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Abstract

Breast Cancer (BCa) genome-wide association studies revealed allelic frequency differences between cases and controls at
index single nucleotide polymorphisms (SNPs). To date, 71 loci have thus been identified and replicated. More than 320,000
SNPs at these loci define BCa risk due to linkage disequilibrium (LD). We propose that BCa risk resides in a subgroup of SNPs
that functionally affects breast biology. Such a shortlist will aid in framing hypotheses to prioritize a manageable number of
likely disease-causing SNPs. We extracted all the SNPs, residing in 1 Mb windows around breast cancer risk index SNP from
the 1000 genomes project to find correlated SNPs. We used FunciSNP, an R/Bioconductor package developed in-house, to
identify potentially functional SNPs at 71 risk loci by coinciding them with chromatin biofeatures. We identified 1,005 SNPs
in LD with the index SNPs (r2$0.5) in three categories; 21 in exons of 18 genes, 76 in transcription start site (TSS) regions of
25 genes, and 921 in enhancers. Thirteen SNPs were found in more than one category. We found two correlated and
predicted non-benign coding variants (rs8100241 in exon 2 and rs8108174 in exon 3) of the gene, ANKLE1. Most putative
functional LD SNPs, however, were found in either epigenetically defined enhancers or in gene TSS regions. Fifty-five
percent of these non-coding SNPs are likely functional, since they affect response element (RE) sequences of transcription
factors. Functionality of these SNPs was assessed by expression quantitative trait loci (eQTL) analysis and allele-specific
enhancer assays. Unbiased analyses of SNPs at BCa risk loci revealed new and overlooked mechanisms that may affect risk of
the disease, thereby providing a valuable resource for follow-up studies.
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Introduction

Apart from a few examples of genetic mutations with high

penetrance, such as found in BRCA1 & 2 genes [1], most genetic

risk of breast cancer (BCa) resides at multiple low penetrance loci,

more recently identified by genome-wide association studies

(GWASs) [2]. In general, GWASs utilize single nucleotide

polymorphisms (SNPs) to tag common genetic variation in linkage

disequilibrium (LD) blocks in order to identify genome-wide risk

loci for complex diseases. To date, 71 replicated and independent

BCa risk loci have been identified

[3,4,5,6,7,8,9,10,11,12,13,14,15,16]. There are thousands of SNPs

in each LD block, and many of these SNPs are candidates to exert

functionality in BCa risk. At the 71 BCa risk loci, at least 320,000

SNPs are associated with BCa risk. Due to this plethora of SNPs in

LD, much of the heritability of complex diseases, such as BCa,

remains unknown [17]. Identification of underlying mechanisms

that explain how SNPs affect risk will provide a better

understanding of the genetic risk of complex diseases, such as

breast cancer, which is described in this study.

In contrast to Mendelian disorders, where most disease-causing

mutations result in absent or non-function proteins, many complex

disease-associated variants, such as for BCa are mainly found in

non-coding regions of the genome. Since .90% of the genome is

non-coding and risk mechanisms of complex diseases are likely due

to subtle regulation of gene expression, risk-SNPs are more often

found in non-coding regions. Knowledge of the non-coding

regions is rudimentary compared to the protein coding part.

However, recent ENCODE data dramatically demonstrated that

the non-coding part of the genome is much more than simply

‘junk’ DNA and contains well-demarcated gene regulatory

regions, in particular enhancers [18].

We have recently formulated a roadmap to address the

functionality of risk SNPs in non-coding regions by characterizing

gene regulatory regions with nucleosome and transcription factor

occupancy and histone modifications [19]. Moreover, several

research groups annotated genomic regions (coding and non-

coding) to identify candidate functional SNPs involved in complex

diseases [20,21,22,23,24,25,26]. However, as more next genera-
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tion sequencing (NGS) data (of chromatin annotations from

consortia such as ENCODE), more loci (from meta and primary

GWASs), and more SNPs at ever lower minor allele frequencies

(from the 1000 genomes project) become available, further

analyses utilizing updated data and methods are needed for

specific diseases such as BCa.

In the present study, we addressed the hypothesis that BCa risk

SNPs reside in functional genomic regions such as coding exons,

TSS regions, and enhancers. In order to identify potentially

functional SNPs, we conducted a comprehensive analysis on

656,895 SNPs from the 1000 genomes project data released in

May 2012, at the 71 BCa risk loci by measuring LD and

annotating them with 11 NGS datasets, all in primary breast

epithelial cells. Thus, we found 1,005 potentially functional high

LD SNPs. From these, we were able to frame specific hypotheses

involving 547 SNPs in terms of novel biological mechanisms; 2

SNPs were at non-benign codon changes in one gene, 42 and 503

SNPs were within response elements of known transcription

factors in TSS regions and enhancers, respectively. This shortlist of

potentially functional SNPs will not only aid in prioritizing a

manageable number of likely functional SNPs, but also reveal

hidden biological mechanisms for the etiology of breast cancer.

Results and Discussion

One-thousand-and-five Potentially Functional High LD
SNPs in Seventy-one Breast Cancer Risk Loci

To date, 71 replicated risk loci for BCa have been identified

primarily using GWASs [3,4,5,6,7,8,9,10,11,12,13,14], [15,16].

The index SNPs identified by GWASs occur mainly in non-coding

DNA (33 intergenic, 33 in introns, 1 in a 39UTR) and only 4 in

coding exons (Fig. 1A, Table S1). Although index SNPs such as

rs11571833 (Lys3326Term in BRCA2 gene) [15] seem to be

involved in known genetic mechanism of breast cancer tumori-

genesis [1], the mechanisms for most of the other index SNPs are

hidden. Additionally, these index SNPs are most likely surrogates

of many other SNPs in LD, since most of the GWAS arrays were

designed based on the Hapmap data to capture a large fraction of

common genetic variation [27]. When we extracted SNP data for

Europeans from the 1000 genomes project released in May 2012

[28], we found 308,010 very low LD (0#r2,0.1), 11,438 low LD

(0.1#r2,0.5), and 3,508 high LD (r2$0.5) SNPs at the 71 BCa

risk loci (in a 1 MB window surrounding each index SNP) (Fig. 1B).

In order to identify potentially functional SNPs, we hypothe-

sized that risk SNPs occur at sites with functionality of some form

or another. Candidates are in coding exons, regulatory regions

near TSS (TSS regions), and enhancers. To assist in assigning

potential functionality, we performed a FunciSNP (Functional

Integration of SNPs) analysis [29]. FunciSNP is an R/Bioconduc-

tor package developed in-house to evaluate positional overlap

between correlated SNPs at any disease or trait locus, and

available chromatin biofeatures. Here, we chose exons, TSS

regions (including promoters), and enhancers as biofeatures to

annotate the genome comprehensively.

Coding exon data were downloaded from the UCSC genome

table browser [30]. TSS regions were defined as 3 kb windows

centered on the annotated transcription start sites of genes

including one or more of the following biofeatures, all in human

mammary epithelial cells (HMEC): nucleosome depletion [DN-

ase1-sensitivity and/or Formaldehyde-Assisted Isolation of Regu-

latory Elements (FAIRE) signals] and/or histone modifications as

diagnostics of promoters (H3K4me3, H3K4me2, H3K9ac and/or

H3K27ac) [31,32,33]. Enhancers were defined as regions in

introns and intergenic regions (.1.5 kb from TSS) in HMEC,

containing one or more of the following biofeatures: nucleosome

depletion (DNase1-sensitivity and/or FAIRE signals) and/or

histone modifications as diagnostics of enhancers (H3K4me1,

H3K4me2, H3K9ac and/or H3K27ac) [31,32,33].

In order to identify correlated risk SNPs, a FunciSNP evaluation

of each index SNP was applied by extracting all known SNPs from

the 1000 genomes project database (1 Mb windows, spanning

each index SNP) [28]. Biofeatures were then aligned with the

positions of all curated SNPs at each region. Each SNP that

overlaps with a biofeature was used to calculate the r2 and distance

to the associated index SNP. Among 322,954 correlated SNPs

(r2.0), 22 percent were at biofeatures (Fig. 1C). Several issues may

be considered to define risk SNPs in LD. One is that low LD SNPs

may be the functional risk SNP, poorly measured by the index

SNP. On the other hand, high LD SNPs are more likely to be the

risk SNP, since this is based on the hypothesis that the underlying

functional alleles are common. We identified 1,005 SNPs in

relatively high LD (r2$0.5); 21 in exons, 76 in TSS regions, and

921 in enhancers (Fig. 1D) at 60 of the 71 BCa risk loci. The

selection process of potentially functional variants is summarized

in Fig. 1E.

Twenty-one High LD SNPs in Exons: Two Non-benign
Coding Variants in the ANKLE1 Gene

Twenty-one high LD SNPs (r2$0.5) were annotated in exons

(Fig. 2A). The majority (fifteen) results in synonymous variants.

Among the six missense variants, 2 variants: rs8100241 and

rs8108174 (both in the gene ANKLE1 at locus 19p13) (Fig. 2B), are

predicted to result in a non-benign change as revealed by SIFT

and PolyPhen protein function prediction software [34,35]

(Fig. 2C, Table S2). The first of these is in exon 2 (causing

A31T) and the other in exon 3 (causing L94Q). Both SNPs are

equally and highly correlated (r2 = 0.94) with the original GWAS

index SNP, rs2363956, which in turn also results in another non-

benign amino acid change (L184W) in exon 5 of ANKLE1 as

revealed by PolyPhen analysis (Table S3). Thus, the three SNPs

collectively result in two main haplotypes, which in turn create two

main protein isoforms, A - L - L and T - Q - W (Fig. S1) with most

likely functional consequences as revealed by SIFT and PolyPhen

analyses. ANKLE1 is expressed in breast epithelial cells [36,37]

(Fig. S2). It contains an ankyrin repeat likely involved in protein-

protein interactions. Also, it is an evolutionary conserved non-

membrane-bound LEM protein that shuttles between the nucleus/

cytoplasm and has an enzymatically active GIY-YIG endonuclease

domain [36]. This multifunctional protein has the potential of

affecting many cellular phenotypes and thus cancer risk. The two

allelic variants need to be modeled in protein structure-function

assays to precisely determine the risk mechanisms involving them.

A final interesting genomic feature of the two correlated SNPs is

that their locations appear to have histone H3K4me1, -me2 and -

me3 signals (Fig. 2B), pointing to possible additional potential roles

in regulatory components that in turn may affect expression levels

of ANKLE1 and/or the other nearby gene, BABAM1. Such multi-

functional SNPs will add to the complexity of BCa disease risk.

Interestingly, the same locus was identified in a GWAS of ovarian

cancer [38], indicating that ANKLE1 may be generally involved in

women cancers, perhaps via hormonal-mediated mechanisms.

Seventy-six High LD SNPs in TSS Regions
Next, we studied 76 high LD SNPs, which resided at TSS

regions of 25 genes (Table S4). Fifty-two percent of these genes are

not only expressed in breast tissues, but their expression levels are

changed during breast carcinogenesis [39,40,41,42,43,44,45]

(Table S5). The TSS regions were defined as containing not only

Functional Annotation of Breast Cancer Risk
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proximal promoters but also distal ones and perhaps also close-by

(proximal) enhancers in the 3 kb windows centered at annotated

TSS. These genomic regions are likely involved in gene expression

regulation of the gene, primarily by altering transcription factor

(TF) binding. There are approximately 2,600 proteins in the

human genome that bind to DNA [46], and recently, a large

number of ChIP-seq datasets were published involving many TFs

[18]. However, due to the availability of a limited number of good

antibodies and the requirement of high numbers of cells for ChIP

assays, ChIP data are often biased towards a subgroup of TFs. As a

more broader approach, we performed in silico searches of finding

TF REs by utilizing 4 different softwares: HOMER (ChIP-seq

known motifs), FIMO, Genome Trax (ChIP-seq TFBS), Haploreg

(TRANSFAC, JASPAR, and PBM) [47,48,49,50]. In this way, we

established datasets that contain thousands of TF motifs. Among

the 76 high LD SNPs in TSS regions, 42 likely affect known

transcription factor binding by altering their REs as revealed by

our analyses. These SNPs were located at 82 different TF motifs’

REs (Table S6). We ranked the TFs by the number of SNPs

affecting their REs across the risk loci, and noted the top 10 motifs,

defined as containing 2 or more SNPs affected the motifs in

question (Table S7). The top motif was for Specificity Protein 1

(SP1) followed by the motif for Early Growth Response 1 (EGR1).

REs of SP1 were affected at 6 TSS regional SNPs from 5 risk loci,

and its binding was likely altered by the SNP alleles (Table S6).

SP1 is known to be involved in many cellular processes including

cell differentiation, cell growth, apoptosis, response to DNA

damage, and chromatin remodeling, and its expression is up-

regulated in breast cancer cells [51]. Therefore, it is reasonable to

suggest that the perturbed REs by our newly identified risk SNPs

Figure 1. Identification of potential functional SNPs in 71 Breast cancer risk loci. (A) Genomic distribution of 71 replicated index SNPs for
breast cancer risk loci. (B) SNPs residing in 1 MB windows around breast cancer risk index SNPs were categorized into the indicated four different
groups by measuring LD in EUR ethnic groups. (C) SNPs in each LD group were further analyzed by their locations coinciding with biofeatures. (D)
High LD SNPs within biofeatures were categorized to three groups; exon, TSS region, and enhancers. (E) The entire process was summarized in a flow
diagram.
doi:10.1371/journal.pone.0063925.g001
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Figure 2. 21 High LD SNPs in exon and effect of each variant to the respective protein. (A) The list of high LD SNPs (r2$0.5) in exons. The
risk region number was derived from Table S1 and ordered by chromosome number. Index SNP of each corrSNP and the value of r2 between these
SNPs were listed. The distance from the index SNP to each corrSNP was shown along with the name of the nearest gene. The type of each exon
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may alter the binding activity of SP1 and thereby change the

expression patterns of the genes, regulated by SP1.

One example of a TSS regional SNP is rs2303696 (at 19p13.11

risk locus), which likely alters a SP1 RE. This SNP is highly

correlated (r2 = 0.81) with a known index SNP, rs1353747, which

is located 22 kb downstream from it. The correlated SNP is

located in the promoter region of Inositol-3-phosphate synthase 1

(ISYNA1) gene, which catalyzes the de novo synthesis of myoinositol

1-phosphate from glucose 6-phosphate (Fig. 3, Fig. S3A). Seelan

et al [52] reported that E2F1 and SP1 interaction at ISYNA1 gene

promoter regulates ISYNA1 expression level. Additionally, it is

expressed in breast tissue and decreases 5–6 fold during invasive

breast carcinogenesis (Table S5) [39,45]. We propose here that the

SNP may influence the regulatory activity of this gene’s promoter

and thus influencing risk.

Additionally, expression quantitative trait locus (eQTL) analyses

were performed to examine whether these TSS regional SNPs are

associated with messenger RNA (mRNA) level by using publicly

available datasets [53,54,55,56,57,58,59,60,61] (Table S8). Among

76 high LD SNPs in TSS regions, 30 SNPs are significantly

associated with nearby gene mRNA level (P,1025). As an

example, rs832552 (at MAP3K1 promoter region) changes the

expression level of C5orf35 gene in estrogen receptor positive

breast cancer tissues as its allele changes (Table 1).

Nine-hundred-and-twenty-one High LD SNPs at
Enhancers

Nine-hundred-and-twenty-one high correlated SNPs (r2$0.5)

were annotated at enhancers (Table S9). To verify the activity of

identified enhancers, we performed in vitro enhancer assays by

variant was also annotated. (B) A genomic browser view of two high LD SNPs, rs8100241 and rs8108174. The first track showed FunciSNP results for
the exons. The name of the correlated SNP (rsnumber – r2 value) was shown in blue. The index SNP was shown in black. The bottom tracks were
biofeature tracks, RefSeq genes/mRNA/Pseudogene tracks from UCSC Genes, common SNPs (version 137), and Linkage Disequilibrium (LD) blocks. LD
block, which was measured by r2 value in phased CEU is shown. Allele frequencies of each SNP (in all populations) and zoomed in view of the
genome browser for each SNP were shown, including the amino acid changes by missense variants. (C) The effect of amino acid changes by missense
variants of the respective protein was predicted by SIFT and PolyPhen [34,35].
doi:10.1371/journal.pone.0063925.g002

Figure 3. An example of TSS regional SNPs, rs2303696, in the promoter region of ISYNA1. The genomic browser view was shown of a TSS
regional high LD SNP, rs2303696. First track shows FunciSNP results for TSS region. The name of correlated SNP (rsnumber – r2 value) was shown and
color-coded to indicate the number of biofeatures (Fig. S3A). The index SNP was shown in black. The bottom tracks were biofeature tracks, RefSeq
genes/mRNA/Pseudogene tracks from UCSC Genes, common SNPs (version 137), and Linkage Disequilibrium (LD) blocks. LD block, which was
measured by r2 value in phased CEU is shown. Allele frequencies of rs2303696 (in all populations) and the location of this SNP in SP1 RE were shown.
doi:10.1371/journal.pone.0063925.g003
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cloning approximately 1.2 kb regions in which the SNPs reside.

We selected the best 11 SNP regions for cloning, based on the

number of chromatin biofeatures (5 or more coinciding biofea-

tures), and named them breast cancer enhancer 1 (BCE1) through

BCE11 (Table S10). By performing dual luciferase assays in

normal and breast cancer cells, we found that 9 out of the 11

regions retained enhancer activities over background (CT1 and

CT2) in either normal or breast cancer cells, or in both cells types

(Fig. 4A, Table S10 and S11). Among 9 active enhancers, BCE4, -

5, and -8 had enhancer activities in both normal (HMEC and

MCF10A) and breast cancer cells (MCF7 and MDAMB231). On

the other hand, BCE1, -2, and -11 revealed enhancer activities

only in normal HMEC. BCE7 had enhancer activity only in

MCF7, estrogen receptor (ER) positive breast cancer epithelial

cells. BCE3 retained enhancer activity in ER negative breast

epithelial cells: MDAMB231, MCF10A, HMEC. These BCE

enhancers were either in intron or intergenic region: BCE 3, -6, -9,

-10 and -11 were in introns. Regardless of SNP location in

genome, they retained enhancer activity. As an example of

enhancer in intron region, BCE9 was located in intron 9 of

RAD51L1 gene, which showed differential expression level

between breast cancer cells (MDAMB231) and normal breast

epithelial cells (HMEC) (Fig. S4).

Among these enhancers, we investigated BCE5 in more detail as

a proof-of-principle. FunciSNP analysis identified three-correlated

risk SNPs (r2$0.5) at the active regulatory element within BCE5

(rs4871782, rs28759353, and rs10087810) (Fig. 4B). In order to

determine whether the alleles of these three SNPs participated in

nucleosome depletion (i.e. as measured by FAIRE), we performed

allele-specific FAIRE using a HMEC cell strain, which was

heterozygous for the three SNPs. Allele-specific FAIRE can

determine functional regulatory polymorphisms [62]. Here, allele-

specific FAIRE for the three SNPs was performed by sequencing

across the interested SNP region of FAIRE samples and

comparing the sequence of peaks with that of input DNA (as

control). For rs4871782, the FAIRE sample contained about the

same relative amount of the two alleles, compared to input. In

contrast, for rs28759353, the FAIRE sample had clearly more of

the G allele, compared to the input signal. Similarly, for

rs10087810, more of the T allele was detected in the FAIRE

sample, compared to the input (Fig. 4C). Note the high fidelity of

the sequence reactions between the FAIRE and input samples as

reflected by the almost identical relative sizes of the peaks

surrounding the SNP. These results may indicate that the

rs28759353, G allele and rs10087810, T allele (i.e. the GT

haplotype) had a more open chromatin structure than the other

alleles and perhaps consequently a higher enhancer activity, which

we tested next (see below).

We analyzed the haplotype of rs28759353, rs4871782, and

rs10087810 SNPs relative to the risk tagSNP, rs13281615 [5]. The

GGTA haplotype (Fig. 4D) had lower risk of breast cancer because

it correlated with the risk allele of rs13281615. The other

haplotypes and relative percentages are shown in Europeans. In

order to relate allele-specific FAIRE results to enhancer activity,

we next performed allele-specific in vitro enhancer assays by

generating plasmids, which contain different versions of each

SNP in BCE5 region (Fig. 4E and F). Overall, we found that the

risk versions of each SNP independently had lower enhancer

activities. These results together with the allele specific FAIRE

data indicated that rs28759353 and rs10087810 were functional

SNPs, with the risk allele having more nucleosome depletion and

higher enhancer activity in the in vitro assay. Although we do not

understand the disparity between the two assays for SNP

rs4871782, it is probably related to the sensitivity of the two

assays. For this particular SNP, allele-specific FAIRE is less

sensitive to be picked up in the allele-specific FAIRE analysis.

Transcription Factors, which Likely Bind to High LD SNPs
at Enhancers

Among 921 SNPs in enhancer regions, 503 SNPs likely affect

known transcription factor binding by altering their REs (Table

S12). By performing in silico searches of TF REs as described above

for TSS regions, we identified 455 different transcription factor

REs where the TF binding will likely to be altered by the risk-

correlated SNP. Among the motifs, we ranked them by the

number of SNPs affecting their RE. The top 18 motifs were

selected for further analysis (see below) (Table S13). The top motif

was for the T-cell acute lymphocytic leukemia 1 (TAL1; aka SCL);

28 enhancer SNPs at 16 BCa risk loci were thus identified. The

next ranked motifs most often likely affected in this manner were

in order, Eomesoderim (EOMES), Foxhead box P1 (FOXP1) and

SP1. TAL1 is a transcription factor that acts in hemopoiesis, anti-

apoptosis, angiogenesis, and other activities [63,64,65]. It is

expressed in breast tissue and decreases 2–3 fold during invasive

breast carcinogenesis [42,45] (Fig. S5). It also inhibits the

expression level of GATA3, a transcription factor, which inhibits

breast cancer metastasis [66,67].

One example of a likely TAL1-affecting SNP is rs76969790 at

the 5q11 risk locus (Fig. 5, Fig. S3B). The SNP is highly correlated

(r2 = 0.88) with a GWAS index SNP, rs1353747, which is located

58 kb upstream from it. This correlated SNP is located in the large

intron 10 of the PDE4D gene. PDE4D encodes for an enzyme that

has 39, 59-cyclic-AMP phosphodiesterase activity and degrades

cAMP, resulting in regulation of multiple signaling pathways and

metabolism (i.e. GPCR and TOR signaling, cAMP metabolism)

[68,69]. The intron 10 of PDE4D gene is large, 140 kb in length

and contains several histone marks of enhancers with nucleosome

depletion signals (i.e. DNaseI and FAIRE). The rs76969790 is in

close proximity with FAIRE and DNase1 signals and coincides

exactly with enhancer histone marks (H3K4me1, H3K27ac,

H3K4me2, and H3K9ac) (Fig. 5).

Additionally, expression quantitative trait locus (eQTL) analyses

on the 921 high LD SNPs in enhancers were conducted using

published data as we described above for TSS regions

Table 1. eQTL analyses on high LD SNPs in breast cancer cells.

Index SNP High LD SNP r2 Target Gene eQTL P-value Cell type Reference

rs889312 rs832552 0.61 C5orf35 2.46e-6 Estrogen receptor positive breast cancer (Li et al., 2013) [53]

rs889312 rs252913 0.59 C5orf35 1.36e-8 Estrogen receptor positive breast cancer (Li et al., 2013) [53]

rs889312 rs331499 0.56 C5orf35 1.16e-11 Estrogen receptor positive breast cancer (Li et al., 2013) [53]

rs889312 rs331499 0.56 MIER3 7.75e-6 Estrogen receptor positive breast cancer (Li et al., 2013) [53]

doi:10.1371/journal.pone.0063925.t001
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Figure 4. Novel enhancers including high LD SNPs were identified in breast epithelial cells. (A) Eleven enhancer regions, which included
FunciSNP identified BCa high LD SNPs in epigenetically defined enhancers, were cloned and analyzed using the dual luciferase assays in MCF7 (blue),
MDAMB231 (red), MCF10A (orange) and HMEC (blue). Each luciferase activity was divided by average luciferase activity of two negative controls, CT1
and 2. The average value of two negative controls was shown as a horizontal line across the breast cancer enhancers (BCEs) (gray). (B) The location of
three SNPs (blue: rs4871782, green: rs28759353, black: rs10087810) at BCE5 and breast cancer risk tagSNP (red: rs13281615) in 8q24.21 region. (C)

Functional Annotation of Breast Cancer Risk
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[53,54,55,56,57,58,59,60,61]. Since the eQTL analyses were

detecting relationships between SNP and nearby genes (cis-eQTL),

a relatively small number of enhancer high LD SNPs (65 SNPs)

were associated with mRNA levels (Table S14). This is unlike the

eQTL results in TSS regional high LD SNPs referred to above.

Alternatively, the sample number for eQTL analyses could have

been too low to detect the association signal between risk loci and

affected genes.

Interactions among Breast Cancer Risk Loci
In order to investigate the interactions among genes at the

breast cancer risk loci, we further highlighted 32 genes, which

contained functional SNPs either in their exons or within their

TSS regions. Using these 32 genes plus the BRCA2 gene, in which

rs11571833, a nonsense index SNP resided, we executed an

ingenuity pathway analysis (IPA, www.ingenuity.com). When we

examined interactions among these genes and/or their protein

products by using data from published papers, we found only one

direct interaction and two indirect interactions [70,71,72] (Fig. 6).

We next analyzed the relationships among the top 18 TF motifs

affected by 10 or more enhancer SNPs and proteins encoded by

the above 33 genes. Although some of genes have been

understudied and currently lack information about their functions

and locations, we observed that a number of proteins interacted

with each other, and these TFs mediated interactions among the

33 BCa risk genes/proteins (Fig. 6). For instance, SP1 binds to the

promoter (2329bp to 324bp) of the FOSL1 gene, whereas SP1

binds directly to another BCa risk protein, BRCA2 [73,74].

BRCA2 binds to several fragments of the AR protein (1aa-556aa,

627aa-919aa) [75]. In turn, AR binds to RANBP9 and CASP8

[76,77,78]. In prostate cancer cell lines, RANBP9 increases

activity of AR protein. CASP8 protein level increases cleavage

Allele-specific FAIRE assays were performed near three candidate SNPs for breast cancer risk at BCE5. Sequence results of Input DNA and FAIRE DNA
are shown. The colors of the nucleotides from DNA sequencing: blue is C, green is A, black is G and red is T. Sequences near SNP were shown in a
double-strand DNA (bottom). (D) Linkage Disequilibrium (LD) plot (r2) and haplotypes of three SNPs (in EUR) with breast cancer risk tagSNP,
rs13281615 were shown [5]. Allele-specific in vitro dual luciferase assays were performed in HMEC (E) and MDAMB231 cells (F). The Analysis of
variance statistical test (ANOVA) was used to confirm the difference and two-side p-values between alleles were calculated using the student t-test.
doi:10.1371/journal.pone.0063925.g004

Figure 5. An example of enhancer SNPs, rs76969790 likely alters a TAL1 response element. The genomic browser view was shown of an
enhancer SNP, rs2303696. First track showed FunciSNP results for enhancers. The name of correlated SNP (rsnumber – r2 value) was shown and color-
coded to indicate the number of biofeatures (Fig. S3B). The index SNP was shown in black. The bottom tracks were biofeature tracks, RefSeq genes/
mRNA/Pseudogene tracks from UCSC Genes, common SNPs (version 137), and Linkage Disequilibrium (LD) blocks. LD block, which was measured by
r2 value in phased CEU is shown. Allele frequencies of rs76969790 (in all populations) and the location of this SNP in TAL1 RE are shown.
doi:10.1371/journal.pone.0063925.g005
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of AR proteins [76,77,79,80]. These functional networks among

identified genes/proteins and motifs at the 71 BCa risk loci may be

key interactions, which affect genetic risk for BCa.

Recently, Cowper-Sal Lari et al [23] reported that FOXA1

binding to high LD SNPs in BCa are more frequent than other

transcription factors. However, that study was performed using a

limited number of transcription factors (ChIP-seq data in ER

positive breast cancer cells of only 16 transcription factors) and a

relatively small number of SNPs (obtained from the limited

Hapmap datasets) in only 44 BCa risk loci. For an updated, more

comprehensive and unbiased analysis, we assessed high LD SNPs

in TF REs within TSS regions and enhancers using the 1000

genomes database, which contained not only rare variants but also

un-tagged SNPs from the Hapmap project [27,28,81]. We further

interrogated thousands of TF motifs in known datasets

[47,48,49,50]. Our top potentially affected TFs were SP1 and

TAL1, at TSS regions and enhancers, respectively. SNPs in

FOXA1 REs were ranked only 51th in our priority list (Table S12).

The difference between the Cowper-Sal Lari et al [23] study and

the work reported here, is likely due to our more comprehensive

analysis coupled with the limited number of TFs and SNPs

assessed in the Cowper-Sal Lari et al study.

Recently, it was reported that the average number of distal

elements interacting with a TSS was 3.9, and the average number

of TSSs interacting with a distal element was 2.5 [18]. Another

study on genome structure also revealed that active chromatin

regions formed inter-chromosomal contacts and blocks of each

chromosome interacted with blocks in different chromosomes,

composing a spatial nuclear structure [82]. Therefore, a large

number of chromosomal contacts and interactions likely are

orchestrated by the three-dimensional organization of the nucleus.

Through eQTL analyses, we identified the precise genomic loci

(SNPs) that regulated expression level of mRNAs. However, it did

not demonstrate direct interactions among regulatory elements.

Looping interactions between enhancers and target genes can be

detected by 3C (chromatin chromosome capture) assays [18]. To

scan the interactions genome-wide, 3C derivative methods (3C-

seq, 4C-seq, 5C-seq, ChIA-PET and HiC-seq) may be applied

[83,84]. Targets of regulatory elements can be also identified

in vitro and in vivo by knock-out DNA method such as transcription

activator-like effector nucleases (TALEN) [85] and transgenic

mouse modeling by knocking in conserved regulatory elements

[86].

Newly identified regulatory elements, coinciding with high LD

SNPs are not necessarily targeting protein-coding genes. For

instance, they can interact with long noncoding RNAs (lncRNA)

[87]. Each SNP identified by FunciSNP [29] was further

annotated by us for proximity to the nearest known lncRNA

Figure 6. Interactions among breast cancer risk loci. 32 proteins coded by genes, which contained functional SNPs either in their exons or
within their TSS regions plus the BRCA2, in which a nonsense index SNP resided, were laid out using subcellular localization annotation. Each
molecule was shown in green hexagon. Interactions among these 33 genes/proteins were shown in green arrows (direct: solid line, indirect: dashed
line). Each circle colored in yellow represents each TF. The interactions between the group, containing 33 genes/proteins and another group,
containing top 18 TFs (yellow circle) that affected by high LD SNPs were shown in black arrows (direct: solid line, indirect: dashed line).
doi:10.1371/journal.pone.0063925.g006
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(Table S4 and S9). We also identified potentially functional high

LD SNPs in regulatory elements that intersect with lncRNA using

LNCpedia database version 1.2 [88] (Table S15).

Conclusions
Since 2005, over 1,600 variants have been identified at p-value

#561028 for over 250 traits. Most of the identified index SNPs

from GWASs are in noncoding DNA regions, making the

assignment of functionality difficult [27]. Despite the controversy

surrounding the utility of GWAS, post-GWAS identification of

mechanisms have become valuable for the identification of

genomic targets of diseases. Here, we provide functional rationales

for 21 SNPs in exons, 76 SNPs in TSS regions and 921 SNPs in

putative enhancers at 60 of the 71 BCa risk loci. These annotations

are based on the assumption that functional alleles are common.

This short list out of more than 320,000 correlated risk SNPs can

be used in follow-up fine-mapping and functional studies on

identifying disease-causing SNPs.

Materials and Methods

Cell Culture
HMEC cells were obtained from Lonza (Lonza, Walkersville,

MD) and cultured under recommended conditions. MDAMB231,

MCF10A and MCF7 cells were obtained from American Type

Culture Collection (ATCC, Manassas, VA). MDAMB231 and

MCF7 cells were cultured in DMEM with 5% FBS. MCF10A cells

were cultured in DMEM/F12 with 5% horse serum, 100 units/ml

penicillin, 0.1 mg/ml streptomycin, 0.5 mg/ml hydrocortisone,

100 ng/ml cholera toxin, 10 mg/ml insulin, and 20 ng/ml

epidermal growth factor (EGF).

FAIRE-seq Library Construction and Sequencing
FAIRE assays were performed as described [89], with a number

of modifications. Briefly, the method was as follows: (1) intact cells

were crosslinked (1% formaldehyde in PBS); (2) nuclei were

extracted from cells and re-suspended in SDS lysis buffer; (3)

chromatin DNA was fragmented by sonication; (4) FAIRE DNA

samples and reverse-crosslinked input DNA were purified by

phenol-chloroform extraction. Two independent libraries were

made for each sample by using bar-coded adapters. Each library

was PCR amplified and confirmed by quantitative real-time PCR

(qPCR). Single-end DNA sequencing (Illumina Hi-Seq 50 cycles)

was performed at the USC Epigenome Center. Two independent

assays were analyzed separately and then the data were combined

in order to increase the depth of coverage (Table S16 and Fig. S6).

More than 82% of the merged FAIRE peaks intersected. FAIRE-

seq data were deposited in the NCBI GEO under accession

number GSE46074.

Identification of FAIRE-seq Peaks
Each bam file was filtered using a quality filter score of 30 after

removing PCR artifacts and duplicates by the Samtools [90]. The

identification of FAIRE-seq peaks was performed using the

findPeaks from HOMER (http://biowhat.ucsd.edu/homer) [47].

Peaks were identified by using a triangle-based distribution with a

median length of 150bp. In order to find the peaks, which are not

false positive, we used input with an alpha value of 0.01; 99.0%

confidence interval for peak pairs, which are unequal between

sample and input was used. A subpeak value of 0.6 with a trim

float value of 0.3 was used to perform peak separation. After peak

identification, we calculated a p-value for each peak between

sample and input. To be most stringent, functional peaks [47] at a

p-value of 1029 were used as a cut off to select significantly

enriched peaks. FAIRE-seq data within 3 kb windows centered on

the annotated TSS of genes were used to define TSS regions. The

data .1.5 kb from TSS were utilized to define enhancer regions

for the FunciSNP analysis.

Histone Modification ChIP-seq Data
Histone modification ChIP-seq data (H3K4me1, me2, me3,

H3K9Ac and H3K27Ac) in HMEC were obtained from accession

number [GSE29611] through the NCBI Gene Expression

Omnibus portal. [GSE29611] was published as part of the

ENCODE project. ChIP assay protocol as well as data processing

details may be seen here (http://genome.ucsc.edu/cgi-bin/

hgTrackUi?db = hg19&g = wgEncodeBroadHistone).

Chromatin State Segmentataion HMM data generated by using

above ChIP-seq data were obtained from accession number

[GSE38163] and included for the FunciSNP analyses of regulatory

elements. NGS data within 3 kb windows centered on the

annotated transcription start sites of genes were used for TSS

regions. For putative enhancer regions, NGS data .1.5 kb from

TSS were utilized.

DNaseI-seq Data
DNaseI-seq data in HMEC were obtained from accession

number [GSE32970] through the NCBI Gene Expression Omni-

bus portal. Additional DNaseI-seq data generated by University of

Washington as part of the ENCODE project were downloaded

from here (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

encodeDCC/wgEncodeUwDnase/). Detailed protocols may be

seen at following websites (http://genome.ucsc.edu/cgi-bin/

hgTrackUi?hgsid = 307403817&c = chr1&g = wgEncodeOpen

ChromDnase and http://genome.ucsc.edu/cgi-bin/hgTrackUi?

hgsid = 307403817&c = chr1&g = wgEncodeUwDnase). NGS

data within 3 kb windows centered on the annotated transcrip-

tion start sites of genes were used to define TSS regions for

FunciSNP analysis. For putative enhancer regions, NGS data

.1.5 kb from TSS were utilized.

FunciSNP
FunciSNP is an in-house developed R/Bioconductor package

for the Functional Integration of SNPs with phenotype by

coincidence with chromatin biofeatures. All statistical tests were

done using R software (R version 2.9.2, 2009-08-24, (R

Development Core Team, 2009)). FunciSNP version 0.99 was

used to find correlated SNPs, which coincide with 11 independent

ChIP-seq/FAIRE-seq/DNaseI-seq data sets in TSS regions and

putative enhancer regions. All the SNPs from the 1000 genomes

project (up to May 2012 data release) [28] residing in 1 Mb

windows around breast cancer risk index SNP and within EUR

ethnic groups (original GWAS), were analyzed with an r2 value 0.5

as a cut-off (Table S4 and S9).

Plasmid Construction and Luciferase Reporter Assays
Eleven potential enhancer regions (,1200bp sequence sur-

rounding the nucleosome depleted regions with FunciSNP

identified correlated SNP) were amplified from genomic DNA

using High Fidelity Platinum Tag DNA polymerase (Invitrogen

Corp., Carlsbad, CA). The amplified sequences were then

subcloned using SacII, EcoRI, BglII or KpnI restriction sites

upstream of a thymidine kinase (TK) minimal promoter-firefly-

luciferase vector. All clones were confirmed by sequencing. The

primer sequences for subcloning are listed in Table S11. HMEC,

MCF10A, MDAMB231, MCF7 cells were transfected with

reporter plasmids along with constitutively active pRL-TK Renilla
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luciferase plasmid (Promega Corp., Madison, WI) using Lipofec-

tamine LTX Reagent (Invitrogen Corp., Carlsbad, CA) under

recommended protocol. Dual luciferase activities were measured

as previously described [91].

Allele-specific FAIRE
PCR reactions were performed on FAIRE-isolated and input

DNA using High Fidelity Platinum Taq DNA polymerase

(Invitrogen Corp., Carlsbad, CA) for 15 cycles after which

products were purified and re-PCRed for 20 cycles to minimize

the PCR artifacts due to over-cycling. Purified DNA from these

reactions was sequenced, using primers near the SNP locations by

the DNA Core Facility at the University of Southern California

(Table S11). Each experiment was independently performed more

than twice.

Allele-specific Luciferase Reporter Assays
Point mutations were introduced to create enhancer-reporter

constructs with specific SNP allele using QuikChange site-directed

mutagenesis kit (Agilent Technologies Inc., Santa Clara, CA). In

order to avoid the bias from miniprep procedures, six independent

clones of each construct were made and confirmed by sequencing.

Each of the six independent clones of each construct were

transfected in four wells and two luciferase assays per well were

performed in order to record luciferase-reading variation. Allele-

specific fold activities were presented and values shown are means

6 SEM of the six independent clones of each allele. The analysis

of variance statistical test (ANOVA) was used to confirm the

difference and two-side p-values between alleles were calculated

using the student t-test.

Gene Expression Analysis between Breast Cancer and
Normal Breast Tissues

We compared gene expression levels between breast cancer and

normal tissues using the Oncomine database, released in Sep 2012

[45]. This database currently contained more than 674 datasets

and information on 73,327 samples tissues, including datasets with

over 593 samples for breast cancer [39,40,41,42,43,44,45]. For the

differential expression analyses, t-test with false discovery rates as a

corrected measure of significance was performed and following

cut-off thresholds were utilized: p-value ,1024, fold change .2.0,

within top 10% gene rank. The result of this analysis for the genes,

which high LD TSS regional SNPs reside in, is listed in Table S5.

As an example, TAL1 gene expression level change between

normal and breast cancer tissues were shown in detail as boxplots

(Fig. S5).

RNA-seq Data for the ANKLE1 Gene
Long RNA-seq from ENCODE/Cold Spring Harbor Lab in

HMEC and MCF7 cells were obtained through the UCSC

genome browser tracks [92]. In addition to profiling Poly-A+ and

Poly-A- RNA from whole cells, RNA-seq data from the cytosol

and nucleus were performed in MCF7 cells. These expression data

at the ANKLE1 gene were shown in Fig. S2.

Gene Expression Analysis between HMEC and
MDAMB231 Cells

We compared gene expression levels between HMEC and

MDAMB231 cells by using the affymetrix HG-U133 plus2

microarrays obtained from the accession number [GSE33167]

[93]. RAD51L1 gene expression values for both cells were

processed and its bar plots were graphed by using the GEO2R

[94] (Fig. S4).

eQTL Analyses
We performed expression quantitative trait locus (eQTL)

analyses on FunciSNP identified SNPs to examine whether these

SNPs were associated with messenger RNA (mRNA) level of

nearby genes. We assessed eQTL for all SNPs by using the

RegulomeDB, the GTEX database (http://www.ncbi.nlm.nih.

gov/gtex/GTEX2/gtex.cgi), University of Chicago eQTL Brows-

er (http://eqtl.uchicago.edu), the Genevar (http://www.sanger.ac.

uk/resources/software/genevar/), and The Cancer Genome Atlas

(TCGA) breast cancer datasets in 15 breast cancer risk loci

[53,54,55,56,57,58,59,60,61]. To be most stringent, a p-value of

1025 was used as a cut-off (Table S8 and S14). Posterior

probability and the Bayes factor were used to analyze the eQTL

data from Veyrieras et al and Mangravite et al [59].

Motif Discovery
In order to annotate SNP effects on regulatory motifs, sets of

position weight matrices (PWMs) were used from FIMO,

HOMER (ChIP-seq known motifs), Genome Trax (ChIP-seq

TFBS), Haploreg (TRANSFAC, JASPAR, and PBM)

[47,48,49,50]. FIMO analysis was performed using the motif

database, called JASPAR CORE 2009 vertebrates, downloaded

from the MEME suite (http://tools.genouest.org/tools/meme/

meme-download.html) [48]. P-value for output threshold utilized

for FIMO was 1e-4. FindMotif analysis was executed by using

known motifs generated from HOMER. Each motif matrix was

established after collecting strong binding sites of each TF genome

wide from published human ChIP-seq data. Log odds score of the

motif matrix cut-off value 5 was used for findMotif analysis.

Predicted ChIP-seq TFBS analysis from Genome Trax was

utilized with the motif score cut-off 0.7. Its database contains

motif matrices from best-scoring TF binding sites identified with a

ChIP-chip or ChIP-seq fragment. A stringent threshold of p,428

was applied for the PWM score of each instance for Haploreg. The

change in log-odds (LOD) score as alleles change was calculated

and listed in Table S6 and S9. Each identified motif RE was

organized by SNP id, and the number of SNPs affecting regulatory

motif was counted to rank the TFs (Table S6 and S12).

Transcription Factor and Gene/protein Interaction
Analysis

We obtained information of the top 18 TFs and 33 genes/

proteins using an Ingenuity Pathway Analysis (IPA, www.

ingenuity.com). IPA Path Explore tools were used to identify

direct and indirect interactions among molecules. IPA Path

Designer tools were utilized to map the annotated subcellular

location of each molecule.

Supporting Information

Figure S1 Linkage Disequilibrium block and haplotype
analysis of 2 corrSNPs, rs8100241 and rs8108174, and
their index SNP, rs2363956. (A) Linkage Disequilibrium block

(in EUR) showing two high LD SNPs, rs8100241 and rs8108174,

and index SNP, rs2363956, found in exons of ANKLE1. (B)

Haplotypes of these SNPs (in EUR) and protein isoforms, containing

different amino acid compositions. Antoniou et al reported that T

allele of rs2363956 is associated with breast cancer risk [4]

(TIF)

Figure S2 The UCSC genome browser near the ANKLE1
gene, showing breast epithelial cell RNA-seq data. Long

RNA-seq from ENCODE/Cold Spring Harbor Lab in HMEC

and MCF7 cells were used [92]. For MCF7 cells, in addition to
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profiling Poly-A+ and Poly-A- RNA from whole cells, RNA-seq

data from the cytosol and nucleus were performed. Two replicates

for each condition were conducted. Contigs and signals from each

replicate were shown in the above tracks.

(TIF)

Figure S3 Overlap count keys for FunciSNP results. The
name of correlated SNP is colored based on the number
of biofeatures. (A) Overlap count key for FunciSNP results for

TSS regions. (B) Overlap count key for FunciSNP results for

enhancers.

(TIF)

Figure S4 RAD51L1 gene expression value in HMEC and
MDAMB231. RAD51L1 gene expression value for HMEC and

MDAMB231 were obtained from accession number [GSE33167].

Three replicates for each cell type were generated by using the

affymetrix HG-U133 plus2 arrays [93]. Expression bar plots were

graphed by using the GEO2R [94]

(TIF)

Figure S5 TAL1 expression level in breast tissues. The

expression value of TAL1 gene was obtained from The Cancer

Genome Atlas (TCGA) breast tissues [42]. (A) TAL1 expression

level comparison between normal breast tissues and invasive breast

carcinoma (B) comparison between normal breast tissues and

invasive ductal breast carcinoma (C) comparison between normal

breast tissues and mixed lobular and ductal breast carcinoma (D)

comparison between normal breast tissues and invasive lobular

breast carcinoma. The analysis was performed by using the

Oncomine database [95].

(TIF)

Figure S6 HMEC FAIRE peaks from two replicates.
(TIF)

Table S1 71 Breast cancer risk index SNPs and high LD
SNPs genomic locations.
(DOC)

Table S2 Protein function prediction results for mis-
sense variants of high LD SNPs.
(XLS)

Table S3 Protein function prediction of index SNPs in
exons.
(XLS)

Table S4 FunciSNP results for TSS regional high LD
SNPs.
(XLS)

Table S5 Differential expression analysis of the genes,
which high LD TSS regional SNPs reside in.
(XLS)

Table S6 TSS regional high LD SNP motif analysis
result.

(XLS)

Table S7 Top 10 TF motifs for TSS regional high LD
SNPs.

(DOC)

Table S8 eQTL analyses on 76 TSS regional high LD
SNPs.

(DOC)

Table S9 FunciSNP results for high LD SNPs in
enhancers.

(XLS)

Table S10 Breast Cancer Enhancer (BCE) regions used
for luciferase assays.

(DOC)

Table S11 Oligonucleotide sequences used for cloning
and qPCR.

(DOC)

Table S12 high LD SNPs in enhancer motif analysis
result.

(XLS)

Table S13 Top 18 TF motifs for high LD SNPs in
enhancers.

(DOC)

Table S14 eQTL analyses on high LD SNPs in enhanc-
ers.

(DOC)

Table S15 lncRNA which intersect with high LD SNPs in
regulatory elements.

(XLS)

Table S16 FAIRE-seq statistics.
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