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Simple Summary: Immune checkpoint inhibitors (ICIs) have significantly changed the treatment
paradigm in metastatic renal cell carcinoma (mRCC) and brought an unprecedented durable response.
However, there is still a significant proportion of patients who do not response to ICIs, and there
are no biomarkers to select responders. In this study, we investigated the change in neutrophil-to-
eosinophil ratio (NER) during ipilimumab/nivolumab treatment and clinical response in mRCC.
We found that mRCC patients who responded to immunotherapy had lower on-treatment NER
during ipilimumab/nivolumab induction. In addition, after accounting for baseline tumor biological
characteristics and patient sociodemographic factors, we found that the decrease in NER at week 6
was independently associated with improved outcomes in ipilimumab/nivolumab-treated mRCC.
Given that the NER can be easily obtained through routine laboratory work-ups, our results provide
initial evidence that the decrease in on-treatment NER during immunotherapy, as a biomarker to
predict ICI treatment response, warrants further investigation in prospective studies.

Abstract: A lower baseline neutrophil-to-eosinophil ratio (NER) has been associated with improved
responses to immune checkpoint inhibitors (ICI)-treated metastatic renal cell carcinoma (mRCC). This
study investigated the decrease in NER at week 6 after ipilimumab/nivolumab (ipi/nivo) initiation
and treatment responses in mRCC. A retrospective study of ipi/nivo-treated mRCC at two US
academic cancer centers was conducted. A landmark analysis at week 6 was performed to assess the
association between the change in NER and clinical responses (progression-free survival (PFS)/overall
survival (OS)). Week 6 NER was modeled as a continuous variable, after log transformation (Ln NER),
and a categorical variable by percent change. There were 150 mRCC patients included: 78% had
clear cell histology, and 78% were IMDC intermediate/poor risk. In multivariable regression analysis,
every decrease of 1 unit of Ln NER at week 6 was associated with improved PFS (adjusted hazard
ratio (AHR): 0.78, p-value:0.005) and OS (AHR: 0.67, p-value: 0.002). When NER was modeled by
percent change, decreased NER > 50% was associated with improved PFS (AHR: 0.55, p-value: 0.03)
and OS (AHR: 0.37, p-value: 0.02). The decrease in week 6 NER was associated with improved
PFS/OS in ipi/nivo-treated mRCC. Prospective studies are warranted to validate NER change as a
biomarker to predict ICI responses.

Cancers 2022, 14, 3830. https://doi.org/10.3390/cancers14153830 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14153830
https://doi.org/10.3390/cancers14153830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-7988-319X
https://orcid.org/0000-0002-1130-3125
https://orcid.org/0000-0002-7933-2280
https://orcid.org/0000-0001-8914-3531
https://doi.org/10.3390/cancers14153830
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14153830?type=check_update&version=1


Cancers 2022, 14, 3830 2 of 14

Keywords: immune checkpoint inhibitor; eosinophil; neutrophil-to-eosinophil ratio; NER; renal cell
carcinoma; kidney cancer

1. Introduction

Immune checkpoint inhibitors (ICIs) targeting program-cell death 1 or its ligand (anti-
PD1/anti-PDL1) and cytotoxic T-lymphocyte associated protein 4 (anti-CTLA-4) have revo-
lutionized the treatment paradigm for multiple cancers and have brought unprecedented
deep and durable treatment efficacy to patients with metastatic disease [1–5]. Kidney
cancer is one of the leading examples demonstrating how immune checkpoint inhibitors
enable sustained long-term overall survival in metastatic disease: after a minimal 5-year
follow-up of the CheckMate 214 trial [6], almost 50% of the ipilimumab/nivolumab treated
metastatic clear cell renal cell carcinoma (mccRCC) patients were still alive, with a median
overall survival of 56 months, compared to that of 38 months in the sunitinib arm among
the intention-to-treatment population. In addition, the median duration of response has
not yet been reached.

Despite the great success and ongoing efforts in developing immuno-oncology (IO)
agents [7], there is a significant fraction of patients who will not respond to IO, and there
is a need to develop predictive biomarkers to improve patient selection. The search for
biomarkers has led to enhanced understanding of the tumor microenvironment (TME) in IO-
treated patients [8,9]: studies have elucidated the complex interactions between infiltrating
immune cells, tumor cells, and other surrounding cell, such as fibroblasts and endothelial
cells [9,10]. While infiltrating T lymphocytes caught the early attention of researchers in the
studies of TME [11], there has been rapidly accumulating evidence supporting the roles of
myeloid cells [12,13] in the response of ICIs, such as the myeloid-derived suppressor cells
and tumor-associated macrophages [14]. Furthermore, there is growing evidence among
pre-clinical studies suggesting that eosinophils are essential cells in the TME for the anti-
tumor activity observed with IO [15,16]. Recent clinical studies also reported that a higher
baseline eosinophil count was predictive of improved ICI responses in melanoma [17,18],
urothelial cancer [19], and head and neck cancer [20]. Besides the predictive value of the
baseline eosinophil count, the interval increase in eosinophil count after initiation of ICIs
was also observed among responders in lung cancer [21,22], melanoma [23], and kidney
cancer [24].

Our group previously investigated the baseline neutrophil-to-eosinophil ratio (NER)
in ipilimumab/nivolumab treated mccRCC and demonstrated that a low baseline NER was
associated with favorable progression-free survival (PFS), overall survival (OS), and objec-
tive response rate (ORR) [25]. Similar improved outcomes were also observed in nivolumab
monotherapy-treated mRCC at second or later lines of therapy [26]. Using NER as a
predictive biomarker is clinically pertinent to RCC, since neutrophilia is a well-validated
International Metastatic RCC Database Consortium (IMDC) prognostic factor [27,28]. An-
other advantage of adopting a ratio is to reduce the interlaboratory variability of different
assays compared to using absolute eosinophil count alone. Building on our prior findings
of the favorable prognostic/predictive value of low baseline NER [25], we investigated
the dynamic changes of NER during the induction phase of ipilimumab/nivolumab from
baseline to week 12 and the association between the on-treatment change of NER with
clinical outcomes in ipilimumab/nivolumab-treated mRCC.

2. Methods
2.1. Patient Population

Patients diagnosed with mRCC and treated with the combination of ipilimumab/
nivolumab at Vanderbilt-Ingram Cancer Center and Duke Cancer Institute were identified.
Patients who had received prior immune checkpoint inhibitors before ipilimumab/nivolumab
were not eligible for inclusion. The study population included patients treated between
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January 2016 to 21 August 2021, January 2016 to 26 March 2021, for patients treated at
Vanderbilt and Duke, respectively. All investigators had access to the study population.
This study received Institutional Review Board approval from each institute.

2.2. Variables and Endpoints of Interests

The main variable of interest was the neutrophil-to-eosinophil ratio (NER), which
was calculated by the absolute neutrophil count (ANC, cell number × 103/µL) divided
by the absolute eosinophil count (AEC, cell number × 103/µL). The NER measurements
included baseline and throughout the first 12 weeks of the ipilimumab induction (week 3,
6, 9, and 12).

Patient sociodemographic factors included age, race (White, versus non-White), and
sex. Tumor characteristics included histology type (clear cell RCC (ccRCC), versus non-clear
cell RCC (nccRCC)), and the IMDC risk group [27] (favorable, intermediate, and poor risk).
Prior treatment information included nephrectomy (Yes or No) or systemic therapy (Yes
or No).

The endpoints of interest were the length of overall survival (OS), progression-free
survival (PFS), and objective response rate (ORR) [29].

2.3. Statistical Analysis

Patient sociodemographic factors, tumor characteristics, and prior treatment infor-
mation were presented with descriptive statistics. Categorical variables were compared
using the chi-square test (or Fisher’s exact test, if cell count ≤ 5). The Mantel–Haenszel
chi-square test was used to report p-value for trend. The Wilcoxon rank sum test was used
to compare AEC, ANC, and NER between responders and non-responders.

Landmark analysis was conducted to investigate the association between on-treatment
NER at week 6 and PFS/OS. PFS was calculated from week 6 after treatment initiation until
clinical/radiographic progression or death. OS was calculated from week 6 after treatment
initiation until death. Given the non-normal distribution of NER, natural log transformation
of NER (LnNER) was used in continuous variable analysis. For categorical variable analysis,
relative NER change at week 6 from baseline was categorized into three groups (increase,
≤50% decrease, >50% decrease). Multivariable Cox regression analysis was used to assess
the association between week 6 NER with PFS or OS after baseline risk adjustments. The
Kaplan–Meier method was used to present PFS and OS. A two-sided p-value < 0.05 was
considered statistically significant. All statistical analyses were performed using SAS
version 9.4 (SAS Institute Inc., Cary, NC, USA), and survival curves were plotted with
GraphPad Prism version 9.0 (GraphPad Software Inc., San Diego, CA, USA).

3. Results
3.1. Changes in AEC/ANC/NER and Patient Baseline Characteristics

The initial study population consisted of 166 patients with mRCC treated with ipili-
mumab/nivolumab. The trend of AEC, ANC, and NER from baseline to week 12 were strat-
ified by response status (Figure 1). Among responders, the median AEC was 200 cells/µL
at baseline, 365 cells/µL at week 6, and 320 cells/µL at week 12; among non-responders,
the median AEC was 130 cells/µL at baseline, 200 cells/µL at week 6, and 190 cells/µL
at week 12. The most significant AEC difference was observed at week 6 (Figure 1a;
p-value: 0.0006). For ANC, there was no statistical difference at either time point (Figure 1b;
p-values > 0.05). The median NER was numerically lower in responders from baseline
to week 12 (Figure 1c). The most significant difference of NER was observed at week 6
(Figure 1c; p-value: 0.002). Given the above observations, the week 6 NER was further
investigated in landmark analyses. The final cohort included 150 patients with mRCC
treated with ipilimumab/nivolumab (10 patients with missing week 6 NER, and 6 patients
progressed before week 6 were excluded).
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There were 150 ipilimumab/nivolumab-treated patients with mRCC included in the
final study population (Table 1). The median age was 62 (interquartile range: 53–70), 74%
were male, and 80% were White. The majority of patients had clear cell histology (78%);
22% were IMDC favorable risk, 63% were intermediate risk, and 15% were poor risk. There
were 104 (69%) patients who had prior nephrectomy, and 49 (33%) patients who had prior
systemic therapy. The median follow-up time was 11.6 months.
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Table 1. Patient baseline characteristics (N = 150).

Median (IQR)

Baseline NER 23.8 (15–57)

Week 6 NER 19.8 (10.6–40.8)

N (%)

Week 6 NER change

Decrease > 50% 44 (29)

Decrease ≤ 50% 58 (39)

Increase 48 (32)

Baseline NER

High (≥median) 75 (50)

Low (<median) 75 (50)

Age (Median: 62 (IQR: 53–70))

<60 63 (42)

≥60 87 (58)

Sex

Male 111 (74)

Female 39 (26)

Race

White 120 (80)

Non-White 24 (14)

Unknown 9 (6)

Histology

Clear cell 117 (78)

Non-clear cell 31 (21)

Unknown 2 (1)

IMDC risk

Favorable 33 (22)

Intermediate 94 (63)

Poor 23 (15)

Nephrectomy

Yes 104 (69)

No 46 (31)

Prior systemic therapy

Yes 49 (33)

No 100 (67)

Unknown 1 (1)
NER: neutrophil-to-eosinophil ratio; IQR: interquartile range; IMDC: International Metastatic RCC
Database Consortium.
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3.2. Association between Decreased NER at Week 6 and Clinical Outcomes

In the multivariable Cox regression analysis, NER was first modeled as a continuous
variable after natural log transformation. After adjusting for age, sex, race, IMDC risk
group, baseline LnNER, histology, prior systemic therapy, and prior nephrectomy, every
decrease of 1 unit of week 6 LnNER was associated with improved PFS (adjusted hazard
ratio (AHR):0.78, 95% CI: 0.66–0.93, p-value: 0.005) and OS (AHR:0.67, 95% CI: 0.52–0.86,
p-value: 0.002) (Table 2).

Table 2. Multivariable regression analysis of NER and clinical outcomes.

PFS OS

AHR (95%) p-Value AHR (95%) p-Value

Continuous variable

Baseline LnNER 0.98 (0.78–1.23) 0.84 0.82 (0.57–1.19) 0.30

Week 6 LnNER 0.78 (0.66–0.93) 0.005 0.67 (0.52–0.86) 0.002

Week 6 NER change

All patients (N = 150)

Decrease > 50% 0.55 (0.31–0.95) 0.03 0.37 (0.16–0.84) 0.02

Decrease ≤ 50% 0.63 (0.38–1.05) 0.07 0.49 (0.23–1.06) 0.07

Increase Ref Ref

Subgroup with high
baseline NER (N = 75)

Decrease > 50% 0.46 (0.22–1.00) 0.048 0.28 (0.11–0.74) 0.01

Decrease ≤ 50% 0.59 (0.26–1.31) 0.19 0.44 (0.16–1.23) 0.12

Increase Ref Ref

Subgroup with low baseline
NER (N = 75)

Decrease > 50% 0.58 (0.22–1.48) 0.25 0.60 (0.08–4.30) 0.61

Decrease ≤ 50% 0.72 (0.34–1.53) 0.39 1.08 (0.25–4.70) 0.92

Increase Ref Ref
PFS: progression-free survival; OS: overall survival; AHR: adjusted hazard ratio. Models were adjusted for age,
sex, race, IMDC risk group, baseline NER, histology, prior systemic therapy, and prior nephrectomy. Landmark
analysis for PFS and OS were calculated from week 6.

For illustration purposes, baseline NER was subsequently dichotomized at the median
(23.8) into high vs. low baseline NER groups, and the NER change from baseline at week
6 were grouped into three groups: (1) NER increase, (2) NER decrease ≤ 50%, and (3)
NER decrease > 50%. When stratified by baseline NER (Figure 2a), patients with a low
baseline NER had numerically higher ORR than those with a high baseline NER (39%
vs. 31%, p-value: 0.30). When considering week 6 NER change alone (Figure 2b), NER
decrease > 50% had higher ORR compared to NER decrease ≤ 50% and NER increase
(43% vs. 36% vs. 25%, p-value for trend: 0.07). When stratified by baseline NER and NER
change at week 6 (Figure 2c), patients with NER decrease > 50% at week 6 had numerically
higher ORR compared to NER decrease ≤ 50% and NER increase in the low baseline NER
subgroup (50% vs. 43% vs. 29%, p-value for trend: 0.16), and the high baseline NER
subgroup (41% vs. 26% vs. 20%, p-value for trend: 0.11).When stratified by IMDC risk
group (Figure 2d), patients with intermediate and poor risk disease had a higher percentage
of NER decrease > 50% at week 6 compared to patients with favorable risk disease (33%
and 35%, respectively vs. 15%, p-value: 0.048).
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Figure 2. ORR by baseline NER and NER change at week 6.

When NER was modeled by percent change, NER decrease >50% at week 6 was asso-
ciated with improved PFS (AHR:0.55, 95% CI: 0.31–0.95, p-value: 0.03) and OS (AHR: 0.37,
95% CI: 0.16–0.84, p-value: 0.02) when compared to increased NER (Table 2). NER decrease
≤ 50% at week 6 showed a trend toward improved PFS (AHR:0.63, 95% CI: 0.38–1.05,
p-value: 0.07) and OS (AHR: 0.49, 95% CI: 0.23–1.06, p-value: 0.07). Stratified analysis was
conducted by baseline NER. In the subgroup with a high baseline NER, NER decrease
>50% was associated with improved PFS (AHR: 0.46, 95% CI: 0.22–1.00, p-value: 0.048)
and OS (AHR: 0.28, 95% CI: 0.11–0.74, p-value: 0.01). In the subgroup with a low baseline
NER, NER decrease > 50% at week 6 was not associated with PFS (AHR: 0.58, 95% CI:
0.22–1.48, p-value: 0.25) or OS (AHR: 0.60, 95% CI: 0.08–4.30, p-value: 0.61). The full models
are provided in the Supplementary Material (Tables S1–S4). The Kaplan–Meier curves for
PFS and OS by baseline NER and week 6 NER change are presented in Figure 3.
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4. Discussion

The current study characterizes the dynamic changes of AEC and NER during the
ipilimumab/nivolumab induction from baseline to week 12 in mRCC patients. Patients
with an objective response had a higher interval increase in AEC, and there was a prominent
decreasing trend of NER from baseline to week 12. After adjusting for patient sociodemo-
graphic and tumor characteristics, including the baseline NER [25] and IMDC prognostic
risk [27], the decrease in NER at week 6 from the baseline was independently associated
with improved PFS and OS in both the continuous and categorial variable analyses. In
our subgroup analysis, this association was mostly driven by the subgroup with high
baseline NER.

Building on our previous finding that baseline NER is predictive and prognostic
in ipilimumab/nivolumab-treated mRCC [25], the current study demonstrates that the
on-treatment decrease in NER at week 6 can be an early predictive biomarker of future
response of ipilimumab/nivolumab, especially in patients with unfavorable high baseline
NER. The current study observed a higher percentage of patients with NER decrease > 50%
at week 6 in the IMDC intermediate risk (33%) and poor risk (35%) categories, compared
to that in patients with favorable risk disease (15%). This finding is consistent with the
CheckMate 214 [6], showing that the superior clinical efficacy of ipilimumab/nivolumab
over sunitinib was mainly observed in the IMDC intermediate and poor risk, but not in
the favorable risk categories. However, durable long-term responses have been observed
among responders in the favorable risk group, but there is no available biomarker to
select such patients. If the current biomarker is successfully validated in prospective
studies, the decrease in on-treatment NER can be used as an early predictive biomarker in
ipilimumab/nivolumab-treated mRCC.

These current findings are supported by previous studies that have observed the
elevation of eosinophils after the initiation of ICIs, especially among patients with durable
responses in lung cancer [21,22] and melanoma [23]. Prior to the ICI era, this positive
association had been observed in IL-2-treated RCC in an early case series [30]. In addition
to IO agents, the elevation of eosinophils was also observed in a post hoc analysis of
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three randomized-controlled phase III trials in sipuleucel-T-treated metastatic castration
resistant prostate cancer (mCRPC) patients [31]: there was an association of an elevation
of eosinophil at week 6 with improved prostate cancer-specific survival (HR: 0.71, 95%
CI: 0.53–0.97, p-value: 0.03) and a trend for improved overall survival (HR: 0.75, 95% CI:
0.56–1.01, p-value: 0.06). The elevation of eosinophils after treatment initiation among
responders suggests a certain biological effect of eosinophils in the TME. The anti-tumor ac-
tivity of eosinophils has been postulated [32], and the roles of eosinophils in the TME have
yet to be better elucidated [33]. Eosinophil can leave the bloodstream and migrate into the
TME through several integrins-mediated mechanisms [34]. Pre-clinical studies [15,35,36]
designed to mechanistically explicate the functions of eosinophils in the TME revealed
enhanced antitumor responses through tumor-homing activated eosinophils: the activated
eosinophils attracted tumor-specific CD8+ T cells by producing chemokines, such as CCL5,
CXCL9, and CXCL10 [15]; the activated eosinophils also normalized the tumor vascu-
lature and polarized the tumor-associated macrophages [15]; anti-tumor activities were
also observed in eosinophil-mediated IL-33 [36] and the GM-CSF-IRF5 singling axis in
melanoma [36] and colorectal cancer models [35], respectively.

Although our results showed an association between decreased NER and favorable
outcomes among patients with ipilimumab/nivolumab-treated mRCC, there were still
patients with increased NER at week 6 who had an objective response. Therefore, there
are likely additional immune-mediated mechanisms at work in these patients. The current
results reflect the complexity of the roles of innate immune cells in the TME, and further
research is needed to untangle the involved biological pathways. Eosinophils have the
plasticity to shape the TME in opposing directions, between pro-tumorigenic vs. anti-
tumorigenic [33], depending on their reciprocal interactions with other cells [32]. Likewise,
although tumor-associated neutrophils are traditionally considered to be associated with
resistance to ICIs [37], studies revealed that the phenotypes of tumor-associated neutrophils
were diverse, and their anti-tumor activities were observed in certain cancer types and
at different disease stages [38–40]. Our study suggests the possibility of increasing the
response of IO agents through enhancing the recruitment of eosinophils to the TME and the
augmentation of the anti-tumor activities of the eosinophils. One of the potential targets
may be the inhibition of the dipeptidyl peptidase 4 (DPP4) [41], which has been shown
by Hollande et al. [42] to increase the chemokine CCL11-mediated eosinophil migration
into breast cancer and hepatocellular carcinoma mouse models. In their study, DPP4
inhibition with sitagliptin was shown to increase eosinophil migration into the tumors,
and the anti-tumor activity of eosinophils was shown to be independent of T-cells. Tumors
treated with sitagliptin, in addition to anti-PD1/anti-CTLA4 antibodies, also demonstrated
significantly lower tumor volume compared to controls. Our group previously conducted a
small retrospective study of 26 patients with solid tumor diagnosis who were concomitantly
taking DPP4 inhibitors for diabetes while on ICI treatment [43]: the objective response
rate was 69% (18/26), although the results should be interpreted with caution due to the
small sample size and lack of a comparison group. Of note, a phase 1b/2 trial investigating
BXCL701, which is an inhibitor of DDP4/DPP8/DPP9, with/without pembrolizumab in
mCRPC [44] (NCT03910660) reported a 26% response rate (6/23) and a disease control rate
of 63% in this heavily treated patient population [45]. Future correlative studies of this trial
may provide further translational data for the anti-tumor activity of eosinophils through
DPP inhibitions and the possibility to enhance antitumor activity of ICIs.

In addition to improved clinical outcomes, the increase in eosinophil counts after initi-
ation of ICIs was also reported to be an early biomarker for the development of immune-
related adverse events (irAEs). Osawa et al. found that peripheral eosinophilia (defined
as AEC ≥ 330/µL) at week 6 was associated with a 2.8-fold higher risk of irAEs [46].
Studies have observed such associations in ICI-induced adrenal insufficiency [47], hy-
popituitarism [48], cutaneous irAEs [49], and pneumonitis [50]. Given that irAEs have
been associated with improved outcomes in ICI-treated cancer patients [51], the associ-
ation between eosinophil elevation and irAEs is expected. The current dataset did not
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include granular information on irAEs; therefore, we did not explore such associations in
our analysis.

There are several limitations in the current study. First, several peripheral blood
count-based biomarkers have been previously investigated in various cancers, before and
after the advent of ICIs, such as the neutrophil-to-lymphocyte ratio [52–56], lymphocyte-
to-monocyte ratio [52,55,57], and platelet-to-lymphocyte ratio [52,54,58–60]. The current
study chose to investigate NER (instead of other indices) based on our clinical observation
of eosinophil count elevation and the established prognostic role of neutrophilia in mRCC
in the IMDC model [27]. However, our results alone are insufficient to compare NER with
other indices as a prognostic/predictive biomarker, as this study did not perform direct
comparisons with each of these various indices. Prospective validation of NER is warranted.
Second, the study design was a retrospective analysis, and inherited biases could not be
avoided. The unmeasured confounding and residual confounding may still exist, despite
the study-adopted regression method to adjust for baseline characteristics. Third, the
median follow-up time was relatively short (11.6 months). Fourth, several other conditions,
such as medications, infections, and the inflammatory/autoimmune process, can all affect
neutrophil and eosinophil counts, and the current study was not able to account for those
factors. As such, the results of the current study should be interpreted as hypothesis
generating. Future clinical trials will provide a more ideal setting to prospectively validate
the on-treatment NER biomarker. In addition, correlative studies in clinical trials can
mechanistically explore the role of eosinophils in cancer immunotherapy by measuring
baseline and on-treatment chemokines, such as CCL5/CXCL9/CXCL10/CCL11.

5. Conclusions

In patients with mRCC treated with ipilimumab/nivolumab, our results reveal that
the decrease in on-treatment NER at week 6 is associated with improved PFS and over-
all survival, and the dynamic changes of on-treatment NER implied responses of ICIs.
Prospective studies are warrantied to validate this predictive biomarker in IO combinations
of mRCC and to further explore the role of eosinophils in TME, along with the therapeutic
implications of eosinophil-mediated anti-tumor activities.
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