAS is assumed to affect the first and second subclavian 

segments. These two chains of vessels (one on the right 
and left side) are referred to as the subclavian artery 
chains ( SA

�
).

–	 PAD is assumed to affect the common iliacs; external 
iliacs; first and second femoral segments; and the first 
popliteal segments. These chains are referred to as the 
peripheral artery chains ( PA

�
).

–	 AAA​ is assumed to affect the first to forth abdominal 
aorta segment. This chain of vessels is referred to as the 
abdominal aortic chain ( AA

�
).

It is assumed that each diseased VP has only one of the four 
forms of arterial disease. Four complementary databases 
corresponding to VPDH are constructed, each pertaining to 
one form of arterial disease. To create the diseased VPD 
corresponding to CAS, referred to as VPDCAS , for every sub-
ject in VPDH , disease is introduced in CAx (i.e. the left or 
right carotid artery). This is achieved by taking the arterial 
network of a subject from VPDH , artificially introducing a 
stenosis in CAx , and then using a one-dimensional pulse-
wave propagation model—which has previously been widely 
employed, tested, and validated (Boileau et al. 2015; Forma-
ggia et al. 2003; Alastruey et al. 2012; Olufsen et al. 2000; 
Reymond et al. 2009; Matthys et al. 2007)—to compute the 
pressure and flow-rate waveforms. Note that this model has 
also been used to study haemodynamics in both stenosis 
(Boileau et al. 2018; Carson et al. 2019; Jin and Alastruey 
2021) and aneurysms (Sazonov et al. 2017; Chakshu et al. 
2020; Jin and Alastruey 2021). The numerical implementa-
tion of the pulse-wave propagation model employed here is 
outlined in Jones et al. (2021a) and validated against a dis-
continuous Galerkin (DCG) scheme (Alastruey et al. 2012), 

which in turn has been successfully validated against a 3D 
model of blood-flow through stenosed arterial vessels (Boi-
leau et al. 2018).

Thus, VPDCAS contains 28,868 VPs with CAS. Similarly, 
the databases corresponding to SAS, PAD, and AAA are 
created, and referred to as VPDSAS , VPDPAD , and VPDAAA , 
respectively. The disease severities, locations, and shapes are 
varied randomly across these databases as described next.

2.2.2 � Parameterisation of diseased vessels

The severity of stenoses (percentage reduction in area) is 
varied between 50 and 95%. The lower 50% limit is set for 
the stenoses to be haemodynamically significant (Aboy-
ans et al. 2010; Subramanian et al. 2005) and the upper 
limit of 95% reflects near total occlusion. For aneurysms, 
based on (Ernst 1993) and (Davis et al. 2013), an allowa-
ble range of AAA severities of 4cm–6cm diameters is cho-
sen. This corresponds to a cross-sectional area variation 
of 12.56 cm2–28.27 cm2 . With the abdominal aortic area in 
the reference network (Jones et al. 2021a) between 1.76 
and 1.09 cm2 , the corresponding AAA severities are set to 
vary between 713% (12.56/1.76) and 2,593% (28.27/1.09). 
With the above ranges, parameterisation of area increase/
reduction proposed in Jones et al. (2021c) is adopted, see 
Fig. 2. For a chain of diseased vessels ( CAx , SAx , PAx , or 
AAx ), the normalised area An as a function of the normal-
ised x-coordinate, xn , is represented as:

where S represents the severity, b represents the normalised 
starting location of the disease in the vessel chain, e repre-
sents the normalised end location, An is normalised with 
respect to the healthy version of the vessel in VPDH , and ± 

(1)An=

⎧
⎪⎨⎪⎩

�
1∓

S

2

�
±

S

2
cos

�
2(xn − b)�

e − b

�
for b ≤ xn ≤ e

1 otherwise

Fig. 2   An example of a stenosis of severity 0.6 and aneurysm of 
severity 8.0 is shown. These disease profiles are created with a start 
location of 0.2 and an end location of 0.8
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creates an aneurysm or stenosis, respectively. In CAx , SAx , 
and PAx , the left and right side vessels are chosen with equal 
probability.

The disease severity S , start location b, and end location 
e are assigned uniform distributions based on physical con-
siderations. To sample values for these parameters, a fourth 
parameter, the reference location of the disease (represented 
by r) is introduced. This is included to impose a minimum 
length of 10% of the chain length on the disease profiles. 
Thus, the parameters for disease are sampled sequentially 
from uniform distributions within the following bounds:

Based on the above parameterisation, examples of healthy 
and diseased SAx , PAx , and AAx area profiles are shown in 
the left and right columns of Fig. 3, respectively.

(2)Bounds:

⎧
⎪⎪⎨⎪⎪⎩

0.2 ≤ r ≤ 0.8,

0.1 ≤ b ≤ r − 0.05,

r + 0.05 ≤ e ≤ 0.9,�
0.5 ≤ S ≤ 0.95 for stenoses,

7.13 ≤ S ≤ 25.93 for aneurysms.

2.3 � Measurements

A review of potential measurements that can be acquired in the 
network is presented in Jones et al. (2021a). Based on this, the 
locations at which time-varying pressure and flow-rate meas-
urements can be acquired are shown in Fig. 1 and described 
below.

–	 Pressure in the carotid and radial arteries measured using 
applanation tonometry (Adji et al. 2006; O’rourke 2015). 
To simplify annotation and description, the right and left 
carotid artery pressures are referred as P(R)

1
 and P(L)

1
 , respec-

tively. Similarly, the radial artery pressures are referred to 
P
(R)

3
 and P(L)

3
 , respectively.

–	 Pressure in the brachial arteries estimated through recon-
struction of finger arterial pressure (Guelen et al. 2008). 
The right and left brachial artery pressures are referred to 
as P(R)

2
 and P(L)

2
 , respectively.

–	 Flow-rate in the carotid, brachial, and femoral arteries 
measured using Doppler ultrasound (Byström et al. 1998; 
Oglat et al. 2018; Radegran 1997). The right and left 
carotid artery, brachial, and femoral flow-rates are referred 
to as Q(R)

1
 , Q(L)

1
 ; Q(R)

2
 , Q(L)

2
 ; and Q(R)

3
 , Q(L)

3
 , respectively.

2.3.1 � Provision of measurements to ML classifiers

Unless specified otherwise, the measurements to ML classi-
fiers are bilateral, i.e. when Q1 is specified it is implied that 
both right and left carotid flow-rates are used:

There are, therefore, a total of by six bilateral measurements 
available: three pressure and three flow-rates. To reduce 
the dimensionality required to describe each pressure or 
flow-rate measurement, the periodic profiles are described 
through a Fourier series (FS) representation:

where u represents any pressure or flow-rate profile; an and 
bn represent the nth sine and cosine FS coefficients, respec-
tively; N represents the truncation order; and � = 2�∕T  , 
with T as the time period of the cardiac cycle. It is found 
in Jones et al. (2021c) that haemodynamic profiles can be 
described by a FS truncated at N = 5 . Thus, each individual 
measurement is described by 11 FS coefficients, and each 
bilateral measurement by 22 FS coefficients.

(3)Q1 = {Q
(R)

1
,Q

(L)

1
}.

(4)u(t) =

N∑
n=0

an sin(n�t) + bn cos(n�t),

Fig. 3   Examples of healthy and diseased SA
x
 , PA

x
 , and AA

x
 area pro-

files. The geometrical boundaries between vessel segments that form 
the chains are indicated by red dashed lines
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2.4 � Machine learning classifiers

A model mapping a vector of input measurements, x , to a 
discrete output classification, y, can be described as:

where C(j) represents the jth possible classification. In the 
context of this study, the measured inputs, x , represent 
the FS coefficients of a user defined combination of the 
haemodynamic measurements {Q1 , Q2 , Q3 , P1 , P2 , P3} (see 
Sect. 2.3.1) taken from VPs, and the output classification 
represents the corresponding health of those VPs : C(1) = 
‘healthy’ and C(2) = ‘diseased’. To account for large dif-
ferences in magnitudes of the components of x , they are 
individually transformed with the Z-score standardisation 
method (Mohamad and Usman 2013) to have zero-mean and 
unit variance.

As previously stated, it assumed that in a patient disease 
is limited to only one of the four forms. As a first exploratory 
study, the ML classifiers are created for each form indepen-
dently. All classifiers are therefore binary (see Jones et al. 
2021c), i.e. four independent classifiers are trained to predict 
the following questions independently: “Does a VP belong 
to VPDH  or  VPDx ”, where x can be either CAS, SAS, PAD, 
or AAA.

2.4.1 � Training and test sets

Each VP in VPDCAS , VPDSAS , VPDPAD , and VPDAAA shares 
an identical underlying arterial network, apart from the 
diseased chain, with the corresponding healthy subject in 
VPDH . It is, therefore, important to ensure that the same 
subset of VPs is not included in the both healthy and dis-
eased data sets used for ML classifiers. As each form of 
disease is mutually exclusive, four independent training and 
test sets, each corresponding to one form of the disease, are 
constructed in the following three stages:

–	 Step 1: Half of the available VPs are randomly selected 
from VPDH for inclusion within the ML data set; this 
is referred to as VPDH-ML . The unhealthy VPs corre-
sponding to the remaining unused half are taken from 
the appropriate unhealthy VPD ( VPDCAS , VPDSAS , 
VPDPAD , or VPDAAA ) and incorporated into the ML 
data set. These data sets are referred to as VPDCAS-ML , 
VPDSAS-ML , VPDPAD-ML , or VPDAAA-ML.

–	 Step 2: The data sets of Step 1 are combined to create 
four complete data sets each containing 50% healthy and 
50%, unhealthy VPs: 

1.	 VPDH-ML ∪ VPDCAS-ML

(5)y = m(x) y ∈ {C(1), C(2)},

2.	 VPDH-ML ∪ VPDSAS-ML

3.	 VPDH-ML ∪ VPDPAD-ML

4.	 VPDH-ML ∪ VPDAAA-ML

–	 Step 3: The four data sets of Step 2 are randomly split 
into a training set containing 2/3 of all the VPs in the data 
set, and a test set containing 1/3 of all the VPs.

The performance of all ML classifiers is evaluated using a 
fivefold validation. For each fold, the same data set from 
Step 2 is used, but different subsets are sampled in Step 3 
for training and testing.

2.4.2 � ML methods

The purpose of this study is to perform an initial exploratory 
investigation into the possibility of using ML classifiers to 
detect different forms of arterial disease. Focus is, there-
fore, on uncovering patterns and behaviours—such as which 
haemodynamic measurements are particularly informa-
tive—rather than optimisation to achieve increasingly higher 
accuracies. With consideration for this objective, it is not 
feasible to perform extensive optimisation and analysis on 
every single ML classifier trained and tested. Thus, the ML 
methods used are chosen based on their “robustness”—i.e. 
minimal sensitivity to the hyper-parameters and minimal 
susceptibility to problems such as overfitting—relative to 
more complex deep learning methods. Five different ML 
methods are employed. These five methods are random for-
est, gradient boosting, naive Bayes’, support vector machine, 
and logistic regression. These methods encompass a range 
of probabilistic and non-probabilistic applications of dif-
ferent modelling approaches, see Table 1, while fulfilling 
the aforementioned characteristics. Along with these five 
ML methods, one deep learning method is also employed 
for comparison. This method is multi-layer perceptron. It 
is a priori expected that multi-layer perceptron classifiers 
will not perform to their full potential in this study, as they 
are more reliant on complex hyper-parameter optimisation 
and monitoring for overfitting than the five ML methods. 
The use of multi-layer perceptrons will, however, provide 
some, albeit limited, comparison of ML and deep learning 
methods. Since standard versions and implementations of 

Table 1   The four different modelling approaches and how each clas-
sification method aligns with these approaches

Modelling approach Non-probabilistic Probabilistic

Tree-based RF GB
Kernel-based SVM
Bayesian NB
Neuron-based LR, MLP
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these methods are employed without any modifications, 
methodological details of these methods are not presented 
in this study. Instead, the reader is referred to the following 
references for methodological details: 

1.	 Random Forest (RF) (Liaw and Wiener 2002; Breiman 
2001)

2.	 Gradient Boosting (GB) (Friedman 2001; Elith et al. 
2008)

3.	 Naive Bayes’ (NB) (Rish et al. 2001b, a)
4.	 Support Vector Machine (SVM) (Kecman 2005)
5.	 Logistic Regression (LR) (Sperandei 2014; Hilbe 2009; 

Jones et al. 2021c)
6.	 Multi-layer Perceptron (MLP) (Murtagh 1991)

All implementations of the above algorithms in the Python 
package Scikit-learn (Pedregosa et al. 2011) are used. 
Some of these methods require optimisation of the hyper-
parameters. This is described after presenting performance 
quantification metrics in the next section.

2.4.3 � Quantification of results

Classifier performance is assessed by two metrics: sen-
sitivity and specificity in combination; and the F1 score. 
Figure 4 shows the definition of sensitivity, specificity, and 
F1 score, along with the related concepts of precision and 
recall commonly used in the assessment of classifiers. It 

is desirable to have both sensitivities and specificities to 
be high. Similarly, a higher F1 score is desirable. Since the 
F1 score is a single scalar metric that balances both preci-
sion and recall, it is a good metric to compare classifiers 
when tuning the hyper-parameters of ML algorithms. For 
a discussion on these metrics and their relevance, please 
refer to Jones et al. (2021c).

2.5 � Hyper‑parameter optimisation

The architecture of LR, NB, and SVM classifiers can all be 
considered to be problem independent. While these three 
algorithms are able to undergo varying levels of problem 
specific optimisation, the underlying structure of the classi-
fier usually does not change. The architectures of RF, MLP, 
and GB classifiers, however, are dependent on the specific 
problem. The architecture choices for the classifiers and 
associated hyper-parameter optimisation are described next. 
For all six methods, all hyper-parameters that are neither 
optimised nor specified in the text are set to their default 
values within Scikit-learn (Pedregosa et al. 2011).

2.5.1 � LR, SVM, and NB

For LR, the ‘LIBLINEAR’ solver offered by the Scikit-learn 
(Pedregosa et al. 2011) package is chosen. In the case of 
SVM, a kernel is typically chosen to map the input meas-
urements to a higher order feature space (Jakkula 2006). All 
SVM classifiers use a radial basis function kernel (Scholkopf 
et al. 1997), with the Scikit-learn hyper-parameter ‘gamma’ 
set to ‘scale’. In the case of NB, the distribution of input 
measurements across the data set is chosen to be normal 
(Murphy et al. 2006).

2.5.2 � Random Forest

In the case of RF, the number of trees in the ensemble and 
the maximum depth of each tree is optimised. Other hyper-
parameters that can be tuned include the minimum number 
of data points allowed in a leaf node, and the maximum 
number of different features considered for splitting each 
node. However, the effect of these is not investigated here. 
To optimise the two hyper-parameters, a grid search is car-
ried out. A grid is constructed by discretising the possible 
number of trees within the ensemble between 10 and 400 at 
intervals of 10, and the possible depth of each tree between 
20 and 200 at intervals of 10. RF classifiers are trained for 
every combination with all six pressure and flow-rate meas-
urements (see Sect. 2.3.1) across all the four forms of arte-
rial disease. The hyper-parameters describing the architec-
ture that produces the highest F1 score are found for each 
form of disease, and this combination of hyper-parameters 
is then chosen for all subsequent classifiers. The optimal 

Fig. 4   The relationship between sensitivity, specificity, recall, and 
precision. TP: True Positive, representing VPs belonging to a clas-
sification correctly identified; FN: False Negative, representing VPs 
belonging to a classification incorrectly identified: FP: False Positive, 
representing VPs not belonging to a classification incorrectly iden-
tified; and TN: True Negative, representing VPs not belonging to a 
classification correctly identified
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hyper-parameters for each of the four forms of disease are 
shown in Table 2, along with the F1 score achieved by each.

It is unlikely that a single architecture will consistently 
produce the best results when varying the combination of 
input measurements. In this study, re-optimisation of the 
hyper-parameters when varying the input measurement com-
bination is not performed, to minimise computational cost. It 
is found that when using all six pressure and flow-rate meas-
urements, the F1 score produced is relatively insensitive to 
the hyper-parameters used. Thus, it is likely that a reasonable 
representation of the maximum achievable accuracy can be 
obtained for various input measurement combinations by a 
single architecture. It should be noted, however, that further 
improvements in classification accuracy may be possible 
with such re-optimisation.

2.5.3 � Gradient Boosting

Similar to the RF architecture, the GB architecture is opti-
mised by varying the number of trees within the ensemble 
and the maximum depth of each tree. Other hyper-parame-
ters which may be varied, however, are not considered here, 
are the minimum number of data points allowed in a leaf 
node, the maximum number of different features considered 
for splitting each node, and the impact of each tree on the 
final outcome (i.e. the learning rate). A grid search is carried 
out to find the combination producing the highest F1 score 
when using all the six input measurements. It is common for 
GB classifiers to use weaker, shallower decision trees (rela-
tive to RF classifiers) to deliberately create high bias and low 
variance (Hastie et al. 2009). The possible depth of each tree 
is, therefore, discretised between 2 and 20 at intervals of 1. 
As a high number of trees is not required to compensate for 
over fitting, contrary to the RF method, the possible number 
of trees within the ensemble is discretised between 10 and 
100 at intervals of 10. The optimal hyper-parameters for 
each of the four forms of disease are shown in Table 3.

2.5.4 � Multi‑layer perceptron

As is common with deep learning methods, relative to ML 
methods, there are significantly more hyper-parameters 
which can be optimised for the MLP classifiers relative to 
Gradient Boosting or Random Forest. Examples of hyper-
parameters that significantly affect the performance of an 
MLP classifier include batch-size, learning rate, activation 
functions, drop-out, and individual units per hidden layers. 
With consideration for the exploratory stance of this study, 
it is chosen to only optimise the number of neurons within 
each hidden layer and the number of hidden layers. For sim-
plification, it is assumed that all the hidden layers contain an 
identical number of neurons. A logistic activation function is 
used for all the hidden layers. It is likely that this simplistic 
hyper-parameter optimisation will limit the accuracy of clas-
sification achieved by MLP classifiers.

Similar to the RF and GB methodology, the hyper-param-
eters that produce the highest F1 score are found through 
a grid search. The number of neurons within each layer is 
discretised between 10 and 200 at intervals of 10, and the 
number of hidden layers is discretised between 1 and 6 at 
intervals of 1. The optimal hyper-parameters found for each 
of the four forms of disease are shown in Table 4. It shows 
that relative to RF and GB, there is less consistency in the 
maximum F1 scores achieved by MLP—it classifies AAA 
and CAS to high levels of accuracies, but performs relatively 
poorly for SAS and PAD.

2.6 � Input measurement combination search

There are 63 possible combinations of input measurements 
that can be provided to a ML classifier from the six bilateral 
pressure and flow-rate measurements (see Sect. 2.3.1). A 
combination search is performed for each of the four forms 
of disease. For every combination of input measurements, 
all the six ML classification methods are trained, and then 
subsequently tested to quantify their performance. The aver-
age F1 score, sensitivity, and specificity for each case across 
five folds are recorded. Combinations of interest are then 
further analysed.

Table 2   The hyper-parameters 
describing the architecture of 
the RF classifiers that produce 
the highest F

1
 scores, when 

using all six pressure and flow-
rate measurements

Disease Trees Depth F
1

CAS 100 80 0.8878
SAS 150 80 0.8292
PAD 100 100 0.8935
AAA​ 100 50 0.9912

Table 3   The hyper-parameters 
describing the architecture of 
the GB classifiers that produce 
the highest F

1
 scores, when 

using all six pressure and flow-
rate measurements

Disease Trees Depth F
1

CAS 100 6 0.9343
SAS 100 7 0.8574
PAD 100 10 0.9187
AAA​ 80 7 0.9970

Table 4   The hyper-parameters describing the architecture of the MLP 
classifiers that produce the highest F

1
 scores, when using all six pres-

sure and flow-rate measurements

Disease Neurons Depth F
1

CAS 60 4 0.7785
SAS 190 2 0.6040
PAD 120 2 0.6681
AAA​ 30 2 0.9785
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2.7 � Overfitting and early stopping criterion

To assess any overfitting by the ML and deep-learning 
methods, the log loss costs across the training and test 
sets are recorded at each sequential iteration of the train-
ing process (up to the 200th iteration). At a low number 
of training iterations, both the training and test costs 
are expected to be high as the classifiers can neither fit 
the training data nor generalise to the test data. As the 
training process progresses, the training and test costs 
are both expected to decay before converging to stable 
values in the absence of overfitting. However, in the 
case of overfitting, while the training costs continue to 
decrease, after a minima in the test costs, overfitting 
results in successively increasing test costs. In such 
cases, an early stopping criterion (Prechelt 1998; Yao 
et al. 2007) is adopted to avoid overfitting. A third par-
tition to the available data (the validation set) is intro-
duced. The combined healthy and unhealthy data sets 
described in Sect. 2.4.1 are split so that the training set 
contains 50%, the validation set 25%, and the test set 
25% of the available data. Classifiers are trained on the 
training set; however, stopping criterion is based on the 
log loss cost in the validation set. At each sequential 
iteration in the training process, the average log loss 

cost is computed across the validation set. If more than 
75 iterations have been performed, and the improvement 
in the log loss cost across the validation set between 
two consecutive iterations is less than 1 × 10−3 , training 
is stopped. The final classifier accuracy is assessed on 
the test set.

3 � Results and discussion

The full tables of results achieved for CAS, SAS, PAD, and 
AAA classification are shown in Appendices A, B, C and D, 
respectively. The  score achieved by each ML method and 
combination of input measurements are visually shown for 
CAS, SAS, PAD, and AAA classification in Figs. 5, 6, 7, 
and 8, respectively. They show that for all forms of arte-
rial disease, NB and LR classifiers consistently produce low 
accuracy. It has previously been shown in the PoC (Jones 
et al. 2021c) that the partition between the pressure and 
flow-rate profiles taken from healthy and stenosed patients is 
likely to be nonlinear. The fact that LR consistently produces 
low accuracy results supports this finding, as LR is the only 
linear classification method used. The finding that NB clas-
sifiers produce low accuracy classification is also consistent 
with the results of the PoC (Jones et al. 2021c), which found 

Fig. 5   The F
1
 scores achieved for CAS using each combination of bilateral input measurements are shown. Measurements included within each 

combination are highlighted with a black square
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that the NB method is poorly suited to the problem of distin-
guishing between haemodynamic profiles. On the contrary, 
across all the four forms of disease, the tree-based methods 
(RF and GB) consistently produce high accuracy results. 
This finding is in contradiction to the finding in the PoC 
(Jones et al. 2021c) and is likely due to the inadequate archi-
tecture optimisation or because of the unsuitability of RF 
on a smaller network used in the PoC (Jones et al. 2021c). 
The fact that both RF and GB classifiers are producing high 
accuracy classification in this study suggests that not only 
are tree-based methods well suited to distinguishing between 
haemodynamic profiles, but also emphasises the importance 
of adequate architecture optimisation.

There is less consistency in the results achieved by 
SVM and MLP classifiers when detecting different forms 
of disease. SVM classifiers produce accuracies comparable 
with RF and GB classifiers in the case of AAA detection; 
however, low accuracy results for the three other forms of 
disease. MLP classifiers produce accuracies comparable 
with RF and GB classifiers in the case of CAS and AAA 
detection; however, relatively low accuracy results for SS 
and PAD classification. Overall, it is found that tree-based 
methods of RF and GB perform best, with GB performance 
slightly superior to that of RF. It is important to remember, 
however, that the results presented here do not necessarily 

capture the full potential of each method, and instead only 
reflect the accuracies achieved within the limitations of the 
simplistic hyper-parameter optimisation—a consideration 
particularly important for MLP.

3.1 � Measurement combinations

To investigate the importance of both the number of input 
measurements provided to the ML algorithms and the spe-
cific combination of measurements, the average F1 scores 
achieved by all classifiers when providing only one, two, 
three, four, five, or six input measurements are found. In 
each case, the specific combinations that achieve the maxi-
mum and minimum F1 scores are also recorded. These 
results for different forms of disease are presented next.

3.1.1 � CAS classification

The average, maximum and minimum F1 score achieved 
when providing different number of input measurements 
for CAS classification are shown in Fig. 9.

It shows that NB and LR classifiers consistently pro-
duce an F1 score of approximately 0.5, which is comparable 
to naive classification, i.e. randomly assigning the health 
of VPs with an equal probability to each outcome. SVM 

Fig. 6   The F
1
 scores achieved for SAS using each combination of bilateral input measurements are shown. Measurements included within each 

combination are highlighted with a black square
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performs slightly better with F1 scores averaging 0.5 – 0.6. 
The other three classification methods (RF, MLP, and GB) 
perform significantly better with F1 scores generally aver-
aging between 0.7 and 0.95 and showing a clear increase 
in the average F1 score as the number of input measure-
ments increases. While the average and minimum F1 score 
achieved by RF and GB classifiers continuously increases, 
the maximum F1 score achieved can be seen to quickly 
reach a plateau (at one input measurement for RF and three 
input measurements for GB). For a fixed number of meas-
urements, the wide range of F1 scores in Fig. 9 across all 
classifiers suggests that specific combinations of measure-
ments may be more important than others for optimal clas-
sification. To explore this further, the combinations of input 
measurements that produce the highest F1 scores and the 
corresponding accuracies when employing the RF and GB 
methods are shown in Table 5. Two observations are made 
from this table. First that for a fixed number of measure-
ments, the best combinations are not identical for the two 
methods. For example, when two measurements are used the 
best combination for RF is ( Q2 , Q1 ), while the best combina-
tion for GB is ( P2 , P1 ). This suggests that the best combina-
tion of measurements is likely dependent on the particular 
ML method chosen. Second, some patterns stand out with 
respect to which measurements may be more informative 

than others. For example, across Table 5, Q1 appears in 11 
out of 12 combinations, and P1 appears in 8 out of 12 com-
binations. This suggests that Q1 is most informative about 
identifying the presence of CAS followed by P1 . Physiologi-
cally, this is not surprising as Q1 and P1 are flow-rates and 
pressures in the carotid arteries and the disease under con-
sideration is carotid artery stenosis. It is encouraging that 
the ML methods are indeed placing more importance to the 
relevant physiological measurements. In fact, it is remark-
able that RF and GB both achieve F1 scores above 0.85 and 
sensitivities and specificities larger than 85% with only one 
measurement. Also notable is that these accuracies can be 
taken to beyond 93% (see GB row for 3 measurements in 
Table 5) when adding 2 more measurements as long as the 
additional two measurements are carefully chosen.

An interesting pattern to note is that while the average and 
minimum F1 score achieved by MLP classifiers continuously 
increases in Fig. 9, the maximum F1 score decreases beyond 
three input measurements. The maximum F1 scores achieved 
by MLP classifiers, and the corresponding sensitivities and 
specificities, when using three to six input measurements are 
shown in Table 6. It shows that the decrease in F1 scores is 
also accompanied by an associated decrease in both the sen-
sitivities and specificities, as opposed to the balance between 
them (increase in sensitivity and decrease in specificity and 

Fig. 7   The F
1
 scores achieved for PAD using each combination of bilateral input measurements are shown. Measurements included within each 

combination are highlighted with a black square
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vice versa). This behaviour is unusual as intuitively more 
input measurements should generally provide more informa-
tion. This finding may suggest that MLP classifiers are able 
to extract maximum information from the haemodynamic 
profiles when using as little as three input measurements, 
and may be susceptible to over fitting when using more than 
three measurements, thereby leading to less generalisation 
capabilities and consequently decreased accuracies.

To investigate any overfitting, the log loss costs for the 
training and test sets during the training process are shown 
in Fig. 10 for the best measurement combinations identi-
fied by the MLP, GB, and RF method classifiers (Tables  5 
and 6). It shows that the RF and GB methods show no signs 
of overfitting. However, for the MLP, while the three-meas-
urement case also shows no overfitting, the cases with four, 
five, and six measurements show an increase in test costs 
beyond 50–100 training iterations, implying overfitting, the 
extent of which worsens as the number of measurements 
increases. Such behaviour for the MLP is also observed for 
SAS and PAD, and thus for the MLP method an early stop-
ping criterion is adopted (see Sect. 2.7), the results of which 
are presented in Sect. 3.6.

Fig. 8   The F
1
 scores achieved for AAA using each combination of bilateral input measurements are shown. Measurements included within each 

combination are highlighted with a black square

Fig. 9   The average, maximum, and minimum F
1
 score achieved by all 

classifiers trained using different numbers of input measurements are 
shown for carotid artery stenosis classification. The central markers 
represent the average score achieved, while the error bars indicate the 
upper and lower limits
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3.1.2 � SAS classification

The results of the analysis for SAS classification are shown 
in Fig. 11. As is seen in the case of CAS classification, 
Fig. 11 shows that NB, LR, and SVM classifiers consistently 
produce accuracies comparable to naive classification, irre-
spective of the number of input measurements used. A clear 
difference between Figs. 9 and 11 is the accuracy achieved 
by MLP classifiers. Compared to the CAS case, the MLP 
performance is further degraded for SAS, while still being 
better than NB, LR, and SVM, although only marginally. It 
is important to consider, however, that the MLP classifiers 
are experiencing overfitting, as highlighted in Sect. 3.1.1. 
Results with overfitting avoided by adopting an early stop-
ping criterion are presented in Sect. 3.6.

A high degree of similarity can be seen between the 
behaviours of RF and GB classifiers for CAS and SAS. 
Figure 11 shows that the average and minimum F1 score 
achieved by RF and GB classifiers continuously increases 
as the number of input measurements used increases. The 

maximum F1 score achieved is seen to quickly reach an 
asymptotic limit (at three input measurements for both RF 
and GB classifiers). Peak F1 score of approximately 0.85 is 
achieved by GB, along with sensitivities and specificities 
higher than 85%.

The combination of input measurements that produce 
the highest F1 scores and the corresponding accuracies are 
shown in Table 7. It shows a higher degree of consistency 

Table 5   The combinations 
of input measurements that 
produce the maximum F

1
 scores 

when providing one to six input 
measurements and employing 
the RF and GB methods to 
detect CAS

The corresponding sensitivities and specificities are also included

Number of input 
measurements

Method Combination F
1
 score Sens. Spec.

1 RF (Q
1
) 0.8809 0.8704 0.8893

GB (Q
1
) 0.8521 0.8547 0.8502

2 RF (Q
2
 , Q

1
) 0.8913 0.8765 0.9032

GB (P
2
 , P

1
) 0.8950 0.9026 0.8889

3 RF (Q
2
 , Q

1
 , P

1
) 0.8941 0.8825 0.9035

GB (Q
1
 , P

2
 , P

1
) 0.9389 0.9433 0.9351

4 RF (Q
2
 , Q

1
 , P

2
 , P

1
) 0.8944 0.8858 0.9015

GB (Q
3
 , Q

1
 , P

2
 , P

1
) 0.9395 0.9417 0.9376

5 RF (Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
) 0.8934 0.8858 0.8996

GB (Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
) 0.9391 0.9416 0.9370

6 RF (Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
) 0.8878 0.8747 0.8984

GB 0.9343 0.9364 0.9325

Table 6   The combinations of input measurements that produce the 
maximum F

1
 scores when providing three to six input measurements 

and employing the MLP method to detect CAS

The corresponding sensitivities and specificities are also included

Number of 
input measure-
ments

Combination F
1
 score Sensitivity Specificity

3 (P
3
 , P

2
 , P

1
) 0.8831 0.8731 0.8911

4 (Q
3
 , Q

1
 , P

2
 , P

1
) 0.8683 0.8538 0.8545

5 (Q
3
 , Q

2
 , P

3
 , P

2
 , 

P
1
)

0.8463 0.8308 0.8577

6 (Q
3
 , Q

2
 , Q

1
 , P

3
 , 

P
2
 , P

1
)

0.7785 0.7916 0.7703

Fig. 10   The average log loss cost across the training and test sets dur-
ing the training process when using the combination of three to six 
input measurements that achieve highest accuracies for RF, GB, and 
MLP methods (Tables 5 and 6)
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between the best combinations for the two methods rela-
tive to the case for CAS, i.e. the best combinations are 
generally identical (or with minimal differences) between 
RF and GB. It also shows that Q1 is particularly informa-
tive, with this measurement appearing in all of the best 
combinations. Physiologically this may be due to its prox-
imity to the disease location.

3.1.3 � PAD classification

The results for PAD classification are shown in Fig. 12. 
Comparing Figs. 11 and 12, a high degree of similarity is 

seen between the behaviours of SAS and PAD classifica-
tion. As is previously seen for SAS classification, Fig. 12 
shows that the NB, LR, and SVM methods are all consist-
ently producing accuracies comparable to naive classifica-
tion. While the MLP method performs slightly better than 
the naive classification, the accuracy still remains relatively 
low. High accuracy can be seen in Fig. 12 for the two tree-
based methods of RF and GB. As has been previously seen 
for CAS and SAS, while the average and minimum F1 score 
achieved by the RF and GB methods increases as the num-
ber of input measurements increases, the maximum F1 score 
achieved quickly reaches an asymptotic limit (at 3 input 
measurements for both the RF and GB methods).

The combination of input measurements that produce the 
highest F1 scores for PAD classification when employing the 
RF and GB methods are shown in Table 8. It not only shows 
good consistency between the combinations of input meas-
urements that produce the highest F1 scores when employ-
ing each of the two ML methods, but also good agreement 
with the combinations presented in Table 7. Very similar 
combinations of input measurements (with some minor dif-
ferences) can be seen to produce the highest F1 score when 
providing all numbers of input measurements. As has previ-
ously been observed in Tables 5 and 7, the input measure-
ment Q1 appears to be most informative, appearing in all the 
best scoring classifiers. Since the location of Q1 is far from 
the location of disease, it is not obvious why this measure-
ment is particularly informative of PAD.

3.1.4 � AAA classification

The results for AAA classification are shown in Fig. 13. As 
has been previously seen for all of the three other forms 
of disease, the NB and LR classifiers consistently produce 
accuracies comparable to naive classification, irrespective of 

Fig. 11   The average, maximum, and minimum F
1
 score achieved by 

all classifiers trained using different numbers of input measurements 
are shown for SAS classification. The central markers represent the 
average score achieved, while the error bars indicate the upper and 
lower limits

Table 7   The combinations 
of input measurements that 
produce the maximum F

1
 scores 

when providing one to six input 
measurements and employing 
the RF and GB methods to 
detect SAS

The corresponding sensitivities and specificities are also included

Number of input 
measurements

Method Combination F
1
 score Sens. Spec.

1 RF (Q
1
) 0.7779 0.7582 0.7905

GB (Q
1
) 0.7529 0.7224 0.7714

2 RF (Q
2
 , Q

1
) 0.8450 0.8374 0.8507

GB (Q
2
 , Q

1
) 0.8461 0.8293 0.8585

3 RF (Q
3
 , Q

2
 , Q

1
) 0.8447 0.8271 0.8576

GB (Q
3
 , Q

2
 , Q

1
) 0.8552 0.8453 0.8626

4 RF (Q
3
 , Q

2
 , Q

1
 , P

2
) 0.8432 0.8303 0.8527

GB (Q
3
 , Q

2
 , Q

1
 , P

2
) 0.8585 0.8487 0.8660

5 RF (Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
) 0.8399 0.8256 0.8504

GB (Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
) 0.8600 0.8525 0.8657

6 RF (Q3, Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
) 0.8292 0.8102 0.8427

GB 0.8574 0.8504 0.8627
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the number of input measurements used. The consistency of 
this finding (as seen in Figs. 9, 11, and 12) irrespective of the 
form of disease being classified, highlights both the impor-
tance of nonlinear partitions between healthy and unhealthy 
VPs and the unsuitability of the NB method for distinction 
between haemodynamic profiles.

In the case of AAA classification, the SVM, RF, MLP, 
and GB methods consistently produce good accuracies. 
Figure 13 shows that these methods produce high accura-
cies even with a single input measurement. While there is 
some increase in the average F1 score as the number of input 
measurements increases, due to the very high initial average 

F1 score achieved (when using a single input measurement) 
this increase is limited (as the F1 score can not exceed 1). 
Two possible reasons of the higher accuracies in aneurysm 
classification relative to stenosis classification are:

–	 Aneurysms, owing to an increase in area as opposed to 
decrease in the area for stenoses, may actually produce 
more significant or consistent biomarkers in the pressure 
and flow-rate profiles. This hypothesis is supported by 
Low et al. (2012), which found that even low severity 
AAAs have a global impact on the pressure and flow-rate 
profiles.

–	 While the severities of aneurysms cannot be directly 
compared to severities of stenosis, it may be that the 
severity of aneurysms in VPDAAA is disproportionately 
large relative to the severities of stenoses. The signifi-
cance of any indicative biomarkers introduced into pres-
sure and flow-rate profiles is likely to be proportional 
to the severity of the change in area. This implies that 
the increase in vessel area of 712–2,593% in VPDAAA is 
perhaps on the extreme end of aneurysm severity, thereby 
making the classifications relatively easier. This is further 
explored in Sect. 3.4.

The combination of input measurements that produce the 
highest F1 scores when providing one to six input measure-
ments and employing the RF and GB methods are shown for 
AAA classification in Table 9. It shows that F1 scores range 
from 0.97–0.997 and sensitivities and specificities range 
from 96.5% to 99.8%. Due to the high accuracies across 
all the number of measurements, the analysis of specific 
combinations is not very meaningful. However, the meas-
urement Q1 again appears in all the best combinations. It 
should also be noted that the high accuracies for AAA clas-
sification are also consistent with those reported in Chakshu 

Fig. 12   The average, maximum, and minimum F
1
 score achieved by 

all classifiers trained using different numbers of input measurements 
are shown for PAD classification. The central markers represent the 
average score achieved, while the error bars indicate the upper and 
lower limits

Table 8   The combinations 
of input measurements that 
produce the maximum F

1
 scores 

when providing one to six input 
measurements and employing 
the RF and GB methods to 
detect PAD

The corresponding sensitivities and specificities are also included

Number of input 
measurements

Method Combination F
1
 score Sens. Spec.

1 RF (Q
1
) 0.8240 0.8959 0.8320

GB (Q
1
) 0.8183 0.8126 0.8214

2 RF (Q
3
 , Q

1
) 0.8140 0.8825 0.9068

GB (Q
3
 , Q

1
) 0.9041 0.8950 0.9117

3 RF (Q
3
 , Q

2
 , Q

1
) 0.9061 0.8885 0.9208

GB (Q
3
 , Q

2
 , Q

1
) 0.9168 0.9055 0.9265

4 RF (Q
3
 , Q

2
 , Q

1
 , P

2
) 0.8997 0.8868 0.9104

GB (Q
3
 , Q

2
 , Q

1
 , P

1
) 0.9196 0.9068 0.9306

5 RF (Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
) 0.8971 0.8802 0.9110

GB (Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
) 0.9170 0.9041 0.9281

6 RF (Q3, Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
) 0.8935 0.8813 0.9035

GB 0.9187 0.9102 0.9261
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et al. (2020)— where deep-learning methods are applied 
on a VPD created by varying seven network parameters, 
and classification accuracies of ≈ 99.9% are reported—and 
(Wang et al. 2021)—where machine learning methods are 
applied on a VPD, and sensitivities and specificities of 
≈ 86% are reported.

Overall, the results show that the physiological changes 
to the waveforms induced by both stenosis and aneurysms 
(Stergiopulos et al. 1992; Low et al. 2012) are well captured 
by the data-driven machine learning methods.

3.2 � Importance of carotid artery flow‑rate

Appendices A–D, along with the above analysis show that 
classifiers trained using flow-rates in the common carotid 
arteries ( Q1 ) consistently produce the highest accuracy. To 
analyse this further, the F1 scores of classifiers with combi-
nations that include and exclude Q1 are separated and com-
pared for CAS, SAS, PAD, and AAA in Figs. 14, 15, 16, 
and 17, respectively. These figures show the the histograms 
of the F1 scores, i.e. the number of occurrences/classifiers/
combinations including and excluding Q1 against F1 score 
buckets. For each disease form, results are only shown for 
the classification methods that consistently produce good 
results for the corresponding disease form. The figures show 
a clear positive shift in the histograms when Q1 is included, 
pointing to the particularly informative nature of Q1 . Other 
behaviours observed from these figures are:

–	 While there is generally an increase in F1 score when 
including Q1 , it is also simultaneously observed that the 
maximum accuracies are relatively less sensitive to the 
inclusion of Q1.

–	 The greatest distinction between F1 scores when includ-
ing or excluding Q1 is seen for CAS classification when 
using the RF method. There is no overlap between the 
two RF histograms in Fig. 14.

–	 Observing the lower plots in Figs. 15 and 16, a clear 
subgroup of low-accuracy classifiers can be seen when 
excluding Q1 for SAS and PAD, which does not exist 
when including Q1.

Fig. 13   The average, maximum, and minimum F
1
 score achieved by 

all classifiers trained using different numbers of input measurements 
are shown for AAA classification. The central markers represent the 
average score achieved, while the error bars indicate the upper and 
lower limits

Table 9   The combinations 
of input measurements that 
produce the maximum F

1
 scores 

when providing one to six input 
measurements and employing 
the RF and GB methods to 
detect AAA​

The corresponding sensitivities and specificities are also included

Number of input 
measurements

Method Combination F
1
 score Sens. Spec.

1 RF (Q
1
) 0.9741 0.9654 0.9825

GB (Q
1
) 0.9805 0.9799 0.9811

2 RF (Q
2
 , Q

1
) 0.9868 0.9810 0.9926

GB (Q
2
 , Q

1
) 0.9928 0.9919 0.9938

3 RF (Q
3
 , Q

2
 , Q

1
) 0.9912 0.9864 0.9961

GB (Q
3
 , Q

2
 , Q

1
) 0.9962 0.9954 0.9970

4 RF (Q
3
 , Q

2
 , Q

1
 , P

2
) 0.9923 0.9879 0.9967

GB (Q
3
 , Q

2
 , Q

1
 , P

2
) 0.9972 0.9959 0.9986

5 RF (Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
) 0.9920 0.9873 0.9967

GB (Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
) 0.9970 0.9959 0.9981

(Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
) 0.9963 0.9978

6 RF (Q3, Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
) 0.9912 0.9861 0.9964

GB 0.9970 0.9959 0.9981
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3.3 � Feature importance

An important aspect of the GB method is that the meas-
urement importance, which determines the influence that 
individual measurements have towards classification, can 
be computed. This split-improvement feature importance 
(Zhou and Hooker 2020) of a feature can be thought of as 
the contribution of that feature to the total information gain 
achieved in a decision tree, averaged across all the trees in 
the ensemble. A high feature importance suggests that the 
given feature is contributing heavily to the classification 
accuracies achieved. As the features provided to the GB clas-
sifiers are the FS coefficients describing the haemodynamic 
profiles, the total importance of each bilateral pressure or 
flow-rate measurement is found by summing the feature 
importance of the associated 22 FS coefficients. The total 
importance of each input measurement for each disease form 
is shown in Table 10.

Three important observations from this table are:

–	 The input measurement Q1 consistently produces the 
highest importance for all forms of disease. This finding 
supports the findings of Sect. 3.2.

–	 The importance of each input measurement changes 
between disease forms based on the spatial proximity 
to the disease location. Generally, the measurements 
in close proximity to the disease location have higher 
importance. For example, the importance of Q3 (flow-rate 
in the femoral arteries) is highest for PAD classification 
(see Fig. 1 for locations of disease and measurements). 
Similarly, P1 (pressure in carotid arteries) has highest 
importance for CAS and SAS.

–	 The feature importances, when viewed in collection, also 
shed some light on why Q1 is important for SAS and PAD 
even though the measurement location is far from the dis-
ease location. For SAS, the two most informative meas-
urements are Q1 and Q2 , and for PAD, these are Q1 and 
Q3 . From Fig. 1, it is clear that these combinations form 
pairs of flow-rates before and after/at the disease loca-
tion. Thus, the measurement locations bound the disease 
location to provide more information on the presence of 
disease.

Fig. 14   The histograms of the F
1
 scores achieved for CAS classifica-

tion are shown for all input measurement combinations that include 
Q

1
 in the upper plot and exclude Q

1
 in the lower plot

Fig. 15   The histograms of the F
1
 scores achieved for SAS classifica-

tion are shown for all input measurement combinations that include 
Q

1
 in the upper plot and exclude Q

1
 in the lower plot
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3.4 � Lower severity aneurysms

In Sect. 3.1.4, it is found that AAAs can be classified to a 
very high levels of accuracy with only one input measure-
ment. Whether these accuracies are affected when lower 
severity aneurysms are considered is assessed here. For this 
assessment, a new lower severity AAA VPD, referred to as 
VPDAAA-L , is created in an identical manner to the other 
diseased databases (see Sect. 2.2), with the following two 
differences:

–	 The severity of aneurysms introduced into the virtual 
subjects (see Sect. 2.2.2) is sampled from a uniform dis-
tribution bounded as follows: 3.0 ≤ Saneurysm ≤ 7.0.

–	 To reduce the computational expense associated with 
the creation of virtual patients, the size of VPDAAA-L is 
restricted to 5,000 VPs.

A combination search is carried out with only the GB 
method as it is the best overall method. The F1 scores, sen-
sitivities, and specificities achieved by all the measurement 
combinations are presented in Appendix E. For comparison, 

the GB F1 scores for all forms of disease (including AAA-
L) are shown in Appendix F. The ratios of the GB F1 scores 
achieved for AAA-L classification relative to AAA classifi-
cation are shown in Fig. 18.

The observations from this figure are:

–	 The F1 scores for AAA-L classification are consistently 
lower (ranging from 1% to 10% lower) than that for AAA 
classification. This finding supports the physiological 
expectation that the significance of biomarkers in pres-
sure and flow-rate profiles is proportion to the severity.

–	 The ratios of F1 scores are lowest for combinations of 
inputs that predominantly rely on pressure measure-
ments. This suggests that pressure measurements are, in 
general, less informative about disease severity. This is 
in support of the, generally, lower feature importance of 
pressure measurements in Table 10.

–	 The F1 score ratios are highest for input combinations 
that include Q1 . This finding further suggests that Q1 con-
tains consistent biomarkers.

–	 The ratios range between 0.9 and 0.99, implying a maxi-
mum degradation of only 10% relative to high-severity 

Fig. 16   The histograms of the F
1
 scores achieved for PAD classifica-

tion are shown for all input measurement combinations that include 
Q

1
 in the upper plot and exclude Q

1
 in the lower plot

Fig. 17   The histograms of the F
1
 scores achieved for AAA classifica-

tion are shown for all input measurement combinations that include 
Q

1
 in the upper plot and exclude Q

1
 in the lower plot
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classification accuracies. Thus, even in the low-severity 
aneurysms, many combinations of classifiers achieve F1 
scores higher than 0.95 and corresponding sensitivities 
and specificities larger than 95%.

3.5 � Unilateral aneurysm measurement tests

Hitherto, all ML classifiers used bilateral measurements, 
i.e. both the right and left instances of each measurement 
were simultaneously provided. Here, the ability of unilat-
eral measurements, i.e. only the right or left instance of a 
measurement, to detect AAAs is assessed. This analysis is 
restricted to the GB method as it consistently outperforms 
other methods.

GB classifiers are trained and tested to detect AAAs using 
four different unilateral measurements:

–	 Flow-rate in the right carotid artery, shown in Fig. 1 as 
Q

(R)

1
.

–	 Flow-rate in the left carotid artery, shown in Fig. 1 as 
Q

(L)

1
.

–	 Pressure in the right radial artery, shown in Fig. 1 as P(R)

3

.
–	 Pressure in the left radial artery, shown in Fig. 1 as P(L)

3

.

Carotid artery flow-rate is chosen as it has been shown to be 
the best measurement for disease classification. Radial artery 
pressure is chosen due to the location of the radial artery 
on the human wrist. Recent advancements have resulted in 
wearable devices capable of measuring continuous radial 
pressure profiles, such as the TLT Sapphire monitor (Taril-
ian Laser Technologies, Welwyn Garden City, U.K.) (Lobo 
et al. 2019), and thus if AAAs can be detected to satisfactory 
accuracies using these measurements, it may suggest the 
possibility of future home monitoring of abdominal aortic 
health through such wearables. The sensitivities and spe-
cificities achieved by the four unilateral GB classifiers are 
shown in Table 11. It shows that relative to the bilateral case, 
while there is a decrease in the classification accuracies, the 
magnitude of the decrease is less than 10%. This finding 
suggests that there may be sufficient biomarkers of AAA 
presence captured within the intra-measurement details of 
a single pressure or flow-rate profile. The fact that similar 
accuracies are achieved with either the right or left instances 
of any measurement is likely due to physiological symmetry. 
While there are some minor asymmetries between the right 
and left upper extremities, due to the topology of the arterial 
network (as shown in Fig. 1) changes to the cross-sectional 
area of the abdominal aorta are expected to produce rela-
tively consistent changes in both the right and left side of 
the body.

Table 10   The total importance 
of each input measurement, 
based on the GB classifiers 
provided with all six 
measurements

Q
1
 (%) Q

2
 (%) Q

3
 (%) P

1
 (%) P

2
 (%) P

3
 (%)

CAS 67.38 8.02 3.89 11.07 7.692 1.93
SAS 41.90 29.98 8.40 6.80 5.97 6.921
PAD 38.01 15.98 31.11 4.62 4.63 5.62
AAA​ 69.34 19.10 4.95 2.41 2.61 1.55

Fig. 18   The ratios of the F
1
 scores for AAA-L classification relative to AAA classification, when providing each combination of input measure-

ments are shown. Measurements included within each combination are highlighted with a black square
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3.6 � MLP early stopping to avoid overfitting

It is shown in Sect. 3.1.1 that the accuracy of MLP classifiers 
is hindered by the presence of overfitting. Thus, the early 
stopping criterion outlined in Sect. 2.7 is adopted for the 
combinations of three to six measurements that hitherto pro-
duced best results without early stopping. Here, the hyper-
parameters describing the MLP architecture—the number of 
neurons per layer and the number of layers (depth)—for each 
such case are also individually re-optimised on the valida-
tion data set with early stopping criterion enabled. Thus, 

for each combination in the grid search, the best validation 
set F1 score is computed with early stopping enabled during 
training, and the architecture producing the maximum F1 
score is selected. Subsequently, for this optimal architecture, 
the test scores are computed on the test data set. This analy-
sis is performed for CAS and AAA as the behaviour of SAS 
and PAD is very similar to that of CAS.

3.6.1 � CAS: early stopping

The hyper-parameters describing the optimum architec-
tures with early stopping criterion for best combinations are 

Table 11   The sensitivities and specificities achieved when using the 
measurements of flow-rate in the right, left, and both CAs and pres-
sure in the right, left, and both radial arteries

Side Sensitivity Specificity

Carotid Right 0.9369 0.9161
Flow-rate Left 0.9065 0.9146
(Q

1
) Both 0.9799 0.9811

Radial Right 0.8356 0.8533
Pressure Left 0.8633 0.8605
(P

3
) Both 0.9202 0.9248

Fig. 19   MLP: the log loss cost 
profiles across the training and 
validation sets when using the 
best performing combination 
containing three to six input 
measurements for CAS clas-
sification and employing early 
stopping

Table 12   The hyper-parameters describing the architecture of the 
MLP classifiers that produce the highest F

1
 scores on the validation 

set with early stopping criterion for CAS classification, when using 
the best performing combinations of three to six input measurements

No. measurements & combi-
nation

Neurons 
per layer

# of layers F
1
 (validation)

3 – ( P
3
 , P

2
 , P

1
) 140 3 0.8817

4 – ( Q
3
 , Q

1
 , P

2
 , P

1
) 180 4 0.8824

5 – ( Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
) 180 4 0.8355

6 – ( Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
) 180 4 0.8464
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shown in Table 12. It shows a remarkable degree of con-
sistency between the optimum hyper-parameters for vary-
ing number of input measurements: for four measurements 
and above the optimal architecture is identical. This finding 
supports the previous simplification of using a single archi-
tecture for all the MLP classifiers. An interesting finding 
to note, however, is that there is less consistency with the 
previous optimum hyper-parameters presented in Table 4, 
which found that four layers containing 60 neurons produced 
the highest F1 score when providing six input measurements.

The cost profiles for the optimal architectures with early 
stopping are shown in Fig. 19. It shows that generally the 
early stopping criteria fulfil its purpose of stopping the train-
ing process near to the minimum validation cost point, thus 
minimising overfitting. It is observed that for all numbers of 
input measurements, training is stopped as soon as the 75 
minimum iterations have been completed. While this early 
stopping criteria greatly reduce overfitting in all the cases, it 
is seen that the minimum number of training iterations (75) 
is too high for the six measurement case (the validation cost 
has already started to significantly rise), suggesting further 
refinement may reduce the validation and test costs even 
further.

A comparison between the F1 scores achieved with and 
without early stopping is shown in Table 13. While early 
stopping has reduced the log loss cost across the validation 
and test sets, this does not necessarily translate to improve-
ments in the F1 score. The log loss cost will decrease with-
out increasing the F1 score if easy to classify patients are 
predicted with a higher degree of certainty (for example, 
predicting 95% probability rather than 75%) even if no new 
additional patients are correctly classified. For the six-meas-
urement case, however, some increase in F1 score is clearly 
observed as a benefit of early stopping.

3.6.2 � AAA: early stopping

The hyper-parameters describing theoptimum architec-
tures with early stopping criterion for best combinations 
are shown in Table 14. The consistency of best architec-
ture for AAA across the number of measurements is less 
when compared to that for CAS. It is again observed that 
the new hyper-parameters are inconsistent with the old 
(Table 4). Initially, this finding may seem to undermine 
early stopping and individual architecture optimisation for 
varying number of input measurements. However, while 
the optimum hyper-parameters are inconsistent, the F1 
scores achieved are very similar—0.9785 in Table 4 and 
0.9870 in Table 14. This similarity in F1 scores may sug-
gest an insusceptibility to the architecture used, i.e. the 
F1 score plane in the two-dimensional grid-search space 
is relatively flat for this problem. This again supports the 
earlier simplification of using a single architecture for all 
the classifiers.

The cost profiles for the optimal architectures with early 
stopping are shown in Fig. 20. It shows no major signs of 
overfitting when using MLP classifiers to detect AAA. As 
a result, the employment of an early stopping criteria has 
little affect on the final log loss cost achieved across all 
training and validation data sets. Thus, when comparing 
the with and without early stopping test scores in Table 15, 

Table 13   MLP: F
1
 scores on the test dataset when using the best three 

to six input measurement combinations found to produce the high-
est accuracies for CAS with (Sect. 3.6.1) and without early stopping 
(Sect. 3.1.1)

Number of input 
measurements

Combination F
1
 score (test)

Without 
early stop-
ping

With 
early 
stopping

3 (P
3
 , P

2
 , P

1
) 0.8831 0.8621

4 (Q
3
 , Q

1
 , P

2
 , P

1
) 0.8683 0.8693

5 (Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
) 0.8463 0.7975

6 (Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
) 0.7785 0.8394

Table 14   The hyper-parameters describing the architecture of the 
MLP classifiers that produce the highest F

1
 scores on the validation 

set with early stopping criterion for AAA classification, when using 
the best performing combinations of three to six input measurements

No. measurements & combi-
nation

Neurons 
per layer

# of layers F
1
 (validation)

3 – ( Q
1
 , P

2
 , P

1
) 140 2 0.9889

4 – ( Q
2
 , Q

1
 , P

2
 , P

1
) 60 2 0.9858

5 – ( Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
) 150 1 0.9915

6 – ( Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
) 160 1 0.9870

Table 15   MLP: F
1
 scores on the test dataset when using the best three 

to six input measurement combinations found to produce the high-
est accuracies for AAA with (Sect. 3.6.2) and without early stopping 
(Sect. 3.1.4)

Number of input 
measurements

Combination F
1
 score

Without 
early stop-
ping

With 
early 
stopping

3 (Q
1
 , P

2
 , P

1
) 0.9827 0.9852

4 (Q
2
 , Q

1
 , P

2
 , P

1
) 0.9800 0.9784

5 (Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
) 0.9808 0.9876

6 (Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
) 0.9785 0.9836
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no significant differences in the F1 scores achieved are 
observed for AAA classification.

The aforementioned findings with early stopping ena-
bled for both CAS and AAA classification, suggest that 
to substantially improve the accuracy of MLP classifiers, 
a more extensive hyper-parameter optimisation strategy, 
which tunes many other hyper-parameters, is required, and 
should be adopted in future studies.

4 � Conclusions

The main conclusion of this study is that machine learning 
methods have the potential to detect arterial disease—both 
stenoses and aneurysms—from peripheral measurements of 
pressure and flow-rates across the network. Amongst various 
ML methods, it is found that tree-based methods of Random 
Forest and Gradient Boosting perform best for this applica-
tion (within the limitations of the classifier specific optimi-
sation performed). Across the different forms of disease, 
the Gradient Boosting method outperforms Random Forest, 
Support Vector Machine, Naive Bayes, Logistic Regression, 
and even the deep learning method of Multi-layer Perceptron 
in the setting adopted. It should be noted, however, that the 

multi-layer perceptron results could be improved by problem 
specific optimisation of architecture and fine-tuning of fur-
ther hyper-parameters. This, however, would come at added 
complexity and computational costs against the easier-to-
train machine-learning methods of Random Forest and Gra-
dient Boosting.

It is demonstrated that maximum F1 scores larger than 
0.9 are achievable for CAS and PAD, larger than 0.85 for 
SAS, and larger than 0.98 for both low- and high-severity 
AAAs. The corresponding sensitivities and specificities 
are also both larger than 90% for CAS and PAD, larger 
than 85% for SAS, and larger than 98% for both low- and 
high-severity AAAs. While these maximum scores are for 
the case when all the six measurements are used, it is also 
shown that the performance degradation is less than 5% 
when using only three measurements and less than 10% 
when using only two measurements, as long as the these 
measurements are carefully chosen in specific combina-
tions. For the case of AAA, it is further demonstrated 
that when only a single measurement (either on the left 
or right side) is used, F1 scores larger than 0.85 and cor-
responding sensitivities and specificities larger than 85% 
are achievable. This aspect encourages the application of 
AAA monitoring and/or screening through the use of a 

Fig. 20   MLP: the log loss cost 
profiles across the training and 
validation sets when using the 
best performing combination 
containing three to six input 
measurements for AAA clas-
sification and employing early 
stopping
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wearable device, such at the TLT Sapphire monitor (Taril-
ian Laser Technologies, Welwyn Garden City, U.K.) (Lobo 
et al. 2019). Confidence in this is further strengthened by 
the similar very high accuracies reported for AAA classifi-
cation by Chakshu et al. (2020) ( ≈ 99.9% ) and Wang et al. 
(2021) (sensitivities and specificities of ≈ 86% ). However, 
multi-class classifier accuracies, as opposed to only the 
binary classifiers assessed here, remain unknown and 
should be considered to fully assess the ability of machine 
and deep learning methods for arterial disease detection.

Finally, it is shown through the analysis of several 
classifiers and feature-importance that, among the meas-
urements, the carotid artery flow-rate is a particularly 
informative measurement to detect the presence of all the 
four forms of disease considered.

5 � Limitations & future work

While high accuracy classification has been achieved, all 
classifiers are binary (i.e. disease are treated mutually 
exclusively). A logical next step, to further the results 
presented here, is to relax the assumption of mutually 
exclusive disease. Thus, classifiers should be built to 
detect not only the presence of disease, but also identify 
the type of disease (potentially concomitant disease in 
multiple locations), its location, and its severity. This fur-
ther analysis can be completed in two stages: 

1.	 The previously created unhealthy VPDs (each contain-
ing only one form of disease) can be used to created 
mixed disease data sets, i.e. each VP has only one form 
of disease; however, the data sets contain multiple forms 
of disease. Binary ML classifiers can then be created to 
predict if a VP is subject to a particular form of disease, 

and multiclass classifiers to determine which form of 
disease a VP has.

2.	 New VPDs can be created, in which each VP may con-
tain more than one form of disease. In this case, binary 
classifiers can be created to predict the presence of each 
individual form of disease within a VP, and multiclass 
classifiers to predict the combination of disease forms 
present.

While the results are encouraging, they are produced on 
a virtual cohort of subjects. Even though the database 
is physiologically realistic and carefully constructed, it 
may be that real patient behaviour differs from those in 
the VPD. Therefore, future steps should be in applying 
the trained classifiers here directly to a small cohort of 
real-patient measurements. The effect of measurement 
errors and biases is ignored in this study. This aspect can 
also be considered in future studies. Further improve-
ments can be also made, to aim for higher accuracies 
with fewer, potentially noise- and bias-corrupted, meas-
urements, by:

–	 Further optimising the architectures of the machine 
and deep learning methods (particularly MLP classi-
fiers).

–	 Further monitoring individual classifiers for signs of 
overfitting, and minimising this when needed.

CAS combination search results

The F1 scores, sensitivities, and specificities achieved for 
CAS classification when using each of the six ML methods 
are shown in Tables 16, 17, and 18, respectively.
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Table 16   The F
1
 scores 

achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.5547 0.5110 0.5157 0.5807 0.4365 0.5606
Q

2
0.5105 0.5080 0.4955 0.6858 0.4410 0.6565

Q
1

0.5676 0.5033 0.5953 0.8809 0.6459 0.8521
P
3

0.4927 0.5023 0.4991 0.5441 0.4805 0.5131
P
2

0.4413 0.5066 0.5260 0.5628 0.3741 0.5412
P
1

0.5473 0.4917 0.5712 0.6681 0.7013 0.7082
Q

3
 , Q

2
0.5684 0.4955 0.5104 0.6955 0.4915 0.6889

Q
3
 , Q

1
0.4831 0.5050 0.5544 0.8790 0.6944 0.8629

Q
3
 , P

3
0.5213 0.4935 0.5124 0.5825 0.4929 0.5659

Q
3
 , P

2
0.5853 0.5018 0.5142 0.5918 0.4904 0.5849

Q
3
 , P

1
0.5048 0.5034 0.5576 0.6601 0.6864 0.7105

Q
2
 , Q

1
0.4600 0.4975 0.5540 0.8913 0.6648 0.8824

Q
2
 , P

3
0.4804 0.4940 0.5109 0.6833 0.4158 0.6805

Q
2
 , P

2
0.5290 0.5037 0.5125 0.6836 0.5618 0.6908

Q
2
 , P

1
0.4434 0.4978 0.5597 0.7204 0.6741 0.7562

Q
1
 , P

3
0.4470 0.4990 0.5595 0.8732 0.6860 0.8577

Q
1
 , P

2
0.5341 0.5029 0.5629 0.8774 0.7090 0.8684

Q
1
 , P

1
0.4927 0.5018 0.6233 0.8837 0.7822 0.8850

P
3
 , P

2
0.5507 0.5117 0.5263 0.5581 0.5313 0.5431

P
3
 , P

1
0.5266 0.4963 0.5725 0.6837 0.7384 0.7539

P
2
 , P

1
0.5089 0.4944 0.6885 0.7938 0.8878 0.8950

Q
3
 , Q

2
 , Q

1
0.4299 0.4995 0.5425 0.8907 0.6838 0.8868

Q
3
 , Q

2
 , P

3
0.4822 0.4980 0.5058 0.6910 0.5300 0.7072

Q
3
 , Q

2
 , P

2
0.5346 0.4975 0.5204 0.6962 0.5211 0.7102

Q
3
 , Q

2
 , P

1
0.5267 0.5024 0.5428 0.7229 0.6084 0.7693

Q
3
 , Q

1
 , P

3
0.4636 0.5016 0.5317 0.8685 0.6699 0.8660

Q
3
 , Q

1
 , P

2
0.5186 0.4960 0.5580 0.8751 0.6469 0.8728

Q
3
 , Q

1
 , P

1
0.5257 0.5020 0.5888 0.8843 0.7532 0.8903

Q
3
 , P

3
 , P

2
0.4493 0.5032 0.5119 0.5923 0.5418 0.5888

Q
3
 , P

3
 , P

1
0.5019 0.4892 0.5527 0.6751 0.7159 0.7602

Q
3
 , P

2
 , P

1
0.4312 0.5042 0.6303 0.7564 0.8623 0.8923

Q
2
 , Q

1
 , P

3
0.5222 0.5041 0.5300 0.8840 0.6354 0.8776

Q
2
 , Q

1
 , P

2
0.5155 0.4957 0.5586 0.8847 0.7001 0.8844

Q
2
 , Q

1
 , P

1
0.5251 0.4940 0.6039 0.8941 0.7611 0.8968

Q
2
 , P

3
 , P

2
0.4893 0.5041 0.5241 0.6824 0.5335 0.6929

Q
2
 , P

3
 , P

1
0.4067 0.4965 0.5421 0.7249 0.7185 0.8064

Q
2
 , P

2
 , P

1
0.5479 0.4858 0.6415 0.7740 0.8735 0.9040

Q
1
 , P

3
 , P

2
0.4766 0.4969 0.5505 0.8700 0.7048 0.8651

Q
1
 , P

3
 , P

1
0.5037 0.4908 0.5975 0.8777 0.7645 0.8956

Q
1
 , P

2
 , P

1
0.4997 0.4972 0.6772 0.8872 0.8680 0.9389

P
3
 , P

2
 , P

1
0.5090 0.4997 0.6451 0.7694 0.8831 0.8936

Q
3
 , Q

2
 , Q

1
 , P

3
0.4569 0.4921 0.5408 0.8835 0.6258 0.8855

Q
3
 , Q

2
 , Q

1
 , P

2
0.4253 0.5022 0.5462 0.8871 0.6655 0.8887

Q
3
 , Q

2
 , Q

1
 , P

1
0.4934 0.5068 0.5783 0.8925 0.7163 0.9004

Q
3
 , Q

2
 , P

3
 , P

2
0.4875 0.5026 0.5234 0.6852 0.5483 0.7145

Q
3
 , Q

2
 , P

3
 , P

1
0.4481 0.4945 0.5399 0.7231 0.6714 0.8125

Q
3
 , Q

2
 , P

2
 , P

1
0.4329 0.5034 0.6043 0.7619 0.8618 0.9025

Q
3
 , Q

1
 , P

3
 , P

2
0.4934 0.4972 0.5400 0.8717 0.6299 0.8761

Q
3
 , Q

1
 , P

3
 , P

1
0.5365 0.5011 0.5802 0.8789 0.7197 0.8978
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Table 16   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.5068 0.4974 0.6338 0.8852 0.8542 0.9395

Q
3
 , P

3
 , P

2
 , P

1
0.4329 0.4980 0.6137 0.7393 0.8471 0.8906

Q
2
 , Q

1
 , P

3
 , P

2
0.5669 0.4933 0.5468 0.8822 0.6524 0.8844

Q
2
 , Q

1
 , P

3
 , P

1
0.5193 0.4978 0.5783 0.8878 0.7207 0.9065

Q
2
 , Q

1
 , P

2
 , P

1
0.4638 0.5037 0.6413 0.8944 0.8683 0.9383

Q
2
 , P

3
 , P

2
 , P

1
0.4868 0.4999 0.6142 0.7694 0.8503 0.9084

Q
1
 , P

3
 , P

2
 , P

1
0.4735 0.5025 0.6320 0.8807 0.8547 0.9353

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.5005 0.5015 0.5387 0.8848 0.6322 0.8927

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.4652 0.4962 0.5760 0.8875 0.7079 0.9093

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.5108 0.4994 0.6088 0.8934 0.8313 0.9381

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.4994 0.5105 0.5808 0.7540 0.8463 0.9052

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.5330 0.5024 0.6108 0.8849 0.8380 0.9364

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4899 0.5054 0.6026 0.8900 0.8371 0.9391

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4634 0.5018 0.5862 0.8878 0.7785 0.9343
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Table 17   The sensitivities 
achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.1531 0.5527 0.4283 0.5572 0.6084 0.5736
Q

2
0.6641 0.5097 0.6418 0.6575 0.6228 0.6744

Q
1

0.5426 0.4525 0.5694 0.8704 0.4243 0.8547
P
3

0.5024 0.5098 0.4999 0.5139 0.5355 0.5158
P
2

0.6490 0.4979 0.5052 0.5366 0.7038 0.5491
P
1

0.2410 0.4992 0.6588 0.6510 0.7052 0.7215
Q

3
 , Q

2
0.5055 0.5035 0.5651 0.6655 0.5439 0.7044

Q
3
 , Q

1
0.7217 0.5094 0.5461 0.8681 0.6288 0.8661

Q
3
 , P

3
0.4462 0.5091 0.4944 0.5615 0.5226 0.5583

Q
3
 , P

2
0.3652 0.5090 0.5111 0.5731 0.5572 0.5777

Q
3
 , P

1
0.3032 0.5049 0.6510 0.6411 0.7334 0.7149

Q
2
 , Q

1
0.4543 0.5091 0.5770 0.8765 0.6372 0.8845

Q
2
 , P

3
0.5395 0.5117 0.5263 0.6555 0.6691 0.6926

Q
2
 , P

2
0.6043 0.4987 0.5436 0.6563 0.3867 0.7117

Q
2
 , P

1
0.5766 0.4905 0.6442 0.6962 0.6879 0.7668

Q
1
 , P

3
0.4718 0.5003 0.5461 0.8679 0.7167 0.8601

Q
1
 , P

2
0.3903 0.5068 0.5438 0.8672 0.7467 0.8664

Q
1
 , P

1
0.6488 0.4978 0.6672 0.8798 0.8290 0.8848

P
3
 , P

2
0.4744 0.5034 0.5251 0.5383 0.4863 0.5335

P
3
 , P

1
0.3334 0.4815 0.6303 0.6599 0.7469 0.7842

P
2
 , P

1
0.4943 0.5001 0.6699 0.7762 0.8995 0.9026

Q
3
 , Q

2
 , Q

1
0.4935 0.4812 0.5598 0.8789 0.6425 0.8896

Q
3
 , Q

2
 , P

3
0.5586 0.4913 0.5454 0.6647 0.5014 0.7219

Q
3
 , Q

2
 , P

2
0.4348 0.5091 0.5336 0.6788 0.5298 0.7313

Q
3
 , Q

2
 , P

1
0.2964 0.5165 0.6068 0.6975 0.6471 0.7783

Q
3
 , Q

1
 , P

3
0.4427 0.5021 0.5321 0.8620 0.6388 0.8677

Q
3
 , Q

1
 , P

2
0.4268 0.4974 0.5605 0.8718 0.6645 0.8721

Q
3
 , Q

1
 , P

1
0.5134 0.4687 0.6341 0.8735 0.7474 0.8936

Q
3
 , P

3
 , P

2
0.6823 0.4939 0.5076 0.5698 0.4853 0.5905

Q
3
 , P

3
 , P

1
0.3887 0.4941 0.5882 0.6691 0.6907 0.7866

Q
3
 , P

2
 , P

1
0.6288 0.4919 0.6251 0.7473 0.8593 0.8928

Q
2
 , Q

1
 , P

3
0.4599 0.5056 0.5474 0.8735 0.6999 0.8819

Q
2
 , Q

1
 , P

2
0.4296 0.5085 0.5728 0.8766 0.6703 0.8853

Q
2
 , Q

1
 , P

1
0.5235 0.5037 0.6393 0.8825 0.7635 0.8991

Q
2
 , P

3
 , P

2
0.3581 0.4902 0.5484 0.6566 0.5249 0.7098

Q
2
 , P

3
 , P

1
0.6042 0.4816 0.6079 0.7001 0.7140 0.8277

Q
2
 , P

2
 , P

1
0.5758 0.4826 0.6481 0.7516 0.8780 0.9114

Q
1
 , P

3
 , P

2
0.4530 0.4984 0.5521 0.8616 0.6733 0.8651

Q
1
 , P

3
 , P

1
0.4760 0.4859 0.6233 0.8721 0.7403 0.8993

Q
1
 , P

2
 , P

1
0.4610 0.4917 0.6744 0.8807 0.8797 0.9433

P
3
 , P

2
 , P

1
0.4001 0.5159 0.6442 0.7562 0.8731 0.8930

Q
3
 , Q

2
 , Q

1
 , P

3
0.5792 0.4903 0.5548 0.8700 0.6711 0.8916

Q
3
 , Q

2
 , Q

1
 , P

2
0.6211 0.4961 0.5726 0.8788 0.6622 0.8933

Q
3
 , Q

2
 , Q

1
 , P

1
0.5018 0.4831 0.5948 0.8837 0.7442 0.9015

Q
3
 , Q

2
 , P

3
 , P

2
0.5499 0.4981 0.4938 0.6722 0.4844 0.7277

Q
3
 , Q

2
 , P

3
 , P

1
0.4381 0.5052 0.5948 0.7055 0.6997 0.8337

Q
3
 , Q

2
 , P

2
 , P

1
0.7010 0.5049 0.6401 0.7463 0.8600 0.9129

Q
3
 , Q

1
 , P

3
 , P

2
0.4629 0.5000 0.5424 0.8597 0.6331 0.8747

Q
3
 , Q

1
 , P

3
 , P

1
0.4436 0.4937 0.6099 0.8747 0.7555 0.9017
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Table 17   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.5362 0.5062 0.6300 0.8761 0.8538 0.9417

Q
3
 , P

3
 , P

2
 , P

1
0.6073 0.5011 0.6165 0.7243 0.8391 0.8993

Q
2
 , Q

1
 , P

3
 , P

2
0.4973 0.5056 0.5779 0.8729 0.6427 0.8874

Q
2
 , Q

1
 , P

3
 , P

1
0.4225 0.5065 0.6115 0.8813 0.7596 0.9100

Q
2
 , Q

1
 , P

2
 , P

1
0.5115 0.4954 0.6345 0.8858 0.8618 0.9416

Q
2
 , P

3
 , P

2
 , P

1
0.5582 0.4877 0.6266 0.7498 0.8573 0.9133

Q
1
 , P

3
 , P

2
 , P

1
0.5769 0.4891 0.6309 0.8674 0.8667 0.9375

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.5446 0.4929 0.5686 0.8759 0.6487 0.8949

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.4676 0.4933 0.6021 0.8775 0.7169 0.9117

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.5403 0.5015 0.6142 0.8858 0.8288 0.9415

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.6396 0.5042 0.6070 0.7375 0.8308 0.9120

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.5330 0.4920 0.6171 0.8795 0.8345 0.9399

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4640 0.4919 0.6149 0.8774 0.8273 0.9416

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.6224 0.5116 0.6012 0.8747 0.7916 0.9364



2123Machine learning for detection of stenoses and aneurysms: application in a physiologically…

1 3

Table 18   The specificities 
achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.7090 0.4968 0.5462 0.5904 0.3886 0.5556
Q

2
0.4579 0.5075 0.4474 0.7006 0.3896 0.6479

Q
1

0.5776 0.5204 0.6063 0.8893 0.7517 0.8502
P
3

0.4896 0.4998 0.4989 0.5555 0.4632 0.5122
P
2

0.3826 0.5096 0.5335 0.5732 0.2983 0.5384
P
1

0.6628 0.4893 0.5363 0.6767 0.6993 0.7010
Q

3
 , Q

2
0.5935 0.4929 0.4917 0.7116 0.4745 0.6808

Q
3
 , Q

1
0.4072 0.5036 0.5576 0.8876 0.7293 0.8605

Q
3
 , P

3
0.5478 0.4884 0.5187 0.5912 0.4832 0.5690

Q
3
 , P

2
0.6764 0.4995 0.5153 0.5998 0.4687 0.5879

Q
3
 , P

1
0.5730 0.5030 0.5215 0.6696 0.6619 0.7081

Q
2
 , Q

1
0.4618 0.4937 0.5453 0.9032 0.6786 0.8808

Q
2
 , P

3
0.4618 0.4883 0.5057 0.6978 0.3494 0.6743

Q
2
 , P

2
0.5020 0.5055 0.5018 0.6978 0.6303 0.6798

Q
2
 , P

1
0.4055 0.5003 0.5269 0.7341 0.6672 0.7498

Q
1
 , P

3
0.4399 0.4987 0.5648 0.8774 0.6701 0.8560

Q
1
 , P

2
0.5865 0.5016 0.5704 0.8855 0.6883 0.8701

Q
1
 , P

1
0.4417 0.5032 0.6035 0.8869 0.7522 0.8853

P
3
 , P

2
0.5798 0.5146 0.5268 0.5659 0.5477 0.5467

P
3
 , P

1
0.5958 0.5013 0.5494 0.6961 0.7335 0.7356

P
2
 , P

1
0.5140 0.4926 0.6983 0.8054 0.8785 0.8889

Q
3
 , Q

2
 , Q

1
0.4125 0.5057 0.5361 0.9002 0.7054 0.8846

Q
3
 , Q

2
 , P

3
0.4580 0.5003 0.4925 0.7049 0.5404 0.6992

Q
3
 , Q

2
 , P

2
0.5711 0.4937 0.5158 0.7055 0.5181 0.6986

Q
3
 , Q

2
 , P

1
0.6091 0.4977 0.5190 0.7374 0.5915 0.7638

Q
3
 , Q

1
 , P

3
0.4700 0.5015 0.5316 0.8735 0.6857 0.8648

Q
3
 , Q

1
 , P

2
0.5508 0.4956 0.5571 0.8777 0.6386 0.8734

Q
3
 , Q

1
 , P

1
0.5302 0.5132 0.5699 0.8929 0.7568 0.8877

Q
3
 , P

3
 , P

2
0.3818 0.5064 0.5135 0.6018 0.5629 0.5882

Q
3
 , P

3
 , P

1
0.5399 0.4877 0.5392 0.6782 0.7300 0.7441

Q
3
 , P

2
 , P

1
0.3769 0.5084 0.6328 0.7620 0.8646 0.8920

Q
2
 , Q

1
 , P

3
0.5443 0.5037 0.5238 0.8924 0.6055 0.8743

Q
2
 , Q

1
 , P

2
0.5454 0.4916 0.5531 0.8913 0.7162 0.8838

Q
2
 , Q

1
 , P

1
0.5258 0.4909 0.5886 0.9035 0.7597 0.8950

Q
2
 , P

3
 , P

2
0.5319 0.5088 0.5156 0.6959 0.5367 0.6840

Q
2
 , P

3
 , P

1
0.3563 0.5015 0.5177 0.7390 0.7211 0.7921

Q
2
 , P

2
 , P

1
0.5374 0.4869 0.6385 0.7882 0.8701 0.8979

Q
1
 , P

3
 , P

2
0.4840 0.4965 0.5500 0.8766 0.7220 0.8651

Q
1
 , P

3
 , P

1
0.5131 0.4924 0.5866 0.8822 0.7795 0.8927

Q
1
 , P

2
 , P

1
0.5126 0.4991 0.6787 0.8925 0.8592 0.9351

P
3
 , P

2
 , P

1
0.5462 0.4944 0.6456 0.7777 0.8911 0.8942

Q
3
 , Q

2
 , Q

1
 , P

3
0.4208 0.4928 0.5357 0.8943 0.6053 0.8807

Q
3
 , Q

2
 , Q

1
 , P

2
0.3725 0.5043 0.5363 0.8938 0.6672 0.8852

Q
3
 , Q

2
 , Q

1
 , P

1
0.4907 0.5149 0.5716 0.8996 0.7008 0.8995

Q
3
 , Q

2
 , P

3
 , P

2
0.4675 0.5042 0.5340 0.6921 0.5725 0.7072

Q
3
 , Q

2
 , P

3
 , P

1
0.4510 0.4911 0.5196 0.7331 0.6572 0.7981

Q
3
 , Q

2
 , P

2
 , P

1
0.3589 0.5029 0.5888 0.7716 0.8632 0.8941

Q
3
 , Q

1
 , P

3
 , P

2
0.5034 0.4963 0.5392 0.8811 0.6285 0.8773

Q
3
 , Q

1
 , P

3
 , P

1
0.5706 0.5037 0.5681 0.8823 0.6997 0.8947
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SAS combination search results

The F1 scores, sensitivities, and specificities achieved for SAS 
classification when using each of the six ML methods are 
shown in Tables 19, 20, and 21, respectively.

Table 18   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.4969 0.4946 0.6357 0.8926 0.8545 0.9376

Q
3
 , P

3
 , P

2
 , P

1
0.3848 0.4970 0.6126 0.7481 0.8530 0.8837

Q
2
 , Q

1
 , P

3
 , P

2
0.5945 0.4893 0.5352 0.8896 0.6571 0.8822

Q
2
 , Q

1
 , P

3
 , P

1
0.5533 0.4950 0.5648 0.8930 0.6989 0.9037

Q
2
 , Q

1
 , P

2
 , P

1
0.4495 0.5065 0.6446 0.9015 0.8734 0.9355

Q
2
 , P

3
 , P

2
 , P

1
0.4639 0.5040 0.6088 0.7818 0.8452 0.9045

Q
1
 , P

3
 , P

2
 , P

1
0.4415 0.5070 0.6326 0.8912 0.8458 0.9335

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.4859 0.5044 0.5277 0.8919 0.6246 0.8911

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.4646 0.4972 0.5655 0.8956 0.7031 0.9073

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.5008 0.4988 0.6065 0.8996 0.8332 0.9351

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.4528 0.5127 0.5701 0.7641 0.8577 0.8996

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.5331 0.5060 0.6081 0.8892 0.8406 0.9334

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4984 0.5101 0.5974 0.9002 0.8442 0.9370

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4155 0.4986 0.5800 0.8984 0.7703 0.9325
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Table 19   The F
1
 scores 

achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.5041 0.5288 0.4897 0.5723 0.5403 0.5592
Q

2
0.4681 0.5004 0.4839 0.7577 0.5691 0.7415

Q
1

0.3799 0.5028 0.4923 0.7779 0.6176 0.7529
P
3

0.4931 0.4972 0.5097 0.5530 0.5474 0.5331
P
2

0.4698 0.4990 0.5528 0.5627 0.4895 0.5453
P
1

0.5344 0.5023 0.5035 0.5171 0.5571 0.5060
Q

3
 , Q

2
0.4529 0.5136 0.5075 0.7623 0.4939 0.7608

Q
3
 , Q

1
0.4588 0.4893 0.5053 0.7814 0.5414 0.7758

Q
3
 , P

3
0.4992 0.4963 0.5207 0.5824 0.5463 0.5746

Q
3
 , P

2
0.5497 0.5068 0.5306 0.5869 0.5215 0.5850

Q
3
 , P

1
0.4195 0.5099 0.4992 0.5685 0.4776 0.5627

Q
2
 , Q

1
0.5064 0.5010 0.5025 0.8450 0.5853 0.8461

Q
2
 , P

3
0.4818 0.5020 0.5294 0.7555 0.6054 0.7694

Q
2
 , P

2
0.5116 0.5020 0.5405 0.7586 0.5454 0.7711

Q
2
 , P

1
0.5468 0.4913 0.5353 0.7568 0.5124 0.7609

Q
1
 , P

3
0.4564 0.4963 0.5252 0.7697 0.5067 0.7522

Q
1
 , P

2
0.5209 0.4986 0.5388 0.7708 0.5833 0.7606

Q
1
 , P

1
0.5186 0.5005 0.5327 0.7744 0.5426 0.7751

P
3
 , P

2
0.5450 0.5031 0.5256 0.5695 0.4960 0.5626

P
3
 , P

1
0.5464 0.4996 0.5282 0.5450 0.5510 0.5338

P
2
 , P

1
0.5399 0.5041 0.5447 0.5669 0.5133 0.5766

Q
3
 , Q

2
 , Q

1
0.4574 0.5081 0.5284 0.8447 0.5866 0.8552

Q
3
 , Q

2
 , P

3
0.5499 0.4925 0.5254 0.7624 0.5847 0.7830

Q
3
 , Q

2
 , P

2
0.4591 0.4936 0.5272 0.7629 0.5742 0.7829

Q
3
 , Q

2
 , P

1
0.4240 0.4980 0.5099 0.7627 0.4969 0.7800

Q
3
 , Q

1
 , P

3
0.4810 0.4994 0.5173 0.7808 0.5511 0.7691

Q
3
 , Q

1
 , P

2
0.4098 0.5069 0.5354 0.7749 0.5611 0.7750

Q
3
 , Q

1
 , P

1
0.5414 0.4999 0.5095 0.7761 0.5230 0.7880

Q
3
 , P

3
 , P

2
0.4492 0.5021 0.5330 0.5892 0.5636 0.5900

Q
3
 , P

3
 , P

1
0.4912 0.4971 0.5248 0.5767 0.5253 0.5759

Q
3
 , P

2
 , P

1
0.4476 0.4914 0.5259 0.5883 0.5758 0.5961

Q
2
 , Q

1
 , P

3
0.5243 0.5008 0.5154 0.8381 0.5874 0.8427

Q
2
 , Q

1
 , P

2
0.4994 0.5029 0.5349 0.8402 0.6139 0.8469

Q
2
 , Q

1
 , P

1
0.4988 0.5042 0.5279 0.8413 0.5861 0.8492

Q
2
 , P

3
 , P

2
0.5272 0.4992 0.5284 0.7549 0.5760 0.7802

Q
2
 , P

3
 , P

1
0.4351 0.5048 0.5351 0.7479 0.5724 0.7726

Q
2
 , P

2
 , P

1
0.5318 0.5081 0.5316 0.7563 0.5258 0.7752

Q
1
 , P

3
 , P

2
0.5152 0.5030 0.5454 0.7624 0.5782 0.7579

Q
1
 , P

3
 , P

1
0.4607 0.5022 0.5235 0.7690 0.5069 0.7680

Q
1
 , P

2
 , P

1
0.5437 0.5019 0.5319 0.7670 0.5930 0.7733

P
3
 , P

2
 , P

1
0.5314 0.4984 0.5352 0.5661 0.5518 0.5826

Q
3
 , Q

2
 , Q

1
 , P

3
0.4910 0.4925 0.5169 0.8407 0.5706 0.8541

Q
3
 , Q

2
 , Q

1
 , P

2
0.5113 0.5036 0.5301 0.8432 0.5952 0.8585

Q
3
 , Q

2
 , Q

1
 , P

1
0.5097 0.5078 0.5191 0.8404 0.5828 0.8558

Q
3
 , Q

2
 , P

3
 , P

2
0.4738 0.4968 0.5206 0.7549 0.5628 0.7879

Q
3
 , Q

2
 , P

3
 , P

1
0.4721 0.4944 0.5224 0.7545 0.5605 0.7857

Q
3
 , Q

2
 , P

2
 , P

1
0.5592 0.5081 0.5331 0.7616 0.5854 0.7911

Q
3
 , Q

1
 , P

3
 , P

2
0.4762 0.4987 0.5259 0.7738 0.5791 0.7711

Q
3
 , Q

1
 , P

3
 , P

1
0.4558 0.5108 0.5339 0.7749 0.5766 0.7850
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Table 19   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.4066 0.4957 0.5279 0.7719 0.5785 0.7813

Q
3
 , P

3
 , P

2
 , P

1
0.5257 0.4878 0.5395 0.5866 0.5695 0.5988

Q
2
 , Q

1
 , P

3
 , P

2
0.5318 0.4975 0.5487 0.8357 0.6064 0.8488

Q
2
 , Q

1
 , P

3
 , P

1
0.5348 0.4987 0.5326 0.8350 0.5879 0.8516

Q
2
 , Q

1
 , P

2
 , P

1
0.5537 0.5113 0.5337 0.8362 0.6258 0.8545

Q
2
 , P

3
 , P

2
 , P

1
0.4863 0.4966 0.5394 0.7458 0.6102 0.7797

Q
1
 , P

3
 , P

2
 , P

1
0.4711 0.5010 0.5358 0.7635 0.6088 0.7738

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.4763 0.5038 0.5312 0.8330 0.5966 0.8534

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.4953 0.4998 0.5212 0.8399 0.5809 0.8571

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.4917 0.5099 0.5304 0.8390 0.6070 0.8600

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.5344 0.5069 0.5292 0.7540 0.5963 0.7913

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.5205 0.4991 0.5309 0.7734 0.5740 0.7828

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4912 0.5012 0.5353 0.8325 0.6302 0.8502

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4642 0.5016 0.5301 0.8292 0.6040 0.8574
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Table 20   The sensitivities 
achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.2997 0.4576 0.5129 0.5678 0.4059 0.5585
Q

2
0.5460 0.5348 0.6918 0.7517 0.3839 0.7366

Q
1

0.7074 0.4613 0.6338 0.7582 0.1873 0.7224
P
3

0.4402 0.5127 0.5616 0.5453 0.3978 0.5431
P
2

0.5140 0.4981 0.4783 0.5629 0.5704 0.5717
P
1

0.4446 0.4836 0.4741 0.5177 0.3803 0.5244
Q

3
 , Q

2
0.5683 0.4928 0.5411 0.7612 0.5901 0.7585

Q
3
 , Q

1
0.4887 0.4947 0.5036 0.7630 0.4709 0.7504

Q
3
 , P

3
0.6479 0.5019 0.5147 0.5720 0.4578 0.5808

Q
3
 , P

2
0.5719 0.4985 0.5163 0.5849 0.5223 0.5999

Q
3
 , P

1
0.6081 0.4947 0.4958 0.5633 0.5570 0.5788

Q
2
 , Q

1
0.6572 0.5008 0.6082 0.8374 0.4909 0.8293

Q
2
 , P

3
0.5785 0.4860 0.5626 0,.7505 0.4320 0.7710

Q
2
 , P

2
0.4241 0.4801 0.5294 0.7560 0.6660 0.7763

Q
2
 , P

1
0.2405 0.5006 0.5127 0.7500 0.5838 0.7601

Q
1
 , P

3
0.5330 0.4970 0.5596 0.7534 0.5809 0.7305

Q
1
 , P

2
0.4943 0.5180 0.5282 0.7545 0.4884 0.7434

Q
1
 , P

1
0.5761 0.4991 0.5430 0.7516 0.6004 0.7549

P
3
 , P

2
0.4714 0.4939 0.5388 0.5668 0.6677 0.5744

P
3
 , P

1
0.5408 0.4954 0.5252 0.5406 0.4456 0.5421

P
2
 , P

1
0.4115 0.4958 0.4761 0.5761 0.6175 0.6056

Q
3
 , Q

2
 , Q

1
0.5695 0.5019 0.5106 0.8271 0.5303 0.8453

Q
3
 , Q

2
 , P

3
0.5651 0.5115 0.5075 0.7621 0.5044 0.7826

Q
3
 , Q

2
 , P

2
0.5768 0.5219 0.5101 0.7590 0.5941 0.7882

Q
3
 , Q

2
 , P

1
0.6416 0.5013 0.5350 0.7494 0.5963 0.7766

Q
3
 , Q

1
 , P

3
0.4649 0.5074 0.5237 0.7550 0.5783 0.7491

Q
3
 , Q

1
 , P

2
0.6031 0.50 0.5056 0.7584 0.5796 0.7514

Q
3
 , Q

1
 , P

1
0.3262 0.4942 0.5535 0.7527 0.6028 0.7677

Q
3
 , P

3
 , P

2
0.5316 0.4904 0.5184 0.5924 0.4985 0.6109

Q
3
 , P

3
 , P

1
0.3543 0.4949 0.5116 0.5765 0.5444 0.5855

Q
3
 , P

2
 , P

1
0.5225 0.5038 0.5041 0.5864 0.5018 0.6186

Q
2
 , Q

1
 , P

3
0.4531 0.4826 0.5427 0.8186 0.6309 0.8303

Q
2
 , Q

1
 , P

2
0.4642 0.5029 0.5481 0.8277 0.6178 0.8312

Q
2
 , Q

1
 , P

1
0.5179 0.5049 0.5544 0.8268 0.5788 0.8388

Q
2
 , P

3
 , P

2
0.5155 0.4806 0.5642 0.7500 0.6050 0.7757

Q
2
 , P

3
 , P

1
0.6119 0.4972 0.5365 0.7486 0.5358 0.7752

Q
2
 , P

2
 , P

1
0.5590 0.5214 0.5403 0.7578 0.7119 0.7791

Q
1
 , P

3
 , P

2
0.4890 0.5159 0.5345 0.7414 0.5886 0.7437

Q
1
 , P

3
 , P

1
0.5256 0.5041 0.5548 0.7498 0.6421 0.7479

Q
1
 , P

2
 , P

1
0.4038 0.5014 0.5175 0.7490 0.5995 0.7621

P
3
 , P

2
 , P

1
0.4461 0.4995 0.5216 0.5697 0.6360 0.6026

Q
3
 , Q

2
 , Q

1
 , P

3
0.6262 0.5155 0.5310 0.8274 0.6144 0.8411

Q
3
 , Q

2
 , Q

1
 , P

2
0.4646 0.5158 0.5531 0.8303 0.6113 0.8487

Q
3
 , Q

2
 , Q

1
 , P

1
0.4913 0.5011 0.5522 0.8242 0.5723 0.8466

Q
3
 , Q

2
 , P

3
 , P

2
0.5435 0.4831 0.54 0.7566 0.64 0.7924

Q
3
 , Q

2
 , P

3
 , P

1
0.5466 0.4884 0.5173 0.7534 0.5521 0.7874

Q
3
 , Q

2
 , P

2
 , P

1
0.4776 0.5022 0.5413 0.7555 0.5892 0.7900

Q
3
 , Q

1
 , P

3
 , P

2
0.5274 0.5010 0.5377 0.7587 0.5758 0.7545

Q
3
 , Q

1
 , P

3
 , P

1
0.4177 0.4823 0.5051 0.7560 0.5163 0.7675
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Table 20   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.5806 0.5103 0.5087 0.7550 0.5940 0.7735

Q
3
 , P

3
 , P

2
 , P

1
0.46 0.5052 0.5204 0.5857 0.6047 0.6121

Q
2
 , Q

1
 , P

3
 , P

2
0.4529 0.5117 0.5461 0.8241 0.6431 0.8413

Q
2
 , Q

1
 , P

3
 , P

1
0.2714 0.4964 0.5150 0.8186 0.6153 0.8437

Q
2
 , Q

1
 , P

2
 , P

1
0.5132 0.5057 0.5357 0.8214 0.6157 0.8386

Q
2
 , P

3
 , P

2
 , P

1
0.4464 0.5042 0.5606 0.7407 0.6294 0.7833

Q
1
 , P

3
 , P

2
 , P

1
0.4715 0.5032 0.5476 0.7439 0.6014 0.7599

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.44 0.4889 0.5266 0.8175 0.5881 0.8510

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.3896 0.4988 0.5447 0.8256 0.6080 0.8443

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.5676 0.50 0.5270 0.8274 0.6084 0.8525

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.4376 0.5137 0.5454 0.7499 0.6264 0.7859

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.4463 0.4941 0.5332 0.7509 0.6137 0.7634

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.6175 0.4940 0.5561 0.8159 0.5996 0.8451

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.5047 0.4996 0.5342 0.8102 0.6133 0.8504
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Table 21   The specificities 
achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.5731 0.5544 0.4823 0.5742 0.5901 0.5596
Q

2
0.4444 0.4890 0.4176 0.7615 0.6429 0.7445

Q
1

0.3032 0.5168 0.4462 0.7905 0.8099 0.7714
P
3

0.5105 0.4921 0.4920 0.5560 0.6038 0.5295
P
2

0.4563 0.4993 0.5814 0.5627 0.4633 0.5355
P
1

0.5672 0.5087 0.5135 0.5170 0.6254 0.4999
Q

3
 , Q

2
0.4192 0.5208 0.4962 0.7631 0.4624 0.7623

Q
3
 , Q

1
0.4499 0.4876 0.5059 0.7932 0.5676 0.7920

Q
3
 , P

3
0.4498 0.4945 0.5229 0.5867 0.5796 0.5722

Q
3
 , P

2
0.5414 0.5097 0.5359 0.5878 0.5213 0.5789

Q
3
 , P

1
0.3695 0.5152 0.5004 0.5706 0.4528 0.5565

Q
2
 , Q

1
0.4553 0.5012 0.4671 0.8507 0.6244 0.8585

Q
2
 , P

3
0.4512 0.5074 0.5175 0.7586 0.6807 0.7685

Q
2
 , P

2
0.5418 0.5094 0.5447 0.7603 0.5002 0.7679

Q
2
 , P

1
0.6622 0.4884 0.5436 0.7610 0.4879 0.7614

Q
1
 , P

3
0.4338 0.4961 0.5130 0.7800 0.4816 0.7653

Q
1
 , P

2
0.5303 0.4922 0.5428 0.7811 0.6224 0.7712

Q
1
 , P

1
0.4985 0.5010 0.5290 0.7889 0.5211 0.7880

P
3
 , P

2
0.5726 0.5062 0.5209 0.5707 0.4394 0.5581

P
3
 , P

1
0.5486 0.5011 0.5293 0.5467 0.5912 0.5309

P
2
 , P

1
0.5874 0.5069 0.5704 0.5633 0.4774 0.5649

Q
3
 , Q

2
 , Q

1
0.4242 0.5103 0.5348 0.8576 0.6101 0.8626

Q
3
 , Q

2
 , P

3
0.5442 0.4864 0.5319 0.7626 0.6180 0.7834

Q
3
 , Q

2
 , P

2
0.4241 0.4844 0.5334 0.7654 0.5662 0.7795

Q
3
 , Q

2
 , P

1
0.3655 0.4970 0.5014 0.7710 0.4641 0.7822

Q
3
 , Q

1
 , P

3
0.4862 0.4968 0.5152 0.7974 0.5408 0.7816

Q
3
 , Q

1
 , P

2
0.3600 0.5093 0.5464 0.7854 0.5539 0.7900

Q
3
 , Q

1
 , P

1
0.6213 0.5018 0.4945 0.7911 0.4948 0.8013

Q
3
 , P

3
 , P

2
0.4254 0.5061 0.5384 0.5879 0.5892 0.5813

Q
3
 , P

3
 , P

1
0.5358 0.4979 0.5295 0.5769 0.5186 0.5721

Q
3
 , P

2
 , P

1
0.4261 0.4874 0.5338 0.5892 0.6058 0.5866

Q
2
 , Q

1
 , P

3
0.5497 0.5069 0.5060 0.8522 0.5694 0.8519

Q
2
 , Q

1
 , P

2
0.5112 0.5029 0.5301 0.8494 0.6123 0.8585

Q
2
 , Q

1
 , P

1
0.4925 0.5040 0.5184 0.8519 0.5892 0.8569

Q
2
 , P

3
 , P

2
0.5315 0.5055 0.5156 0.7579 0.5643 0.7831

Q
2
 , P

3
 , P

1
0.3860 0.5075 0.5347 0.7476 0.5871 0.7710

Q
2
 , P

2
 , P

1
0.5220 0.5036 0.5285 0.7555 0.4595 0.7728

Q
1
 , P

3
 , P

2
0.5244 0.4987 0.5495 0.7755 0.5740 0.7667

Q
1
 , P

3
 , P

1
0.4414 0.5016 0.5125 0.7810 0.4611 0.7806

Q
1
 , P

2
 , P

1
0.5960 0.5021 0.5372 0.7782 0.5904 0.7804

P
3
 , P

2
 , P

1
0.5624 0.4981 0.5403 0.5647 0.5198 0.5745

Q
3
 , Q

2
 , Q

1
 , P

3
0.4471 0.4850 0.5120 0.8504 0.5532 0.8638

Q
3
 , Q

2
 , Q

1
 , P

2
0.5274 0.4996 0.5219 0.8527 0.5884 0.8660

Q
3
 , Q

2
 , Q

1
 , P

1
0.5160 0.5102 0.5076 0.8522 0.5872 0.8627

Q
3
 , Q

2
 , P

3
 , P

2
0.4522 0.5014 0.5138 0.7540 0.5326 0.7851

Q
3
 , Q

2
 , P

3
 , P

1
0.4492 0.4964 0.5243 0.7553 0.5639 0.7847

Q
3
 , Q

2
 , P

2
 , P

1
0.5909 0.5102 0.5302 0.7654 0.5839 0.7919

Q
3
 , Q

1
 , P

3
 , P

2
0.4603 0.4980 0.5218 0.7834 0.5805 0.7816

Q
3
 , Q

1
 , P

3
 , P

1
0.4671 0.5206 0.5444 0.7869 0.6011 0.7964



2130	 G. Jones et al.

1 3

PAD combination search results

The F1 scores, sensitivities, and specificities achieved for 
PAD classification when using each of the six ML methods 
are shown in Tables 22, 23, and 24 respectively.

Table 21   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.3623 0.4910 0.5348 0.7826 0.5723 0.7864

Q
3
 , P

3
 , P

2
 , P

1
0.5492 0.4823 0.5466 0.5870 0.5555 0.5932

Q
2
 , Q

1
 , P

3
 , P

2
0.5604 0.4929 0.5497 0.8441 0.5905 0.8545

Q
2
 , Q

1
 , P

3
 , P

1
0.6311 0.4995 0.5390 0.8468 0.5765 0.8575

Q
2
 , Q

1
 , P

2
 , P

1
0.5693 0.5133 0.5330 0.8469 0.6304 0.8664

Q
2
 , P

3
 , P

2
 , P

1
0.4992 0.4941 0.5316 0.7489 0.6018 0.7774

Q
1
 , P

3
 , P

2
 , P

1
0.4710 0.5003 0.5315 0.7757 0.6121 0.7826

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.4877 0.5089 0.5329 0.8442 0.6003 0.8552

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.5301 0.5002 0.5130 0.8504 0.5699 0.8668

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.4670 0.5133 0.5317 0.8475 0.6064 0.8657

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.5697 0.5046 0.5234 0.7566 0.5836 0.7950

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.5467 0.5008 0.5302 0.7876 0.5581 0.7954

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4502 0.5037 0.5278 0.8444 0.6443 0.8540

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4520 0.5023 0.5287 0.8427 0.60 0.8627
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Table 22   The F
1
 scores 

achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.5017 0.5115 0.6645 0.8224 0.6897 0.8169
Q

2
0.5621 0.5222 0.5266 0.7127 0.4734 0.7076

Q
1

0.3927 0.4822 0.5310 0.8240 0.4713 0.8183
P
3

0.5162 0.5053 0.5182 0.5613 0.4131 0.5406
P
2

0.5030 0.4954 0.5242 0.5753 0.4741 0.5529
P
1

0.4290 0.5031 0.5038 0.5517 0.5487 0.5335
Q

3
 , Q

2
0.4740 0.5099 0.5926 0.8480 0.7040 0.8557

Q
3
 , Q

1
0.5355 0.4965 0.5786 0.8959 0.7254 0.9041

Q
3
 , P

3
0.4800 0.4932 0.5808 0.8050 0.6676 0.8151

Q
3
 , P

2
0.5118 0.4998 0.5824 0.8152 0.7057 0.8201

Q
3
 , P

1
0.5672 0.4979 0.5768 0.8103 0.7206 0.8221

Q
2
 , Q

1
0.5236 0.4962 0.5239 0.8556 0.5610 0.8637

Q
2
 , P

3
0.4929 0.4980 0.5069 0.7134 0.6117 0.7200

Q
2
 , P

2
0.5323 0.4956 0.5133 0.7126 0.5233 0.7255

Q
2
 , P

1
0.4602 0.5075 0.5222 0.7117 0.5585 0.7221

Q
1
 , P

3
0.5293 0.5116 0.5420 0.8136 0.5602 0.8204

Q
1
 , P

2
0.5335 0.4926 0.5406 0.8187 0.5818 0.8314

Q
1
 , P

1
0.5549 0.5011 0.5417 0.8181 0.6514 0.8307

P
3
 , P

2
0.4829 0.4996 0.5319 0.5810 0.5386 0.5733

P
3
 , P

1
0.4823 0.4976 0.5142 0.5624 0.5141 0.5559

P
2
 , P

1
0.5434 0.5035 0.5145 0.5904 0.4662 0.6002

Q
3
 , Q

2
 , Q

1
0.5209 0.4891 0.5619 0.9061 0.7004 0.9168

Q
3
 , Q

2
 , P

3
0.4717 0.5146 0.5605 0.8370 0.6864 0.8556

Q
3
 , Q

2
 , P

2
0.4651 0.5049 0.5640 0.8424 0.7074 0.8606

Q
3
 , Q

2
 , P

1
0.4643 0.5064 0.5610 0.8408 0.7040 0.8592

Q
3
 , Q

1
 , P

3
0.4947 0.4976 0.5679 0.8833 0.7148 0.9009

Q
3
 , Q

1
 , P

2
0.5615 0.4984 0.5741 0.8858 0.7100 0.9022

Q
3
 , Q

1
 , P

1
0.4149 0.4941 0.5760 0.8850 0.7361 0.9046

Q
3
 , P

3
 , P

2
0.4800 0.5065 0.5598 0.8005 0.6804 0.8215

Q
3
 , P

3
 , P

1
0.5214 0.5050 0.5642 0.8005 0.6886 0.8179

Q
3
 , P

2
 , P

1
0.4792 0.5065 0.5630 0.8004 0.7104 0.8178

Q
2
 , Q

1
 , P

3
0.5208 0.5006 0.5334 0.8469 0.6300 0.8617

Q
2
 , Q

1
 , P

2
0.4874 0.4974 0.5318 0.8472 0.5992 0.8703

Q
2
 , Q

1
 , P

1
0.5340 0.4938 0.5311 0.8472 0.6472 0.8682

Q
2
 , P

3
 , P

2
0.5306 0.4996 0.5162 0.7147 0.5581 0.7379

Q
2
 , P

3
 , P

1
0.5012 0.4989 0.5152 0.7062 0.5165 0.7311

Q
2
 , P

2
 , P

1
0.5165 0.4983 0.5232 0.7118 0.5659 0.7322

Q
1
 , P

3
 , P

2
0.5324 0.4941 0.5382 0.8086 0.6117 0.8302

Q
1
 , P

3
 , P

1
0.4632 0.5047 0.5322 0.8116 0.6127 0.8324

Q
1
 , P

2
 , P

1
0.4524 0.4930 0.5429 0.8146 0.6441 0.8380

P
3
 , P

2
 , P

1
0.5016 0.5023 0.5262 0.5838 0.5654 0.6078

Q
3
 , Q

2
 , Q

1
 , P

3
0.5480 0.5086 0.5600 0.8992 0.6988 0.9138

Q
3
 , Q

2
 , Q

1
 , P

2
0.4505 0.4997 0.5564 0.8997 0.7017 0.9164

Q
3
 , Q

2
 , Q

1
 , P

1
0.4973 0.5053 0.5601 0.8990 0.7030 0.9196

Q
3
 , Q

2
 , P

3
 , P

2
0.3998 0.4993 0.5601 0.8376 0.6688 0.8612

Q
3
 , Q

2
 , P

3
 , P

1
0.5253 0.4973 0.5558 0.8330 0.6738 0.8556

Q
3
 , Q

2
 , P

2
 , P

1
0.4726 0.4972 0.5650 0.8385 0.6811 0.8597

Q
3
 , Q

1
 , P

3
 , P

2
0.5030 0.4976 0.5684 0.8803 0.6845 0.8999

Q
3
 , Q

1
 , P

3
 , P

1
0.5189 0.5019 0.5595 0.8839 0.6849 0.9013
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Table 22   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.5692 0.4994 0.5715 0.8805 0.6962 0.9025

Q
3
 , P

3
 , P

2
 , P

1
0.4801 0.4991 0.5576 0.7940 0.6746 0.8170

Q
2
 , Q

1
 , P

3
 , P

2
0.4681 0.4966 0.5404 0.8417 0.6239 0.8624

Q
2
 , Q

1
 , P

3
 , P

1
0.5009 0.5015 0.5278 0.8378 0.6146 0.8677

Q
2
 , Q

1
 , P

2
 , P

1
0.5278 0.4979 0.5304 0.8433 0.6327 0.8690

Q
2
 , P

3
 , P

2
 , P

1
0.5242 0.5024 0.5180 0.7022 0.5806 0.7376

Q
1
 , P

3
 , P

2
 , P

1
0.4996 0.5033 0.5355 0.8087 0.6158 0.8328

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.5012 0.5006 0.5495 0.8971 0.6889 0.9169

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.5025 0.4969 0.5562 0.8952 0.6887 0.9151

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.5023 0.5019 0.5502 0.8969 0.6895 0.9170

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.4946 0.4923 0.5488 0.8279 0.6545 0.8597

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.4489 0.4972 0.5666 0.8758 0.6688 0.9042

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.5377 0.4995 0.5391 0.8389 0.6154 0.8655

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4479 0.4974 0.5573 0.8935 0.6681 0.9187
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Table 23   The sensitivities 
achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.3598 0.5048 0.6806 0.8219 0.5998 0.8188
Q

2
0.5441 0.4878 0.5879 0.6858 0.5536 0.6922

Q
1

0.5735 0.5026 0.6065 0.8126 0.5959 0.8140
P
3

0.4246 0.4935 0.5472 0.5358 0.6388 0.5425
P
2

0.4565 0.4985 0.5368 0.5532 0.5572 0.5576
P
1

0.6253 0.5001 0.5571 0.5245 0.3899 0.5261
Q

3
 , Q

2
0.5595 0.4912 0.6297 0.8414 0.7176 0.8532

Q
3
 , Q

1
0.4753 0.5087 0.6324 0.8825 0.7460 0.8950

Q
3
 , P

3
0.6086 0.5025 0.5980 0.8021 0.6523 0.8173

Q
3
 , P

2
0.3310 0.4895 0.5919 0.8089 0.7679 0.8269

Q
3
 , P

1
0.3079 0.5280 0.6021 0.8051 0.7461 0.8266

Q
2
 , Q

1
0.4323 0.4902 0.5878 0.8346 0.6016 0.8521

Q
2
 , P

3
0.5419 0.4877 0.5744 0.6826 0.2813 0.7126

Q
2
 , P

2
0.5505 0.5051 0.5776 0.6862 0.5169 0.7275

Q
2
 , P

1
0.6100 0.4976 0.5697 0.6875 0.4716 0.7127

Q
1
 , P

3
0.3309 0.4971 0.5476 0.8001 0.5911 0.8168

Q
1
 , P

2
0.5495 0.5063 0.5827 0.8019 0.5508 0.8288

Q
1
 , P

1
0.3834 0.4930 0.5778 0.8059 0.6787 0.8272

P
3
 , P

2
0.4789 0.4946 0.5458 0.5569 0.5443 0.5709

P
3
 , P

1
0.5309 0.5066 0.5642 0.5425 0.5406 0.5484

P
2
 , P

1
0.5325 0.4961 0.5863 0.5651 0.6096 0.5998

Q
3
 , Q

2
 , Q

1
0.4948 0.5163 0.5976 0.8885 0.7801 0.9055

Q
3
 , Q

2
 , P

3
0.3895 0.4985 0.5568 0.8323 0.7286 0.8572

Q
3
 , Q

2
 , P

2
0.5612 0.5051 0.5851 0.8388 0.6953 0.8545

Q
3
 , Q

2
 , P

1
0.4521 0.4890 0.5787 0.8278 0.7259 0.8559

Q
3
 , Q

1
 , P

3
0.5637 0.5045 0.5826 0.8707 0.7050 0.8913

Q
3
 , Q

1
 , P

2
0.4240 0.5030 0.5974 0.8710 0.7409 0.8923

Q
3
 , Q

1
 , P

1
0.6578 0.5094 0.6104 0.8663 0.6902 0.8928

Q
3
 , P

3
 , P

2
0.3869 0.4995 0.5834 0.7984 0.6967 0.8211

Q
3
 , P

3
 , P

1
0.2820 0.5009 0.5706 0.7914 0.6994 0.8208

Q
3
 , P

2
 , P

1
0.5814 0.4880 0.5824 0.7970 0.6789 0.8163

Q
2
 , Q

1
 , P

3
0.3260 0.4775 0.5663 0.8303 0.5969 0.8540

Q
2
 , Q

1
 , P

2
0.4239 0.4959 0.5625 0.8309 0.6028 0.8636

Q
2
 , Q

1
 , P

1
0.3205 0.5176 0.5610 0.8289 0.6418 0.8595

Q
2
 , P

3
 , P

2
0.4276 0.4900 0.5714 0.6920 0.5968 0.7328

Q
2
 , P

3
 , P

1
0.5554 0.4896 0.5560 0.6859 0.6252 0.7136

Q
2
 , P

2
 , P

1
0.4250 0.5134 0.5664 0.6845 0.5546 0.7245

Q
1
 , P

3
 , P

2
0.5668 0.4987 0.5330 0.7935 0.5752 0.8208

Q
1
 , P

3
 , P

1
0.4876 0.5104 0.5537 0.7998 0.6082 0.8287

Q
1
 , P

2
 , P

1
0.6109 0.4885 0.5572 0.8022 0.5978 0.8313

P
3
 , P

2
 , P

1
0.3959 0.4901 0.5652 0.5688 0.5532 0.6022

Q
3
 , Q

2
 , Q

1
 , P

3
0.3678 0.4879 0.5510 0.8819 0.7136 0.9035

Q
3
 , Q

2
 , Q

1
 , P

2
0.4522 0.5111 0.5909 0.8868 0.7224 0.9085

Q
3
 , Q

2
 , Q

1
 , P

1
0.5593 0.4867 0.5680 0.8846 0.7250 0.9068

Q
3
 , Q

2
 , P

3
 , P

2
0.5688 0.4972 0.5879 0.8231 0.7166 0.8574

Q
3
 , Q

2
 , P

3
 , P

1
0.4517 0.5112 0.5707 0.8201 0.7036 0.8504

Q
3
 , Q

2
 , P

2
 , P

1
0.5414 0.4904 0.5642 0.8247 0.7091 0.8526

Q
3
 , Q

1
 , P

3
 , P

2
0.6603 0.4851 0.5512 0.8655 0.7055 0.8936

Q
3
 , Q

1
 , P

3
 , P

1
0.3708 0.4993 0.5781 0.8655 0.7178 0.8951
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Table 23   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.4094 0.4967 0.5752 0.8612 0.7042 0.8926

Q
3
 , P

3
 , P

2
 , P

1
0.5180 0.5097 0.5724 0.7834 0.6593 0.8182

Q
2
 , Q

1
 , P

3
 , P

2
0.3984 0.4901 0.5564 0.8199 0.6451 0.8568

Q
2
 , Q

1
 , P

3
 , P

1
0.3787 0.5159 0.5556 0.8243 0.6639 0.8587

Q
2
 , Q

1
 , P

2
 , P

1
0.4432 0.5153 0.5587 0.8324 0.6442 0.8633

Q
2
 , P

3
 , P

2
 , P

1
0.4612 0.4878 0.5385 0.6811 0.5837 0.7262

Q
1
 , P

3
 , P

2
 , P

1
0.4762 0.4917 0.5679 0.7953 0.6449 0.8315

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.3675 0.5049 0.5659 0.8802 0.6844 0.9133

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.3552 0.4925 0.5784 0.8766 0.6848 0.9073

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.4635 0.4996 0.5754 0.8829 0.6910 0.9041

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.4797 0.5169 0.5518 0.8142 0.6891 0.8544

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.5274 0.5069 0.5507 0.8625 0.6738 0.8986

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.3947 0.4911 0.5493 0.8258 0.6190 0.8556

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.6385 0.4859 0.5511 0.8813 0.6588 0.9102
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Table 24   The specificities 
achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.5493 0.5139 0.6566 0.8228 0.7371 0.8157
Q

2
0.5692 0.5344 0.5047 0.7276 0.4486 0.7161

Q
1

0.3486 0.4758 0.5038 0.8320 0.4329 0.8214
P
3

0.5481 0.5093 0.5081 0.5713 0.3544 0.5399
P
2

0.5187 0.4945 0.5198 0.5843 0.4484 0.5512
P
1

0.3754 0.5042 0.4859 0.5622 0.6088 0.5362
Q

3
 , Q

2
0.4475 0.5164 0.5770 0.8529 0.6967 0.8576

Q
3
 , Q

1
0.5576 0.4926 0.5568 0.9068 0.7137 0.9117

Q
3
 , P

3
0.4395 0.4902 0.5738 0.8070 0.6754 0.8137

Q
3
 , P

2
0.5740 0.5033 0.5785 0.8196 0.6718 0.8155

Q
3
 , P

1
0.6699 0.4880 0.5666 0.8140 0.7063 0.8190

Q
2
 , Q

1
0.5561 0.4983 0.5013 0.8714 0.5452 0.8726

Q
2
 , P

3
0.4769 0.5015 0.4840 0.7305 0.7573 0.7243

Q
2
 , P

2
0.5257 0.4926 0.4912 0.7273 0.5257 0.7245

Q
2
 , P

1
0.4155 0.5109 0.5055 0.7252 0.5922 0.7275

Q
1
 , P

3
0.6008 0.5166 0.5400 0.8229 0.5482 0.8230

Q
1
 , P

2
0.5277 0.4882 0.5251 0.8305 0.5946 0.8334

Q
1
 , P

1
0.6209 0.5039 0.5284 0.8266 0.6383 0.8333

P
3
 , P

2
0.4842 0.5013 0.5269 0.5910 0.5365 0.5743

P
3
 , P

1
0.4669 0.4947 0.4970 0.5703 0.5050 0.5589

P
2
 , P

1
0.5476 0.5061 0.4897 0.6010 0.4227 0.6004

Q
3
 , Q

2
 , Q

1
0.5302 0.4803 0.5480 0.9208 0.6575 0.9265

Q
3
 , Q

2
 , P

3
0.4972 0.5203 0.5620 0.8405 0.6644 0.8545

Q
3
 , Q

2
 , P

2
0.4360 0.5049 0.5558 0.8451 0.7141 0.8653

Q
3
 , Q

2
 , P

1
0.4681 0.5123 0.5541 0.8504 0.6922 0.8618

Q
3
 , Q

1
 , P

3
0.4721 0.4954 0.5622 0.8933 0.7204 0.9088

Q
3
 , Q

1
 , P

2
0.6153 0.4970 0.5648 0.8976 0.6931 0.9104

Q
3
 , Q

1
 , P

1
0.3514 0.4892 0.5621 0.9000 0.7629 0.9144

Q
3
 , P

3
 , P

2
0.5095 0.5090 0.5507 0.8020 0.6720 0.8218

Q
3
 , P

3
 , P

1
0.6059 0.5064 0.5617 0.8066 0.6830 0.8159

Q
3
 , P

2
 , P

1
0.4470 0.5129 0.5555 0.8028 0.7279 0.8189

Q
2
 , Q

1
 , P

3
0.5894 0.5084 0.5215 0.8592 0.6453 0.8677

Q
2
 , Q

1
 , P

2
0.5079 0.4979 0.5207 0.8593 0.5977 0.8755

Q
2
 , Q

1
 , P

1
0.6118 0.4860 0.5203 0.8607 0.6498 0.8749

Q
2
 , P

3
 , P

2
0.5679 0.5029 0.4971 0.7274 0.5432 0.7410

Q
2
 , P

3
 , P

1
0.4831 0.5021 0.5011 0.7173 0.4787 0.7413

Q
2
 , P

2
 , P

1
0.5484 0.4934 0.5080 0.7270 0.5704 0.7368

Q
1
 , P

3
 , P

2
0.5200 0.4927 0.5402 0.8190 0.6278 0.8369

Q
1
 , P

3
 , P

1
0.4559 0.5028 0.5245 0.8198 0.6148 0.8351

Q
1
 , P

2
 , P

1
0.4061 0.4945 0.5376 0.8232 0.6662 0.8430

P
3
 , P

2
 , P

1
0.5371 0.5064 0.5123 0.5900 0.5703 0.6103

Q
3
 , Q

2
 , Q

1
 , P

3
0.6161 0.5157 0.5636 0.9135 0.6910 0.9226

Q
3
 , Q

2
 , Q

1
 , P

2
0.4501 0.4960 0.5432 0.9104 0.6906 0.9231

Q
3
 , Q

2
 , Q

1
 , P

1
0.4769 0.5116 0.5571 0.9108 0.6911 0.9306

Q
3
 , Q

2
 , P

3
 , P

2
0.3576 0.5001 0.5493 0.8481 0.6448 0.8642

Q
3
 , Q

2
 , P

3
 , P

1
0.5516 0.4927 0.5502 0.8423 0.6587 0.8596

Q
3
 , Q

2
 , P

2
 , P

1
0.4514 0.4995 0.5654 0.8485 0.6667 0.8652

Q
3
 , Q

1
 , P

3
 , P

2
0.4502 0.5018 0.5753 0.8920 0.6736 0.9052

Q
3
 , Q

1
 , P

3
 , P

1
0.5708 0.5029 0.5523 0.8986 0.6678 0.9065
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Table 24   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.6328 0.5003 0.5701 0.8957 0.6920 0.9107

Q
3
 , P

3
 , P

2
 , P

1
0.4682 0.4956 0.5519 0.8011 0.6825 0.8163

Q
2
 , Q

1
 , P

3
 , P

2
0.4894 0.4988 0.5346 0.8577 0.6144 0.8667

Q
2
 , Q

1
 , P

3
 , P

1
0.5418 0.4968 0.5179 0.8477 0.5928 0.8747

Q
2
 , Q

1
 , P

2
 , P

1
0.5582 0.4922 0.5202 0.8513 0.6274 0.8734

Q
2
 , P

3
 , P

2
 , P

1
0.5467 0.5073 0.5109 0.7137 0.5794 0.7443

Q
1
 , P

3
 , P

2
 , P

1
0.5075 0.5073 0.5237 0.8179 0.6029 0.8338

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.5460 0.4992 0.5434 0.9110 0.6913 0.9201

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.5520 0.4984 0.5477 0.9103 0.6909 0.9218

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.5154 0.5028 0.5407 0.9084 0.6888 0.9281

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.4996 0.4843 0.5478 0.8377 0.6378 0.8638

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.4262 0.4940 0.5729 0.8862 0.6664 0.9089

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.5904 0.5024 0.5354 0.8485 0.6138 0.8732

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.3930 0.5013 0.5597 0.9035 0.6729 0.9261

AAA combination search results

The F1 scores, sensitivities, and specificities achieved for 
AAA classification when using each of the six ML methods 
are shown in Tables 25, 26 and 27 respectively.
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Table 25   The F
1
 scores 

achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.4670 0.4881 0.8454 0.9095 0.8606 0.9294
Q

2
0.5754 0.4952 0.8246 0.9516 0.9092 0.9640

Q
1

0.4440 0.4843 0.9481 0.9741 0.9697 0.9805
P
3

0.4999 0.5102 0.8664 0.9027 0.8692 0.9226
P
2

0.5782 0.4944 0.8717 0.9087 0.8793 0.9311
P
1

0.4790 0.4826 0.8212 0.8771 0.8416 0.8884
Q

3
 , Q

2
0.3850 0.4983 0.8895 0.9753 0.9249 0.9843

Q
3
 , Q

1
0.4982 0.5029 0.9521 0.9840 0.9749 0.9919

Q
3
 , P

3
0.5126 0.4960 0.9215 0.9483 0.9249 0.9767

Q
3
 , P

2
0.6111 0.4958 0.9355 0.9543 0.9385 0.9770

Q
3
 , P

1
0.4737 0.4971 0.9286 0.9498 0.9448 0.9702

Q
2
 , Q

1
0.5523 0.4970 0.9523 0.9868 0.9718 0.9928

Q
2
 , P

3
0.5080 0.4994 0.9305 0.9604 0.9430 0.9805

Q
2
 , P

2
0.4756 0.4996 0.9371 0.9712 0.9552 0.9849

Q
2
 , P

1
0.4032 0.4975 0.9168 0.9689 0.9413 0.9828

Q
1
 , P

3
0.5350 0.5046 0.9630 0.9808 0.9741 0.9870

Q
1
 , P

2
0.4613 0.4981 0.9681 0.9820 0.9756 0.9900

Q
1
 , P

1
0.4909 0.5003 0.9747 0.9798 0.9801 0.9852

P
3
 , P

2
0.5343 0.5018 0.9247 0.9335 0.9305 0.9677

P
3
 , P

1
0.4857 0.5078 0.9321 0.9345 0.9311 0.9675

P
2
 , P

1
0.5431 0.5039 0.9213 0.9365 0.9405 0.9625

Q
3
 , Q

2
 , Q

1
0.4890 0.5164 0.9603 0.9912 0.9729 0.9962

Q
3
 , Q

2
 , P

3
0.5485 0.4993 0.9452 0.9771 0.9436 0.9905

Q
3
 , Q

2
 , P

2
0.5359 0.4998 0.9542 0.9791 0.9568 0.9910

Q
3
 , Q

2
 , P

1
0.4374 0.5070 0.9518 0.9803 0.9503 0.9906

Q
3
 , Q

1
 , P

3
0.5193 0.5085 0.9663 0.9861 0.9740 0.9936

Q
3
 , Q

1
 , P

2
0.5325 0.5034 0.9747 0.9884 0.9784 0.9939

Q
3
 , Q

1
 , P

1
0.4819 0.4943 0.9781 0.9850 0.9796 0.9936

Q
3
 , P

3
 , P

2
0.4106 0.4991 0.9479 0.9586 0.9434 0.9807

Q
3
 , P

3
 , P

1
0.4291 0.4901 0.9560 0.9598 0.9491 0.9846

Q
3
 , P

2
 , P

1
0.4537 0.4948 0.9492 0.9647 0.9515 0.9804

Q
2
 , Q

1
 , P

3
0.5071 0.5051 0.9685 0.9877 0.9795 0.9944

Q
2
 , Q

1
 , P

2
0.4853 0.4951 0.9724 0.9893 0.9797 0.9957

Q
2
 , Q

1
 , P

1
0.4459 0.4994 0.9752 0.9885 0.9816 0.9952

Q
2
 , P

3
 , P

2
0.4060 0.4932 0.9566 0.9714 0.9576 0.9873

Q
2
 , P

3
 , P

1
0.5857 0.4972 0.9577 0.9722 0.9582 0.9882

Q
2
 , P

2
 , P

1
0.4776 0.5030 0.9497 0.9755 0.9671 0.9892

Q
1
 , P

3
 , P

2
0.4224 0.4974 0.9729 0.9823 0.9788 0.9904

Q
1
 , P

3
 , P

1
0.4944 0.4987 0.9747 0.9813 0.9797 0.9897

Q
1
 , P

2
 , P

1
0.5362 0.5051 0.9756 0.9828 0.9827 0.9917

P
3
 , P

2
 , P

1
0.4406 0.5001 0.9479 0.9455 0.9517 0.9750

Q
3
 , Q

2
 , Q

1
 , P

3
0.5284 0.5135 0.9711 0.9914 0.9756 0.9965

Q
3
 , Q

2
 , Q

1
 , P

2
0.5279 0.5066 0.9784 0.9923 0.9794 0.9972

Q
3
 , Q

2
 , Q

1
 , P

1
0.4331 0.4983 0.9790 0.9903 0.9792 0.9961

Q
3
 , Q

2
 , P

3
 , P

2
0.5090 0.5041 0.9636 0.9797 0.9582 0.9930

Q
3
 , Q

2
 , P

3
 , P

1
0.5250 0.4963 0.9665 0.9784 0.9633 0.9922

Q
3
 , Q

2
 , P

2
 , P

1
0.4600 0.4887 0.9646 0.9829 0.9724 0.9937

Q
3
 , Q

1
 , P

3
 , P

2
0.4994 0.5003 0.9759 0.9880 0.9771 0.9939

Q
3
 , Q

1
 , P

3
 , P

1
0.5058 0.5060 0.9779 0.9867 0.9782 0.9942
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Table 25   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.4981 0.4974 0.9781 0.9869 0.9778 0.9950

Q
3
 , P

3
 , P

2
 , P

1
0.4679 0.5050 0.9634 0.9651 0.9595 0.9856

Q
2
 , Q

1
 , P

3
 , P

2
0.4910 0.4989 0.9776 0.9901 0.9759 0.9954

Q
2
 , Q

1
 , P

3
 , P

1
0.4893 0.5041 0.9794 0.9892 0.9772 0.9948

Q
2
 , Q

1
 , P

2
 , P

1
0.4849 0.4994 0.9771 0.9911 0.9800 0.9957

Q
2
 , P

3
 , P

2
 , P

1
0.4963 0.5081 0.9644 0.9748 0.9684 0.9903

Q
1
 , P

3
 , P

2
 , P

1
0.5090 0.5054 0.9763 0.9857 0.9788 0.9910

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.4588 0.4997 0.9781 0.9915 0.9739 0.9970

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.5224 0.4957 0.9800 0.9920 0.9767 0.9970

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.5003 0.4947 0.9823 0.9912 0.9808 0.9966

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.4667 0.4900 0.9708 0.9828 0.9668 0.9948

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.5322 0.4962 0.9801 0.9874 0.9775 0.9938

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4450 0.5064 0.9801 0.9892 0.9808 0.9961

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.5083 0.4991 0.9820 0.9912 0.9785 0.9970
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Table 26   The sensitivities 
achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.5683 0.5120 0.8568 0.8878 0.8661 0.9300
Q

2
0.5738 0.5089 0.8136 0.9355 0.9100 0.9638

Q
1

0.4451 0.4962 0.9517 0.9654 0.9673 0.9799
P
3

0.4846 0.5035 0.8785 0.8765 0.8660 0.9202
P
2

0.4451 0.5110 0.8712 0.9005 0.8818 0.9352
P
1

0.6616 0.4902 0.8491 0.8514 0.8308 0.8770
Q

3
 , Q

2
0.5927 0.4676 0.8868 0.9652 0.9308 0.9835

Q
3
 , Q

1
0.5541 0.5333 0.9508 0.9757 0.9747 0.9907

Q
3
 , P

3
0.4269 0.4894 0.9222 0.9282 0.9266 0.9746

Q
3
 , P

2
0.4746 0.5016 0.9325 0.9382 0.9379 0.9819

Q
3
 , P

1
0.5850 0.4760 0.9213 0.9317 0.9462 0.9694

Q
2
 , Q

1
0.2504 0.5034 0.9534 0.9810 0.9738 0.9919

Q
2
 , P

3
0.4111 0.4591 0.9285 0.9464 0.9439 0.9793

Q
2
 , P

2
0.5865 0.5093 0.9345 0.9604 0.9544 0.9836

Q
2
 , P

1
0.5669 0.4940 0.9227 0.9552 0.9471 0.9817

Q
1
 , P

3
0.4266 0.4741 0.9626 0.9729 0.9743 0.9850

Q
1
 , P

2
0.5075 0.4991 0.9664 0.9743 0.9780 0.9895

Q
1
 , P

1
0.5143 0.5055 0.9742 0.9715 0.9806 0.9841

P
3
 , P

2
0.4414 0.4981 0.9287 0.9209 0.9379 0.9673

P
3
 , P

1
0.5355 0.4956 0.9461 0.9109 0.9337 0.9631

P
2
 , P

1
0.4090 0.4957 0.9311 0.9260 0.9359 0.9596

Q
3
 , Q

2
 , Q

1
0.6548 0.5014 0.9592 0.9864 0.9760 0.9954

Q
3
 , Q

2
 , P

3
0.4363 0.4885 0.9445 0.9689 0.9482 0.9897

Q
3
 , Q

2
 , P

2
0.5720 0.5284 0.9506 0.9704 0.9620 0.9904

Q
3
 , Q

2
 , P

1
0.4962 0.5110 0.9455 0.9723 0.9511 0.9914

Q
3
 , Q

1
 , P

3
0.5329 0.4857 0.9666 0.9793 0.9774 0.9913

Q
3
 , Q

1
 , P

2
0.3570 0.4931 0.9701 0.9820 0.9794 0.9929

Q
3
 , Q

1
 , P

1
0.3667 0.5022 0.9771 0.9755 0.9805 0.9924

Q
3
 , P

3
 , P

2
0.6250 0.5064 0.9434 0.9445 0.9426 0.9822

Q
3
 , P

3
 , P

1
0.4716 0.4865 0.9564 0.9413 0.9473 0.9843

Q
3
 , P

2
 , P

1
0.5103 0.4982 0.9447 0.9522 0.9575 0.9819

Q
2
 , Q

1
 , P

3
0.4499 0.4986 0.9676 0.9815 0.9797 0.9933

Q
2
 , Q

1
 , P

2
0.6389 0.4936 0.9689 0.9838 0.9795 0.9947

Q
2
 , Q

1
 , P

1
0.6675 0.5043 0.9741 0.9817 0.9811 0.9945

Q
2
 , P

3
 , P

2
0.5890 0.4948 0.9564 0.9609 0.9598 0.9864

Q
2
 , P

3
 , P

1
0.4238 0.5033 0.9606 0.9619 0.9578 0.9868

Q
2
 , P

2
 , P

1
0.5582 0.5024 0.9540 0.9660 0.9686 0.9881

Q
1
 , P

3
 , P

2
0.5561 0.4904 0.9703 0.9736 0.9786 0.9898

Q
1
 , P

3
 , P

1
0.6229 0.5165 0.9753 0.9725 0.9799 0.9881

Q
1
 , P

2
 , P

1
0.4489 0.5084 0.9753 0.9750 0.9837 0.9896

P
3
 , P

2
 , P

1
0.6036 0.5139 0.9563 0.9278 0.9522 0.9726

Q
3
 , Q

2
 , Q

1
 , P

3
0.4318 0.5058 0.9684 0.9870 0.9803 0.9953

Q
3
 , Q

2
 , Q

1
 , P

2
0.5271 0.4841 0.9751 0.9879 0.9791 0.9959

Q
3
 , Q

2
 , Q

1
 , P

1
0.6257 0.4871 0.9768 0.9848 0.9794 0.9944

Q
3
 , Q

2
 , P

3
 , P

2
0.4330 0.5113 0.9615 0.9692 0.9620 0.9922

Q
3
 , Q

2
 , P

3
 , P

1
0.4955 0.4973 0.9639 0.9675 0.9661 0.9925

Q
3
 , Q

2
 , P

2
 , P

1
0.4783 0.4925 0.9610 0.9737 0.9660 0.9930

Q
3
 , Q

1
 , P

3
 , P

2
0.4914 0.4957 0.9741 0.9818 0.9795 0.9932

Q
3
 , Q

1
 , P

3
 , P

1
0.5768 0.5028 0.9778 0.9794 0.9788 0.9928
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Table 26   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.4613 0.4924 0.9749 0.9805 0.9771 0.9940

Q
3
 , P

3
 , P

2
 , P

1
0.6938 0.5114 0.9619 0.9516 0.9633 0.9856

Q
2
 , Q

1
 , P

3
 , P

2
0.5969 0.4915 0.9770 0.9861 0.9772 0.9944

Q
2
 , Q

1
 , P

3
 , P

1
0.5361 0.5044 0.9800 0.9846 0.9770 0.9938

Q
2
 , Q

1
 , P

2
 , P

1
0.5999 0.5042 0.9753 0.9867 0.9815 0.9944

Q
2
 , P

3
 , P

2
 , P

1
0.4892 0.4885 0.9676 0.9650 0.9693 0.9887

Q
1
 , P

3
 , P

2
 , P

1
0.3810 0.5027 0.9761 0.9790 0.9791 0.9887

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.5180 0.5006 0.9749 0.9866 0.9752 0.9959

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.4600 0.4811 0.9805 0.9873 0.9794 0.9963

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.4965 0.5034 0.9824 0.9870 0.9808 0.9952

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.4020 0.5030 0.9704 0.9745 0.9692 0.9944

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.4284 0.5086 0.9809 0.9804 0.9763 0.9925

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.5795 0.4863 0.9812 0.9836 0.9811 0.9949

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4242 0.5024 0.9802 0.9861 0.9778 0.9959
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Table 27   The specificities 
achieved across the combination 
search by each of the six 
classification methods

Input combination Classification method

NB LR SVM RF MLP GB

Q
3

0.4362 0.4805 0.8371 0.9276 0.8565 0.9290
Q

2
0.5761 0.4908 0.8324 0.9663 0.9087 0.9643

Q
1

0.4437 0.4806 0.9450 0.9825 0.9720 0.9811
P
3

0.5050 0.5126 0.8572 0.9244 0.8718 0.9248
P
2

0.6324 0.4890 0.8722 0.9156 0.8775 0.9277
P
1

0.4215 0.4803 0.8018 0.8972 0.8496 0.8976
Q

3
 , Q

2
0.3355 0.5086 0.8917 0.9851 0.9200 0.9851

Q
3
 , Q

1
0.4797 0.4927 0.9533 0.9922 0.9751 0.9931

Q
3
 , P

3
0.5422 0.4982 0.9210 0.9666 0.9235 0.9788

Q
3
 , P

2
0.6712 0.4939 0.9383 0.9691 0.9392 0.9724

Q
3
 , P

1
0.4392 0.5041 0.9351 0.9662 0.9436 0.97103

Q
2
 , Q

1
0.6675 0.4949 0.9514 0.9926 0.9701 0.9938

Q
2
 , P

3
0.5410 0.5129 0.9324 0.9735 0.9423 0.9817

Q
2
 , P

2
0.4411 0.4964 0.9394 0.9815 0.9561 0.9862

Q
2
 , P

1
0.3619 0.4987 0.9119 0.9819 0.9363 0.9840

Q
1
 , P

3
0.5747 0.5149 0.9635 0.9885 0.9741 0.9890

Q
1
 , P

2
0.4475 0.4979 0.9697 0.9896 0.9734 0.9906

Q
1
 , P

1
0.4834 0.4986 0.9753 0.9879 0.9797 0.9863

P
3
 , P

2
0.5682 0.5031 0.9213 0.9447 0.9241 0.9681

P
3
 , P

1
0.4698 0.5120 0.9199 0.9552 0.9289 0.9718

P
2
 , P

1
0.5932 0.5067 0.9130 0.9459 0.9446 0.9652

Q
3
 , Q

2
 , Q

1
0.4354 0.5217 0.9615 0.9961 0.9700 0.9970

Q
3
 , Q

2
 , P

3
0.5910 0.5030 0.9460 0.9850 0.9396 0.9914

Q
3
 , Q

2
 , P

2
0.5227 0.4904 0.9575 0.9876 0.9522 0.9917

Q
3
 , Q

2
 , P

1
0.4210 0.5057 0.9576 0.9880 0.9496 0.9899

Q
3
 , Q

1
 , P

3
0.5146 0.5163 0.9662 0.9928 0.9708 0.9960

Q
3
 , Q

1
 , P

2
0.5963 0.5069 0.9792 0.9947 0.9775 0.9950

Q
3
 , Q

1
 , P

1
0.5186 0.4918 0.9792 0.9944 0.9789 0.9949

Q
3
 , P

3
 , P

2
0.3553 0.4967 0.9520 0.9716 0.9442 0.9794

Q
3
 , P

3
 , P

1
0.4176 0.4913 0.9557 0.9769 0.9509 0.9850

Q
3
 , P

2
 , P

1
0.4371 0.4938 0.9533 0.9764 0.9461 0.9791

Q
2
 , Q

1
 , P

3
0.5266 0.5074 0.9695 0.9939 0.9794 0.9956

Q
2
 , Q

1
 , P

2
0.4362 0.4957 0.9758 0.9948 0.9799 0.9967

Q
2
 , Q

1
 , P

1
0.3824 0.4979 0.9764 0.9952 0.9822 0.9959

Q
2
 , P

3
 , P

2
0.3595 0.4928 0.9568 0.9814 0.9557 0.9882

Q
2
 , P

3
 , P

1
0.6529 0.4952 0.9552 0.9821 0.9586 0.9896

Q
2
 , P

2
 , P

1
0.4524 0.5033 0.9460 0.9847 0.9658 0.9903

Q
1
 , P

3
 , P

2
0.3867 0.4998 0.9754 0.9908 0.9791 0.9910

Q
1
 , P

3
 , P

1
0.4523 0.4929 0.9743 0.9898 0.9796 0.9913

Q
1
 , P

2
 , P

1
0.5683 0.5040 0.9759 0.9904 0.9819 0.9939

P
3
 , P

2
 , P

1
0.3946 0.4955 0.9405 0.9614 0.9513 0.9774

Q
3
 , Q

2
 , Q

1
 , P

3
0.5631 0.5162 0.9738 0.9958 0.9713 0.9977

Q
3
 , Q

2
 , Q

1
 , P

2
0.5282 0.5143 0.9816 0.9967 0.9797 0.9986

Q
3
 , Q

2
 , Q

1
 , P

1
0.3799 0.5021 0.9813 0.9958 0.9792 0.9978

Q
3
 , Q

2
 , P

3
 , P

2
0.5350 0.5018 0.9657 0.9899 0.9548 0.9939

Q
3
 , Q

2
 , P

3
 , P

1
0.5356 0.4960 0.9690 0.9890 0.9608 0.9921

Q
3
 , Q

2
 , P

2
 , P

1
0.4546 0.4875 0.9680 0.9918 0.9785 0.9944

Q
3
 , Q

1
 , P

3
 , P

2
0.5021 0.5019 0.9777 0.9941 0.9749 0.9947

Q
3
 , Q

1
 , P

3
 , P

1
0.4818 0.5072 0.9781 0.9939 0.9778 0.9956
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Table 27   (continued) Input combination Classification method

NB LR SVM RF MLP GB

Q
3
 , Q

1
 , P

2
 , P

1
0.5104 0.4991 0.9813 0.9932 0.9785 0.9961

Q
3
 , P

3
 , P

2
 , P

1
0.3990 0.5029 0.9648 0.9777 0.9561 0.9856

Q
2
 , Q

1
 , P

3
 , P

2
0.4566 0.5014 0.9782 0.9942 0.9748 0.9964

Q
2
 , Q

1
 , P

3
 , P

1
0.4742 0.5041 0.9789 0.9938 0.9774 0.9958

Q
2
 , Q

1
 , P

2
 , P

1
0.4481 0.4979 0.9790 0.9955 0.9786 0.9970

Q
2
 , P

3
 , P

2
 , P

1
0.4987 0.5149 0.9615 0.9843 0.9677 0.9919

Q
1
 , P

3
 , P

2
 , P

1
0.5527 0.5064 0.9765 0.9924 0.9787 0.9933

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.4412 0.4995 0.9813 0.9965 0.9727 0.9981

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.5446 0.5006 0.9796 0.9967 0.9743 0.9978

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.5016 0.4919 0.9823 0.9955 0.9808 0.9981

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.4864 0.4858 0.9712 0.9910 0.9647 0.9952

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.5699 0.4922 0.9794 0.9944 0.9788 0.9951

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.4066 0.5133 0.9792 0.9947 0.9806 0.9973

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.5370 0.4981 0.9839 0.9964 0.9792 0.9981

AAA‑L combination search results

The F1 scores, sensitivities, and specificities achieved for 
AAA-L classification when employing the GB method are 
shown in Table 28.
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Table 28   The F
1
 scores, sensitivities and specificities achieved across 

the combination search by the GB method

Input combination F
1

Sen. Spec.

Q
3

0.8633 0.8561 0.8689
Q

2
0.9010 0.9103 0.8934

Q
1

0.9528 0.9630 0.9436
P
3

0.8305 0.8383 0.8250
P
2

0.8380 0.8529 0.8274
P
1

0.8005 0.7700 0.8209
Q

3
 , Q

2
0.9387 0.9390 0.9385

Q
3
 , Q

1
0.9683 0.9681 0.9685

Q
3
 , P

3
0.9045 0.8968 0.9109

Q
3
 , P

2
0.9151 0.9127 0.9172

Q
3
 , P

1
0.8989 0.8942 0.9028

Q
2
 , Q

1
0.9711 0.9741 0.9683

Q
2
 , P

3
0.9176 0.9256 0.9109

Q
2
 , P

2
0.9229 0.9328 0.9145

Q
2
 , P

1
0.9234 0.9258 0.9215

Q
1
 , P

3
0.9569 0.9558 0.9580

Q
1
 , P

2
0.9606 0.9645 0.9570

Q
1
 , P

1
0.9618 0.9609 0.9628

P
3
 , P

2
0.8852 0.8889 0.8824

P
3
 , P

1
0.8877 0.8889 0.8869

P
2
 , P

1
0.884 0.8858 0.8838

Q
3
 , Q

2
 , Q

1
0.9777 0.9788 0.9767

Q
3
 , Q

2
 , P

3
0.9454 0.9513 0.9402

Q
3
 , Q

2
 , P

2
0.9455 0.9498 0.9417

Q
3
 , Q

2
 , P

1
0.9481 0.9537 0.9431

Q
3
 , Q

1
 , P

3
0.9693 0.9743 0.9647

Q
3
 , Q

1
 , P

2
0.9695 0.9748 0.9647

Q
3
 , Q

1
 , P

1
0.9668 0.9642 0.9693

Q
3
 , P

3
 , P

2
0.9148 0.9105 0.9186

Q
3
 , P

3
 , P

1
0.9178 0.9232 0.9133

Table 28   (continued)

Input combination F
1

Sen. Spec.

Q
3
 , P

2
 , P

1
0.9217 0.9163 0.9265

Q
2
 , Q

1
 , P

3
0.9770 0.9788 0.9753

Q
2
 , Q

1
 , P

2
0.9715 0.9729 0.9702

Q
2
 , Q

1
 , P

1
0.9737 0.9762 0.9714

Q
2
 , P

3
 , P

2
0.9327 0.9434 0.9234

Q
2
 , P

3
 , P

1
0.9285 0.9299 0.9273

Q
2
 , P

2
 , P

1
0.9345 0.9304 0.9381

Q
1
 , P

3
 , P

2
0.9606 0.9640 0.9575

Q
1
 , P

3
 , P

1
0.9637 0.9676 0.9601

Q
1
 , P

2
 , P

1
0.9607 0.9625 0.9592

P
3
 , P

2
 , P

1
0.8996 0.9038 0.8963

Q
3
 , Q

2
 , Q

1
 , P

3
0.9767 0.9781 0.9755

Q
3
 , Q

2
 , Q

1
 , P

2
0.9788 0.9786 0.9791

Q
3
 , Q

2
 , Q

1
 , P

1
0.9759 0.9791 0.9729

Q
3
 , Q

2
 , P

3
 , P

2
0.9484 0.9510 0.9462

Q
3
 , Q

2
 , P

3
 , P

1
0.9487 0.9525 0.9453

Q
3
 , Q

2
 , P

2
 , P

1
0.9472 0.9529 0.9421

Q
3
 , Q

1
 , P

3
 , P

2
0.9670 0.9654 0.9685

Q
3
 , Q

1
 , P

3
 , P

1
0.9673 0.9678 0.9669

Q
3
 , Q

1
 , P

2
 , P

1
0.9704 0.9683 0.9724

Q
3
 , P

3
 , P

2
 , P

1
0.9217 0.9227 0.9210

Q
2
 , Q

1
 , P

3
 , P

2
0.9754 0.9781 0.9729

Q
2
 , Q

1
 , P

3
 , P

1
0.9774 0.9784 0.9765

Q
2
 , Q

1
 , P

2
 , P

1
0.9772 0.9776 0.9770

Q
2
 , P

3
 , P

2
 , P

1
0.9352 0.9436 0.9280

Q
1
 , P

3
 , P

2
 , P

1
0.9587 0.9659 0.9522

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
0.9744 0.9731 0.9758

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

1
0.9820 0.9834 0.9808

Q
3
 , Q

2
 , Q

1
 , P

2
 , P

1
0.9802 0.9796 0.9808

Q
3
 , Q

2
 , P

3
 , P

2
 , P

1
0.9513 0.9541 0.9489

Q
3
 , Q

1
 , P

3
 , P

2
 , P

1
0.9725 0.9712 0.9738

Q
2
 , Q

1
 , P

3
 , P

2
 , P

1
0.9757 0.9815 0.9702

Q
3
 , Q

2
 , Q

1
 , P

3
 , P

2
 , P

1
0.9809 0.9808 0.9810
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GB results for all disease forms

The F1 scores achieved for all forms of disease classification 
(including AAA-L) when providing each combination of input 
measurements are shown when employing the GB method in 
Fig. 21.
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