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Background: During late 2019 a viral disease due to a novel coronavirus was reported

in Wuhan, China, which rapidly developed into an exploding pandemic and poses a

severe threat to human health all over the world. Until now (May 2021), there are

insufficient treatment options for the management of this global disease and shortage

of vaccines. Important aspects that help to defeat coronavirus infection seems to be

having a healthy, strong, and resilient immune system. Nutrition and metabolic disorders,

such as obesity and diabetes play a crucial role on the community health situation in

general and especially during this new pandemic. There seems to be an enormous

impact of lifestyle, metabolic disorders, and immune status on coronavirus disease 2019

(COVID-19) severity and recovery. For this reason, it is important to consider the impact

of lifestyle and the consumption of well-defined healthy diets during the pandemic.

Aims: In this review, we summarise recent findings on the effect of nutrition on COVID-19

susceptibility and disease severity and treatment. Understanding how specific dietary

features might help to improve the public health strategies to reduce the rate and severity

of COVID-19.

Keywords: COVID-19, SARS-CoV-2, probiotics, nutrition, proteins

INTRODUCTION

The recent outbreak of coronavirus disease 2019 (COVID-19), caused by a new zoonotic severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1), is a great threat to public health all
over the world (2). As of May 20th 2021, variants of the coronavirus SARS-CoV-2 have infected
more than 165 million people globally and resulted in 3.42 million deaths (3). Beyond prevalence
and mortality, the restrictions and lockdown measures that are needed to control the COVID-19
pandemic evolved in a global economic and social crisis, severely affecting the people’s well-being,
mental health and social support (4). The direct consequences of COVID-19 on an individual
represents a spectrum of clinical severity with some patients being asymptomatic or having only
mild upper respiratory tract symptoms whilst some subjects have severe pneumonia characterised
by fever, cough, dyspnoea, bilateral pulmonary infiltrates and acute respiratory injury requiring
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ventilation (5–8). Approximately 20% of patients develop severe
respiratory illness with an overall mortality of 2.3% (3). The
impact of SARS-CoV-2 infection is not limited to the respiratory
system, but it affects the kidney, gut, eyes, heart, and brain
among other organs. Together, the effect on these target organs
may have profound and prolonged consequences on COVID-
19 severity, and on recovery (5–8). The body’s mental and
physical status and fitness are important factors in keeping one’s
immune system balanced and resilient and thereby able to mount
a proper response against SARS-CoV-2 (9, 10). Obesity and
type 2 diabetes are therefore examples of key risk factors for
COVID-19 (11). Obesity is associated with dysfunctional adipose
tissue, metabolic dysfunction, multi organ damage, endocrine
disruption, impaired immune function, and low grade (sub)
chronic inflammation (12). Moreover, obesity along with low
physical activity and fitness, is the leading cause of type 2
diabetes or metabolic syndrome (T2DM), which is causally
linked with elevated angiotensin-converting enzyme 2 (ACE2)
expression (13).

The high prevalence of these risk factors, is for a significant
part, associated with the pattern of nutrition such as increased
consumption of high amounts of saturated fat (high fat diet,
HFD), refined carbohydrates and low levels of fibre and
antioxidants. Balanced nutrition has a potentially important role
in the maintenance of immune homeostasis and resilience and
for this reason resistance against disease including infections with
viral and bacterial pathogens. Malnutrition has prolonged effects
on physical and mental health by influencing gene expression,
cell activation, and interfering with signalling molecules that
shape and modulate the immune system (14). Thus, poor
nutrition and an unhealthy diet might significantly weaken the
immune system and increases susceptibility to infectious disease
including SARS-CoV-2.

Disparities in nutrition or obesity are impacted by cultural
background and closely correlated with severe COVID-19-
related outcomes (15). The hospitalisation rates for COVID-
19 positive subjects among Native and Latin Americans are
higher than that of White Americans which could be attributed
to malnutrition (15, 16). Another example of the impact of
cultural background and socio-economic status on severity of
COVID-19 is evidenced in Islamic countries with poor healthcare
systems, lack of facilities particularly during the religious
tradition of Ramadan fasting (17). During Ramadan, Muslims
may have trouble in maintaining exercise, which negatively
affects immune health. On the other hand investigations of
health related effects of Ramadan Fasting also show beneficial
effects of reduced meal frequency and caloric restrictions
on insulin sensitivity, a reduction in oxidative stress and
inflammation (17).

Indeed, nutrition and obesity play a crucial role in the fate of
viral infectivity in general and the community health situation
during this present pandemic. In this review, we summarise
recent findings regarding the impact of nutrition on the variation
in COVID-19 disease severity and also its potential impact
on the control of the disease during the current pandemic.
Understanding the dietary pattern that is deleterious to COVID-
19 survival might help to improve public health strategies toward

reducing the spread of COVID-19 and designing new approaches
for control and maybe even treatment of this new disease.

PATHOGENESIS OF COVID-19 DISEASE

SARS-CoV-2 virus primarily affects the respiratory system,
although other organ systems are involved as well. Lower
respiratory tract infection-related symptoms including fever, dry
cough, and dyspnoea were reported in the initial case series from
Wuhan, China (6). In addition, headache, dizziness, generalised
weakness, vomiting and diarrhoea were observed (18). Although
COVID-19 is mainly a respiratory disease, the gastrointestinal
system can also act as a reservoir for SARS-CoV-2 (19). In
addition; neurological manifestations are also reported in most
hospitalised COVID-19 patients (20).

It is now widely recognised that the respiratory symptoms of
COVID-19 are extremely heterogeneous, ranging from minimal
symptoms to significant hypoxia with acute respiratory distress
syndrome (ARDS) (8, 21). In the first reports from Wuhan, the
time between the onset of symptoms and the development of
ARDS was as short as 9 days, indicating that the respiratory
symptoms could progress rapidly (6). ACE2is identified as
a functional receptor for SARS-CoV-2 (22). Structural and
functional analysis showed that the SARS-CoV-2 spike protein
binds to the ACE2 receptor (23–25). ACE2 expression is high in
the lung, heart, ileum, kidney and bladder (26). More specifically
the ACE2 receptor is highly expressed on the apical side of
lung epithelial cells in the alveolar space (27, 28). This correlates
with the fact that early lung injury was often seen in the distal
airways (29).

Genetic susceptibility can be a major factor in the host
response to infectious diseases where inborn errors of
the immune system are often critical (30). Differences in
clinical outcomes of COVID-19 may also be determined by
genetic susceptibility. Old age, gender and comorbidities
including hypertension, diabetes, respiratory system disease and
cardiovascular disease have all been identified as being closely
associated with disease severity and mortality and represent
significant risk factors (31).

COVID-19 morbidity and mortality rise dramatically
with age and co-existing health conditions, including cancer
and cardiovascular diseases. While most infected individuals
recover, even very young, and otherwise healthy patients may
unpredictably succumb to this disease (32). Questions still
remain as to how susceptibility and outcome factors relate to
SARS-CoV-2 infection.

In this line the greater severity of the disease was associated
with maladapted immune responses and host ACE2. However,
some other genetic parameters for SARS-CoV-2 receptor and
entry gene expression and function have been described (33).

An intact immune system is essential for an effective
defence against invading microorganisms. However, due to the
immunological defects seen with COVD-19, there is reduced
scope for a defence to be mounted against SARS-CoV-2 (34).
The massive production of cytokines and chemokines observed
during COVID-19 infection, the so-called “cytokine storm,” leads
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to broad and uncontrolled tissue damage and results in plasma
leakage, enhanced vascular permeability and disseminated and
vascular coagulation. This excessive proinflammatory host
response is responsible for the pathological outcomes such as
acute lung injury (ALI) and ARDS seen in severe SARS-CoV-2
patients, which typically leads to death.

Men are at a greater risk of severe symptoms and worse
outcomes from COVID-19 than women. The precise reason for
this discrepancy is not fully understood, but genetic factors, the
effects of sex hormones such as oestrogen and testosterone as well
as differences in immune cell function such as that of mast cells
may be important factors (35).

Prostate cancer patients who were receiving androgen-
deprivation therapy (ADT), a treatment that suppresses the
production of androgens that fuels prostate cancer cell growth,
had a significantly lower risk of SARS-CoV-2 infection (36). This
suggests that blocking androgens in men is protective against
SARS-CoV-2 infection. There is also evidence that males and
females have different levels of receptors that recognise pathogens
or that serve as an ingress point for SARS-CoV-2. Whilst there
is currently no conclusive evidence for a role of ACE2 receptors
and associated proteases being differentially expressed in males
compared to females, it remains a potential contributing factor.

PHYSICAL INACTIVITY, MALNUTRITION,
AND COVID-19

Balanced nutrition is an important determinant in immune
function against infectious disease in general (14). Poor nutrition
and an unhealthy diet significantly weakens the immune system
and increases susceptibility to infectious disease (37). A reduction
in physical activity and a higher energy intake have been observed
as a consequence of pandemic isolation measures which is
especially worrisome since they both enhance the risk of a
more severe outcome of COVID-19 (38). This is particularly
true in middle-aged and elderly people where physical inactivity
negatively impacts cardio-vascular functional capacity, body
weight, metabolic function, muscle strength, haemostatic factors
and immune functions (39). Moderate, but not vigorous exercise,
enhances immune processes resulting in lower incidence of upper
respiratory tract infections (39). Figure 1 summarises how levels
of exercise and diet affect immune functions. A suboptimal diet
may significantly affect the susceptibility to COVID-19 infection
as well as the downstream consequences including severity,
recovery and the potential for re-infection in different patient
populations (40). Diets with a high consumption of saturated
fatty acids (SFA), sugars, refined carbohydrates, and low levels
of fibre and antioxidants modulate the balance between the
adaptive and innate immune responses leading to an impaired
host defence against viruses (41). In addition, these diets are
associated with a higher prevalence of COVID-19 risk factors and
the long term recovery from COVID-19 infection (42).

SFA-rich diets induce chronic activation of the innate
immune system while inhibiting adaptive immunity. In fact,
high SFA diets induce a lipotoxic state which could activate
toll-like receptor (TLR) 4 on the surface of macrophages

and neutrophils and lead to chronic activation of the
innate immune system. This, in turn, may trigger other
inflammatory signalling pathways and the production of
proinflammatory mediators (41, 43). The expression levels of
TLR9 and levels of endogenous triggers for TLR9 activation
are also influenced by diet which has been proposed to
contribute to a severe outcome of COVID-19 in vulnerable
patients (44).

A high fat diet (HFD) and obesity increases TLR9 expression
in visceral adipose tissue in mice and human (45). HFD
induces excess production of nucleic acids and related protein
antigens worsening metabolic inflammation through activation
of macrophages and expansion of plasmacytoid dendritic cells
(pDCs) in the liver (46). In animal models, HFD also increases
macrophage infiltration into the lung tissue and alveoli. A
similar process may underlie the high rate of inflammation
in lung epithelial cells and the alveolar damage seen in
obese COVID-19 patients or those with evidence of metabolic
syndrome (47). Furthermore, carbohydrates, sugars and a HFD
increase oxidative stress and thereby impair the proliferation and
maturation of both B and T cells and induce apoptosis which
together results in suppression of the adaptive immune response
to viral infection (48).

In animal models of influenza infection, a HFD enhanced lung
damage and delayed the onset of the adaptive immune response.
This was associated with impaired memory T cell function
and a reduced capacity to respond to antigen presentation
and clearance of the influenza virus (48). The mechanism(s)
causing the increased lung damage are unclear but may involve
programmed cell death (49–52).

As a result, the elderly, patients with comorbidities, and those
with risk factors for COVID-19 should be cautious with the
consumption of unhealthy diets that could pose an increased risk
to COVID-19 severity. A healthy, balanced diet should contain
the necessary macro- and micronutrients, vitamins, minerals,
and maybe even unique microbes such as probiotics that can
restore and maintain immune function (53).

Proteins, vitamins and minerals have, for a long time, been
considered important factors in health and resistance against
infection due to their impact on immune homeostasis (54).
The immune-effect of natural herbal medicines such as Shuang-
Huang-Lian oral liquid during upper respiratory tract infections
may be explained, at least in part, by specific proteins, and other
active ingredients (2, 55). A recent comprehensive meta-analysis
regarding the effect of nutrition status on the immune response
to respiratory viral infection reported that vitamins and minerals
play a determinant role in the ability to mount an immune
defence against respiratory viral infection and are associated with
the severity of infection outcome (56).

In the current COVID-19 pandemic, there are reports of
vitamins and minerals affecting the severity of infection and
mortality. For example, low prealbumin levels is associated with
increased severity of ARDS in patients with SARS-CoV-2 (57).
Vitamins A, B complex, C, D and E, and trace elements have an
important role in the prolonged and effective stimulation of the
immune system (58, 59). Thus, deficiencies in vitamin and trace
element levels could result in a more detrimental fate in response
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FIGURE 1 | Impact of nutrition, metabolic disease and exercise on the

immune response and SARS-CoV-2 infection.

to viral infections including SARS-Cov2 (60). Some studies also
suggest beneficial effects of natural compounds.

In summary, the nutritional status of an individual has a
significant impact on not only the susceptibility to, but also
the severity of, COVID-19 infection. The next section provides
additional details concerning the impact of proteins, vitamins
and minerals in viral respiratory infections that might help
finding new strategies for the prevention and control of SARS-
CoV-2 infection (Table 1).

Proteins
Proteins are critical factors in immune-nutrition and essential for
the production of, for example, immunoglobulins, and cytokines.
Dietary proteins are digested to their constituent amino acids and
dietary protein deficiency reduces plasma concentrations of most
amino acids. Amino acids, such as arginine are the precursor
of polyamines that play a significant role in the regulation
of DNA replication and cell division. In addition, optimal
antibody production requires a sufficient plasma arginine level.
Supplementation with arginine significantly increases T cell
function as well as enhancing their numbers compared with
control subjects (61). Furthermore, arginine is essential for
the generation of nitric oxide by macrophages, an essential
component of the innate immune response. In contrast,
methionine has an important role in the growth, development
and histological structure of immune organs and enhances
macrophage phagocytic activity (62). Methionine deficiency also
decreases lymphocyte activities and inhibits the proliferation and
differentiation of B and T cells (63). Methionine also plays a
role in both humeral and cellular immunity since methionine
deficiency significantly affects antibody titre and decreases serum
levels of IgG, IgA, and IgM. Furthermore, methionine deficiency
decreases the relative percentage of CD3+, CD3+/CD8+, and
CD3+/CD4+T lymphocytes (64). Given the importance of T
cell immunity in the defence against COVID-19, this aspect
of methionine deficiency is essential in the prevention of, and
reduction in the severity of infection.

Reduction of sulphur-containing amino acids in the serum
significantly reduces the hydroxyl radical scavenging activity of
superoxide dismutase (SOD) and glutathione peroxidase (GSH-
Px) which helps to protect the host against viral infection
(3, 4). Thus, methionine deficiency can result in oxidative
damage and lipid peroxidation, which will lead to a failure in
cellular immunity.

Amino acids are also important components for cytokine
production. The production of interleukin (IL)-1, IL-6 and
tumour necrosis factor (TNF) α is strongly dependent on
the metabolism of sulphur-containing amino acids including
methionine and cysteine (65).

The effect of dietary proteins in improving immune function
has been reported in cancer patients. In a clinical trial, whey
protein isolate (WPI) enriched with Zn and Se improved cell-
mediated immunity and antioxidant capacity in cancer patients
undergoing chemotherapy. WPI is an alternative oral nutrition
supplement (ONS) that contains high quality protein and
amino acid profiles. WPI increases GSH function because of
its cysteine-enriched supplementation, reduces oxidative free
radical formation and prevents infection (5). This suggests that
WPI supplementation may improve GSH levels and thereby
enhance immunity in subjects at risk of COVID-19 as well as
reducing the severity of the disease in patients already infected
with SARS-CoV-2.

Vitamins
A healthy immune system may aid the prevention and treatment
of patients with COVID-19 (62). Vitamins play an important
role in normal immune function and their dietary levels
tightly regulate immune reactions (66) (Table 1). For example,
vitamins A and D increased humeral immunity following
influenza vaccination in children (63, 67). Fasted individuals are
encouraged to have sufficient and timely intake of healthy and
functional foods including vitamins in order to maintain exercise
performance and immune function (17).

Vitamin A is an important player in the regulation of
both the cellular and humoral arms of the immune system
and significantly increased the antibody response after anti-
viral vaccination (56). Vitamin A acts via the nuclear retinoid
acid receptor (68, 69) and regulates the proliferation and
differentiation of immune cells and modulates the expression of
proinflammatory cytokines including TNFα and IL 6 (70, 71).

A protective role of vitamin A has been indicated against in a
variety of lung infections, HIV, and malaria (72, 73). In animal
models of corona virus infection, the levels of plasma retinol
and retinol-binding protein is significantly reduced andmortality
from respiratory infections decreases in those with adequate
vitamin A within their diets (74, 75). As a result, we postulate that
vitamin A supplementation may make a useful contribution in
combating the risk of susceptibility to COVID-19 infection and
reducing the severity of the disease in patients.

B group vitamins are key players in metabolic pathways
particularly those of organic molecules. Furthermore, the
important role of B group vitamins including folic acid, B12,
and B6 in immune function is well known. For example, the
active form of vitamin B6, pyridoxal phosphate, is a cofactor
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for many metabolic processes particularly transamination or
breakdown of amino acids and the metabolism of important
immunomodulatory mediators (76, 77). These metabolic
pathways are also important in viral infection suggesting that a
balance intake of these vitamins is necessary in the regulation
of the viral immune response. In particular, they regulate the
function of natural killer cells and cytotoxic CD8+ lymphocytes
and thereby contribute to effective viral clearance (78).

Vitamin D is fat soluble and known as a multifunctional
agent in a broad range of bodily functions including immune
reactions (79). Vitamin D receptors (VDRs) are expressed in
a broad range of respiratory epithelial and immune cells and
vitamin D activation is induced by cytokines and TLRs within
the respiratory tract (79, 80). Epidemiological studies indicated
the importance of vitamin D in the immune defence against
influenza A and B, parainfluenza and respiratory syncytial virus
(RSV) (81, 82). Interestingly; low levels of serum vitamin D
enhanced the risk of both upper and lower respiratory tract
infections (83). It has been reported that serum vitamin D levels
of ≥95 nmol/L significantly reduced the rate of acute viral
respiratory tract infections two-fold (60).

On the other hand, low levels of vitamin D are associated with
enhanced levels of inflammatory cytokines and an increase in the
incidence of many diseases. Importantly, vitamin D deficiency
is associated with increased thrombotic episodes, obesity, and
diabetes which are frequently observed in severe COVID-19
patients (84). An inhibitory and antiviral activity of vitamin D
in human nasal epithelial cells infected with SARS-CoV-2S has
been reported (85).

VitaminD deficiency has shown an important role in reducing
the risk of severe disease and mortality in COVID-19 patients. In
Chicago, more than half of COVID-19 related deaths occurred
in African-American individuals known to have vitamin D
deficiency (86). Indeed, regions with the highest rates of COVID-
19 mortality are those with a high prevalence of vitamin D
deficiency (66). Indeed, a meta-analysis indicates that low serum
levels of vitamin D is significantly associated with the risk,
seriousness and mortality of COVID-19 (87). Although the area
is controversial, the limited current data suggests that higher
serum vitamin D levels favour a decreased risk of COVID-19
infection andmortality (88). It is reasonable, therefore, to suggest
that regular vitamin D supplementation would be of benefit to
individuals at greater risk of infection or of developing severe
disease (89).

Vitamin E is a potent regulator of host immune functions due
to its antioxidant capacity. This enables vitamin E to modulate
multiple immune and inflammatory responses including T-cell
proliferation, granulocyte phagocytosis, and cytotoxicity through
effects on gene transcription (90–93). This explains why vitamin
E deficiency is accompanied by impairment of both humoral
and cellular immunity (94). Although vitamin E supplementation
increased the risk of pneumonia in smokers (95), vitamin E had
a therapeutic benefit in chronic hepatitis B (HB) patients in a
small pilot randomised clinical trial (RCT) (96). In another RCT,
vitamin E treatment led to higher anti-HBe seroconversion in
children (97). A computational analysis to assess the ability of
FDA-approved drugs to block coronavirus binding to ACE2 or

transmembrane protease, serine 2 (TMPRSS2) and downstream
transcriptomic profiles indicated that vitamin E, ruxolitinib and
glutamine were likely to significantly attenuate infection by
SARS-CoV-2 (98). This needs to be confirmed in human studies.

Vitamin C boosts many aspects of the immune system
including cell signalling, phagocytosis, antibody production,
immune cells proliferation and leukocyte migration to the
site of infection (99). Furthermore, vitamin C mediates many
physiological events, such as hormone production and immune
homeostasis and acts as an essential antioxidant and enzymatic
co-factor in many cellular functions (58).

Animal studies highlight its role in improving the production
of interferons (IFN)α and β in response to influenza A virus
and this may explain its ability to protect against coronavirus
infection (100). Indeed, higher serum levels of vitamin C is
associated with a reduced incidence of pneumonia and lower
respiratory tract infections (101, 102). In addition, vitamin C
reduces the duration and severity of the common cold (58), and
of upper respiratory tract infections (101).

Vitamin C also promotes the repair of the damaged tissues
(58) and high-dose intravenous vitamin C has a beneficial effect
in patients with virus-induced ARDS which results from severe
lung damage (103). Since ARDS is evident in many subjects with
severe COVID-19 it supports the concept that vitamin C may be
useful in the treatment of COVID-19 (104). Further studies are
required to demonstrate a link between COVID-19 incidence and
severity with systemic vitamin C levels.

Interestingly, apart from individuals with impaired glucose 6-
phosphate activity and renal failure, no adverse effects of large
doses of intravenously or orally administrated vitamin C have
been detected (105, 106).

Minerals
In addition to vitamins, several minerals have a beneficial and
supportive role in enhancing antiviral immune responses and
thus could be beneficial in controlling COVID-19 (Table 1). Zinc
plays a pivotal role in the immune system particularly in antiviral
and antibacterial immunity (107). Zinc deficiency is associated
with an increased susceptibility to infectious and viral diseases
and studies have shown that the zinc status is a critical factor
that can influence immunity against viral infections (108). In
patients infected with torque tenovirus (TTV), injection of a high
dose of zinc enhances the immune response (107). On the other
hand, low-dose supplementation of zinc together with selenium
improved the humoral immune response to influenza vaccine
and increased antibody titres (109).

In in vitro experiments Zn inhibits the SARS-CoV-2 RNA
polymerase (110). Interestingly, chloroquine that has some
protective efficiency against coronaviruses acts as a zinc
ionophore (111). In addition, zinc may supress ACE2 activity
and regulate the production of IFNα to improve antiviral
activity (108) and zinc also has an anti-inflammatory role by
inhibiting NF-κB signalling (112) and modulating regulatory T-
cell functions. This combination of actions may be important in
sequencing the cytokine storm present in subjects with COVID-
19 (112).
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TABLE 1 | Overall role and impact of nutrition on immune function.

Role and impact on immune responses

Protein 1. Production of cytokines and antibodies.

2. Regulation of both humeral and cellular immunity specially Tell immunity.

3. Regulation of DNA replication and cell division.

4. Generation of nitric oxide, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) as well as scavenging

activity by immune cells.

Vitamins A group vitamins 1. Antiviral immunity.

2. Regulation of the proliferation and differentiation of immune cells via nuclear retinoid acid receptor.

B group vitamins 1. Immune metabolic pathways as co-factor.

2. Viral clearance via regulation of natural killer cells and cytotoxic CD8+ lymphocyte functions.

C group vitamins 1. Act as enzymatic co-factor and an essential antioxidant in boosting immune functions including phagocytosis, cell

signalling, antibody production leucocyte migration, and hormone production.

D group vitamins 1. Controlling inflammation in the lungs.

2. Proliferation and activation of viral specific immune cells via its receptor.

3. Upregulation of cytokines and their recruitment to the infected sites.

E group vitamins 1. Antioxidant activity.

2. Gene transcription of proteins involved in T-cell proliferation, phagocytosis and cytotoxicity, regulate the production of

reactive oxygen species (ROS) and reactive nitrogen species (RNS), and modulate signal transduction.

Minerals Zinc 1. Antiviral and antibacterial immunity, inhibition of viral RNA polymerase and ACE2 activity.

2. Involved in modulation of inflammatory cytokines.

3. Upregulation of Th1cytokine responses, activation of immune metabolic pathways.

Selenium 1. Antioxidant and anti-inflammatory properties.

2. Increase in T-cell proliferation.

3. Upregulation of IL-10.

Copper 1. Inhibition of viral replication and release.

2. Inhibition of viral-induced cell apoptosis.

3. Activity of ceruloplasmin, benzylamine oxidase and superoxide dismutase and improvement of the cell antioxidant status.

Magnesium 1. Activator role in many of enzymatic reactions.

2. Regulation of nuclear factor-κB, Il-6, c-reactive protein, and other related signalling pathways.

Probiotics 1. Influencing immune reactions by up or down regulation of immune responses

Zinc-deficient populations are at an increased risk of infection
by several viruses including human immunodeficiency virus
(HIV) and hepatitis C virus (HCV) (113). In a RCT, Zn
increased Th1cytokine responses including the production of
IL-2 and of INFγ in response to influenza vaccine (107). In
another RCT, oral supplementation of high-dose zinc after stem
cell transplantation demonstrated that zinc enhanced thymic
function and the production of CD4 naïve T cells, helping to
prevent the reactivation of TTV (107). However, in an elderly
population, enhancing zinc plasma concentrations had no effect
on the antibody response or on the number of lymphocytes
present following influenza vaccination (114).

Selenium is another trace element with a broad range
of effects from antioxidant to anti-inflammatory properties
(115). Selenium supplementation resulted in both beneficial
and detrimental effects on cellular immunity to influenza.
Selenium supplemented subjects had a more rapid clearance
of the poliovirus after vaccination for influenza. In this
study, selenium induced a dose-dependent increase in T-cell
proliferation and the production of IL-8 and IL-10. However,
mucosal influenza-specific antibody responses were unaffected
by selenium supplementation (116).

Copper has a crucial role in the development and
differentiation of immune cells and mediates several antiviral
responses (117). Chelates of thujaplicin and copper inhibited

influenza virus-induced apoptosis in vitro supressed viral
replication and release from the infected cells (118). In addition,
intracellular copper interferes with the influenza virus life cycle
(119). Appropriate copper intake optimises the antioxidant status
and improves the serum level and activity of ceruloplasmin,
benzylamine oxidase and superoxide dismutase (118, 120).

Magnesium also regulates immune function by controlling
various aspects of immunity such as immunoglobulin synthesis
and antibody-dependent cytolysis (121). Magnesium is an
activator of many enzymatic reactions and is essential for
a broad range of physiological functions (122). Magnesium
intake supports different aspects of immune functions including
regulation of NF-κB, IL-6, c-reactive protein, and other related
signalling pathways (123). The major role of magnesium is in
viral immunity which has been reported in many in-vitro and in-
vivo studies (121, 124). A recent study reported that magnesium
in combination with vitamin D and vitamin B12. Significantly
reduce the proportion of severe COVID-19 patients needing
intensive care (125).

Probiotics
SARS-CoV-2 infection of the gastrointestinal system affects gut
inflammation both directly and indirectly following infection of
intestinal epithelial cells through the ACE2 and transmembrane
protease serine 2 (TMPRSS2) viral entry system. This results in
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pronounced pro-inflammatory chemokine and cytokine release
(126, 127). In addition, cellular and animal studies indicate
that SARS-CoV-2 instigates an acute intestinal inflammatory
response including elevated levels of faecal calprotectin and
serum IL-6 and linked to clinical evidence of diarrhoea (127).
To date, the rationale for using microbiome modulators such as
pre and probiotics in COVID-19 is indirect. Two randomised
controlled trials showed that critically ill patients on mechanical
ventilation who were given probiotics (Lactobacillus rhamnosus
GG, live Bacillus subtilis, and Enterococcus faecalis) developed
substantially less ventilator-associated pneumonia compared
with placebo (128, 129). Due to the similarities between severe
COVID-19- and pneumonia-induced ARDS there is potential for
this therapeutic approach being useful in COVID-19.

Patients with COVID-19 appear to have an altered
gut microbiome with depletion of beneficial commensals
(Eubacterium ventriosum, Faecalibacterium prausnitzii,
Roseburia, and Lachnospiraceae taxa) and enrichment of
opportunistic pathogens (Clostridium hathewayi, Actinomyces
viscosus, Bacteroides nordii) (130). It is uncertain whether this
difference is causal or downstream of other changes but again
indicates that probiotics or microbiome manipulation may
be useful in severe COVID-19 subjects. Disturbances in gut
microbiota and their metabolites influence immune responses,
inflammation and diseases of the lungs by mediating both over-
active and under-active immune responses (131). Favourable
implications of gut microbiota modulation in COVID-19 is
speculated upon because a general imbalance of gut microbiota
is commonly seen in elderly and immune-compromised patients
and patients with other co-morbidities like type-2 diabetes, and
cardiovascular disorders (132). To date however, the rationale
for using probiotics in COVID-19 is derived from indirect
evidence and more research is needed before any specific
recommendations on probiotic use can be made (133).

CONCLUSION

The COVID-19 pandemic poses a significant threat to humans.
Until the widespread availability of effective, long-term, vaccines,

and effective treatment and prevention measures. An important

therapeutic and preventive strategy, may be to reduce the
incidence or severity of infection. This will involve having a
healthy and resilient immune system. An individual’s nutritional
status has a significant impact on the susceptibility to COVID-
19, response to therapy, and on the long-lasting consequences of
infection. As such, it is critical to consider the impact of lifestyle
and the consumption of healthy diets during the pandemic.

A good healthy balanced nutrition is vital in the recovery
process for all patients with COVID-19, particularly those
who have suffered cardiac distress, pulmonary distress, or
those who have been critically ill due to the weight loss,
frailty or sarcopenia associated with these conditions (134).
These patients require individually tailored nutrition support,
started early in their journey, that is sufficient and timed
to enable optimal metabolic utilisation to aid recovery
(134). Nutritional rehabilitation needs to be central to the
community management of these patients’ post-hospital
discharge to ensure efficient and effective recovery and to
reduce the risk of hospital re-admissions or the duration
of long-COVID-19.

In this respect, access to healthy foods should be a priority
for individuals and governments to reduce the susceptibility and
prolonged effects of COVID19. Given the over-representation
of minorities with the disease and those who also have poor
nutrition, we should aim to increase the access to healthy
fresh food as well as provide nutritional education to these
at-risk subjects.
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