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Ni2P nanocrystals embedded 
Ni‑MOF nanosheets supported 
on nickel foam as bifunctional 
electrocatalyst for urea electrolysis
Haitao Wang1, Haiyan Zou1, Yingying Liu1, Zhenglong Liu1, Wenshuang Sun1, 
Kunyi Andrew Lin2, Tielong Li1* & Shuangjiang Luo3*

It’s highly desired but challenging to synthesize self‑supporting nanohybrid made of conductive 
nanoparticles with metal organic framework (MOF) materials for the application in the 
electrochemical field. In this work, we report the preparation of  Ni2P embedded Ni‑MOF nanosheets 
supported on nickel foam through partial phosphidation  (Ni2P@Ni‑MOF/NF). The self‑supporting 
 Ni2P@Ni‑MOF/NF was directly tested as electrode for urea electrolysis. When served as anode for urea 
oxidation reaction (UOR), it only demands 1.41 V (vs RHE) to deliver a current of 100 mA  cm−2. And 
the overpotential of  Ni2P@Ni‑MOF/NF to reach 10 mA  cm−2 for hydrogen evolution reaction HER was 
only 66 mV, remarkably lower than  Ni2P/NF (133 mV). The exceptional electrochemical performance 
was attributed to the unique structure of  Ni2P@Ni‑MOF and the well exposed surface of  Ni2P. 
Furthermore, the  Ni2P@Ni‑MOF/NF demonstrated outstanding longevity for both HER and UOR. The 
electrolyzer constructed with  Ni2P@Ni‑MOF/NF as bifunctional electrode can attain a current density 
of 100 mA  cm−2 at a cell voltage as low as 1.65 V. Our work provides new insights for prepare MOF 
based nanohydrid for electrochemical application.

In recent years, the application of metal organic frameworks (MOFs) in the electrochemical field, especially 
electrocatalysis, has attracted considerable interest. The major appeals of the electrochemical application of 
MOFs are their large surface area, well-defined pores and tunable chemical  composition1,2. However, the direct 
use of MOFs as electrode is often limited due to the poor intrinsic conductivity. So, MOFs are more often used as 
precursors to prepare advanced electrocatalysts through carbonization at high  temperature3. The organic ligands 
in the MOFs are pyrolyzed to form graphitized/amorphous carbon matrix that could serve as freeway for electron 
flow. As a result, the MOFs-derived material through carbonization exhibited enhanced electrochemical activ-
ity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) due to the dramatically 
increased  conductivity4. The electrocatalytic performance of the carbonized material can be further boosted by 
 phosphidation5. However, the fascinating pore structure of MOFs is largely destroyed during the heat treatment, 
vanishing the advantages associated with the well-defined pore structure as well as high specific surface  area6.

In recent years, MOF based nanohybrids prepared by integration of nanoparticles with MOF have attracted 
considerable  attention7,8. Beside utilizing the super adsorption capability of MOF, such integration strategy could 
tuning the microenvironment of the nanoparticles to improve their catalytic  activity8. Nevertheless, it is still 
very challenging to synthesize self-supporting MOF-nanoparticles nanohybrids, which is highly desired for the 
application in the electrochemical field.

On the other hand, OER is a thermodynamically sluggish multi-electron process with large over-potential, 
leading to energy consumption surge for electrochemical hydrogen  production9. Moreover, it is a formidable 
challenge to completely avoid the formation of explosive  H2/O2 mixtures during water  electrolysis10. Replacing 
OER with alternative electrochemical oxidation reaction offers an effective way to address these  drawbacks11. So 
far, urea, methanol and hydrazine electrochemical oxidation have been explored as alternative anode  reaction12–16. 
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Compared with others, electrochemical oxidation of urea (UOR) has multiple advantages: (1) urea is a widely 
available commodity with merits such as non-toxic, high soluble in water, non-flammable, high energy density, 
easy storage and transportation; (2) the end products of UOR are harmless gases  CO2 and  N2; (3) Furthermore, 
it is feasible to extract energy from urea-rich wastewater such as human/animal urine, effluents discharged from 
urea synthesis  factory17–19. Since the application of earth-abundant nickel as electrocatalyst for UOR was first 
reported by G. Botte et al20, various nickel-containing nickel materials such as nickel oxides, sulfides, phosphides 
and alloys have been extensively explored as electrocatalyst for  UOR21–35.

Herein, we report a feasible way to prepare  Ni2P nanocrystals embedded Ni(BDC)(DMF) MOF supported on 
nickel foam  (Ni2P@Ni-MOF/NF) through a direct phosphidation process. During the phoshidation process, part 
of the nickel atoms in the Ni-MOF transformed into  Ni2P nanoparticles. The self-supporting  Ni2P@Ni-MOF/
NF was directly used as electrode for HER and UOR without the use of any polymer binders. The overpotential 
was only 66 mV to drive HER at a current density of 10 mA  cm−2. To drive UOR at a current density of 100 mA 
 cm−2, it only needs a potential as low as 1.41 V (vs RHE). The superior HER and UOR performance of the  Ni2P@
Ni-MOF/NF was attributed to the enhanced conductivity, fast release of the gases bubbles from the surfaces of 
the electrode as well as the tuning of the microenvironment of  Ni2P nanoparticls by Ni-MOF. The electrolyzer 
constructed with  Ni2P@Ni-MOF/NF as both bifunctional electrode could deliver a current density of 100 mA 
 cm−2 in 1 M NaOH with the presence of 0.33 M urea at 1.65 V, which was 0.26 V lower than water electrolysis.

Results and discussion
Materials characterization. To synthesize the  Ni2P@Ni-MOF/NF electrode, the Ni(BDC)(DMF) MOF 
was first grown on NF by a solvothermal method at 140 °C and the sample was labelled as Ni-MOF/NF. After-
wards, the Ni-MOF was converted to  Ni2P@Ni-MOF by a direct phosphidation process carried out at 300 °C. 
Powder X-ray diffraction (XRD) was first employed to get the composition and phase of the Ni-MOF/NF. Two 
sharp diffraction peaks at 44.9° and 52.2° were observed in the XRD pattern of Ni-MOF/NF (Fig.  1a), cor-
responding to the (111) and (200) planes of face-centered cubic nickel (JCPDS No. 01–1260). Apparently, the 
diffraction peaks of Ni-MOF were relatively weak. Enlarged XRD patterns on an expanded y-axis scale was pro-
vided in Fig. 1b for clarity. The diffraction peak at 8.9° and 17.5° was assigned to Ni-MOF (CCDC No. 638866). 
After phosphidation process, four new peaks emerged at 40.9°, 47.6°, 54.4° and 55.1°, which were attributed to 
the (111), (210), (300) and (211) planes of hexagonal  Ni2P (JCPDS No.03–0953). The diffraction peaks at 8.9° 
and 17.5° associated with Ni-MOF did not disappear, indicating only part of the Ni-MOF has been converted 
to  Ni2P. The thermogravimetric analysis curve shown in Fig. S1 confirmed that 300 °C was not high enough to 
cause the decomposition of Ni-MOF.

The FTIR spectra of the nanosheets before and after phosphidation are shown in Fig. S2. Overall, the absorp-
tion bands of nanosheets became weaker after phosphidation. Nevertheless, the FTIR result verified the partial 
preserve of Ni-MOF. The absorption band around 3444  cm−1 was assigned to the stretching vibration of NH. 
The asymmetric and symmetric stretching modes of C = O appeared at 1582 and 1369  cm−1,  respectively36,37. The 
band at 1087 was attributed to the stretching vibration of C–O of carboxylic acid group. And narrow bands at 
1025 and 748  cm−1 were attributed to δ(C–H) and γ(C–H) vibration of aromatic rings, respectively.

As revealed by the SEM characterization (Fig. S3), the Ni foam exhibited a highly open pore structure with 
pore size around several hundred microns. The high resolution SEM image revealed that the nickel skeleton was 
composed of relatively smooth large compact Ni grains. After Ni-MOF growth, the surfaces of Ni foam were 
uniformly covered with 2D nanosheets (Fig. 2). The Ni-MOF nanosheets exhibited a leaf-like morphology with 
lateral size 4–7 microns, which interlaced with each other to form a nest-like structure. The high resolution SEM 
image shown in Fig. 2c disclosed the fine vein-like structure on the surfaces of the as-grown Ni-MOF. After phos-
phidation process, the skeleton of Ni foam was still uniformly covered with nanosheets (Fig. 2d). But compared 
to Ni-MOF/NF sample, the population of the nanosheets was apparently decreased. As it can be clearly seen in 
the high resolution SEM images (Fig. 2e, f), the fine vein-like structures disappeared after phosphidation and the 

Figure 1.  (a) Powder XRD pattern of Ni-MOF/NF and  Ni2P@Ni-MOF/NF and (b) enlarged XRD pattern on 
an expanded y-axis scale.
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surfaces of the 2D nanosheets became smoother. Nevertheless, the sample still exhibited nest-like morphology 
composed of 2D nanosheets. The successfully incorporation of P elements through phosphidation was confirmed 
by the energy-dispersive X-ray (EDX) spectrum (Fig. S4).

For TEM characterization, the  Ni2P@Ni-MOF nanosheets were scraped off the nickel foam and dispersed in 
ethanol with the help of vortex shaking instead of sonication to minimize the damage. The TEM image shown 
in Fig. 3a reveals the 2 dimensional nature of the  Ni2P@Ni-MOF sample. The selective area electron diffraction 
(SAED) pattern displayed rings with bright spots, indicating the polycrystalline nature of the sample (Fig. 3b). 
High resolution TEM (HR-TEM) image revealed that the surface of the nanosheet was decorated with nearly 
monodispersed nanoperticles with size around 8 nm (Fig. 3c). The formation of  Ni2P nanoparticles was limited 
by the available nickel atoms in the MOF nanosheets, similar to the formation of metal or metal oxide nano-
particles in layer double  hydroxide38. The HR-TEM image of a single nanoparticle shows distinct lattice fringes 
with interplanar d-spacing determined to be 0.22 nm (Fig. 3d), which was attributed to the (111) plane of  Ni2P. 
According to the elemental mapping image, the Ni, P, C and N elements were uniformly distributed in the  Ni2P@
Ni-MOF nanosheet (Fig. 3e). The atomic ratio of Ni:P was ~ 5.6:1, proving the partial transformation of the Ni 
atoms in the Ni-MOF to  Ni2P.

XPS was performed employed to investigate the surface chemical composition and electronic state of ele-
ments of the nanosheets before and after phosphidation. As shown in the XPS survey spectra (Fig. 4a), besides 
the Ni, C and N elements, new signal peak positioned at 133 eV corresponding to P element after phosphidation 
process. The high resolution Ni 2p XPS spectrum of Ni-MOF displayed four prominent peaks (Fig. 4b), the two 
peaks positioned at 855.6 and 873.5 eV are assigned to Ni  2p3/2 and Ni  2p1/2,  respectively39,40. The other two peaks 
positioned at 861.8 and 878.2 eV are the corresponding satellite peaks of Ni  2p3/2 and Ni  2p1/2, respectively. After 
phosphidation, two new peaks corresponding to reduced  Niδ+ emerged at 852.8 and 870.0  eV41. Meantime, both 
the Ni  2p3/2 and Ni  2p1/2 peaks shifted to higher binding energy, suggesting the charge transfer from nickel to 
phosphorus atoms. The high resolution C1s XPS spectrum of Ni-MOF nanosheets displays two main peaks and 
the one positioned at 288.3 eV is assigned to C=O (Fig. 4c)42. The other peak positioned at 284.5 eV could be 
deconvoluted into two peaks corresponding to C–C (284.5 eV) and C–N (285.0 eV), respectively. After phos-
phidation, the peak related to C–N shifted 0.4 eV to higher binding energy, suggesting the charge transfer from 
carbon to neighboring atoms. The N 1s XPS spectrum of Ni-MOF nanosheets only displays one peak at 399.9 eV 
assigned to C–N–C from DMF (Fig. 4d). After phosphidation, the peak shifted slightly to lower binding energy 
to 399.6 eV, demonstrating the charge transfer from neighboring atoms to N. The N 1s peak could not be decon-
voluted, suggesting that no graphitized nitrogen formed after phosphidation process. That was reasonable since 
the temperature of phosphidation process was too low to induce graphitization. The high resolution P 2p XPS 
spectrum exhibits two main characteristic peaks positioned at 129.3 and 134.7 eV (Fig. 4e), which are assigned 
to P-Ni and oxidized phosphate  species43,44.

Figure 2.  SEM image of Ni-MOF/NF (a–c) and  Ni2P@Ni-MOF/NF (d, e) under different scales.
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Figure 3.  (a) TEM image, (b) SAED, (c, d) HRTEM image, and (e) elemental mapping image of  Ni2P@
Ni-MOF.
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Figure 4.  (a) XPS survey spectra of Ni-MOF/NF and  Ni2P@Ni-MOF/NF and high resolution XPS spectra of 
(b) Ni 2p, (c) C 1 s, (d) N 1 s and (e) P 2p. All of the spectra were calibrated by C1s peak located at 284.8 eV.
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UOR performance. The UOR performance of various electrodes were evaluated by using LSV technique in 
a mixed solution containing 1 M NaOH and 0.33 M urea. As shown in Fig. 5a, the initial oxidation potentials of 
UOR for various electrodes were almost the same, 1.36 V (vs RHE). This result suggested that the active species 
for UOR of various electrode were the same as reported in previous  study45. The  Ni2P@Ni-MOF/NF electrode 
demonstrated the best UOR activity, followed by Ni-MOF/NF. The potential to drive the UOR at 100 mA/cm2 is 
only 1.41 V, which is among the best when compared with the literature data (Table S1). The linear increase of 
the current density above 1.38 V (vs RHE) indicated the readily detachment of gases bubbles from the surfaces 
of the  electrode45. The UOR performances of NiC/NF and  Ni2P@NiC/NF were inferior to Ni-MOF/NF, which 
may be attributed to the encapsulation of nickel species by carbon.

The current density reported in this work was normalized to the projected area of the electrode, which could 
not reflect the intrinsic catalytic activity of the  material46. However, it was impossible to accurately determine 
the loading amount of the active material on the electrode. So, we tried to normalize the current density to the 
electrochemically active surface area (ECSA), which was regarded to be directly correlated with the active sites 
for electrochemical  reaction47. The ECSA of the electrode could be calculated by using the following equation,

where  Cdl is the double-layer capacitance of the electrode,  Cs is the specific capacitance of the material. The  Cdls 
of various electrodes were determined from the CV curve obtained in a non-Faradic region (0.1–0.2 V) in 1 M 
NaOH solution (Fig. S5 and Fig. S6a). Since  Css of various materials are unknown for, the ECSAs cannot be 
determined. The current density was therefore normalized to  Cdl by assuming that all materials have the same 
 Cs (Fig. S6b). Obviously, the Ni-MOF/NF electrode had the best performance, followed by  Ni2P@Ni-MOF/NF.

Since OER was the competitive reaction with UOR at higher potential, the OER performance was also inves-
tigated (Fig. 5b). An obvious anodic peak corresponding of the oxidation of  Ni2+ to  Ni3+ was observed in the 
polarization curve of OER at the potential of 1.40 V (vs RHE). By comparing the LSV curve of UOR to OER, it 
is clear that the oxidation of urea occurs upon the formation of  Ni3+ species, demonstrating that UOR happens 
readily than OER. In sharp contrast to UOR, OER occurs at a relatively high potential (1.6 V vs RHE) after the 
completion of the oxidation of  Ni2+ to  Ni3+, revealing that the real catalyst for OER is  NiOOH48. It is noteworthy 
that the current density for UOR reached 850 mA/cm2 before the occurring of OER, which is the highest ever 
reported to the best of our knowledge. Tafel analyses were conducted to compare the UOR kinetics of various 
catalysts. As shown in Fig. 5c, the  Ni2P@Ni-MOF/NF electrode exhibited the lowest Tafel slope of 43.8 mV/dec, 
significantly smaller than other catalysts. The results indicated that the UOR with  Ni2P@Ni-MOF/NF electrode 
occurred at faster kinetics than other electrodes.

(1)ECSA = Cdl/Cs

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0

100

200

300

400

500

600

700

800

1.1 1.2 1.3 1.4 1.5

0

150

300

450

600

750

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6
0

1

2

3

1.1 1.2 1.3 1.4 1.5

0

200

400

600

800

1.5 2.0 2.5 3.0

1.35

1.40

1.45

j(
m
A
cm

-2
)

Potential (V vs RHE)

a b c

d

UOR OERj(
m
A
cm

-2
)

Potential (V vs RHE)

NF
pNF
Ni-MOF/NF
NiC/NF
Ni2P@NiC/NF
Ni2P@Ni-MOF/NF

j(
m
A
cm

-2
)

Time (h)

e f

-Z
''(
oh

m
)

Z' (ohm)

NF
pNF
Ni-MOF/NF
NiC/NF
Ni2P@C/NF
Ni2P@Ni-MOF/NF

j(
m
A
cm

-2
)

Potential (V vs RHE)

Before Test
After Test

Po
te
nt
ia
l(
V,

vs
R
H
E)

log|j (mA cm-2)|

NF 131.6 mV dec-1

pNF 117.8 mV dec-1

Ni-MOF/NF 85.3 mV dec-1

NiC/NF 73.4 mV dec-1

Ni2P@NiC/NF 56.2 mV dec-1

Ni2P-Ni-MOF/NF 43.8 mV dec-1

Figure 5.  (a) LSV curves of  Ni2P@Ni-MOF/NF,  Ni2P@NiC/NF, NiC/NF, Ni-MOF/NF, pNF and NF in 1.0 M 
NaOH with 0.33 M urea. (b) LSV curve of  Ni2P@Ni-MOF/NF in 1.0 M NaOH with or without 0.33 M urea. 
(c) The corresponding Tafel plots and (d) the Nyquist plots of various electrodes. (e) Chronoamperometric 
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The charge transfer resistance is a critical influential parameter for electrochemical reaction, which is com-
monly negative correlated with conductivity of the electrode. In order to evaluate the charge transfer resistance 
during UOR, electrochemical impedance (EIS) tests were carried out at 1.42 V. The best fitting was obtained using 
the equivalent circuit shown in Fig. S7. As shown in Fig. 5d, all of the Nyquist plots exhibited a semicircle shape. 
The smaller diameter of the semicircle, the lower the charge transfer resistance. Obviously, the  Ni2P@Ni-MOF/
NF electrode is not the smallest, which is slight larger than that of  Ni2P@NiC/NF and NiC/NF. The fitting results 
indicated that the  Ni2P@NiC/NF had the smallest charge transfer resistance (Table S2), clearly demonstrating 
that high temperature carbonization and phosphidation was the best way to enhance the conductivity. On the 
other hand, the results also indicate that conductivity is not the only determinant factor for UOR.

Chronoamperometry test was conducted at 1.4 V (vs RHE) to investigate the durability of  Ni2P@Ni-MOF/
NF electrode. As shown in Fig. 5e, the current density gradually increased from 42 to 50 mA  cm−2 in the early 
stage, which may be attributed to the activation of electrode. At the end of the stability test, the current density 
declined by only 1.9%, demonstrating the superior stability of the electrode. UOR involves gas evolution, the gas 
bubbles formed on the surface of the electrode need to be released promptly to avoid the blocking of the active 
 sites49. The blocking effect will be exacerbated at constant applied potential, which leads drastic fluctuation of the 
current  density50. It can be clearly seen from Fig. 5e that the current density fluctuation was negligible, suggest-
ing the swiftly gases bubbles detachment from the electrode’s surface. This fast detachment of gases bubbles was 
credited to the surface properties of the electrode and the porous structure of the nickel foam. The interconnected 
macroporous structure of nickel foam allows fast detachment of tiny gas bubbles, enabling it an ideal platform 
to prepare advanced electrodes for gas evolution  reaction51,52. The LSV test was conducted again after durability 
test. As shown in Fig. 5f, the LSV curve overlapped with that collected before durability test. The results verified 
the excellent longevity of the electrode for UOR.

The  Ni2P@Ni-MOF/NF electrode after stability test was first characterized by using XPS. As shown in Fig. 6a, 
the XPS peaks corresponding to the  Niδ+ species decreased dramatically after test. And the XPS peaks related to 
Ni 2p shifted to higher binding energy level. The result indicated the oxidation of Ni species to higher valance 
state in the material. No change was observed for N 1s peak (Fig. 6b). The P 2p peak shifted to higher binding 
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energy level, indicating the charge transfer form P atoms to neighboring atoms (Fig. 6c). The shifting to high 
energy level was also observed for the XPS peak corresponding to C=O (Fig. 6d). Overall, the XPS result indi-
cated the occurrence of the oxidation of surface elements of the electrode. The morphology of the catalyst was 
further characterized by using SEM and TEM. As shown in Fig. S8a, no apparent morphology deterioration was 
found after test. And the lattice fringes of  Ni2P could also be resolved as shown in the TEM image (Fig. S8b). The 
elemental mapping confirmed that the main components of the catalyst was still the same (Fig. S8c).

HER performance. Nickel phosphides such as  Ni2P and  Ni5P4 have been extensively explored as electro-
catalyst for  HER53,54. So, the HER performance of  Ni2P@Ni-MOF/NF electrode was evaluated by using LSV 
technique in 1  M NaOH containing 0.33  M urea. From Fig.  7a,  Ni2P@Ni-MOF/NF electrode had apparent 
better electrocatalytic activity for HER compared with other electrodes. The overpotential at current den-
sity of 10  mA   cm−2 (η10) follows the order:  Ni2P@NiC/NF (57  mV) <  Ni2P@Ni-MOF/NF (6  mV) < NiC/NF 
(78 mV) < pNF (144 mV) < Ni-MOF/NF (165 mV) < NF (200 mV). The result clearly manifested that phosphi-
dation and carbonization could dramatically boost the HER performance of the Ni-MOF. Although the η10 of 
 Ni2P@Ni-MOF/NF was larger than that of  Ni2P@NiC/NF, the performance of electrode at large current density 
was inferior to the latter one. Moreover, the mechanical properties of  Ni2P@NiC/NF were very poor, material 
fragments kept falling off the electrode during the electrochemical test. The HER activity of the  Ni2P@Ni-MOF/
NF electrode, in terms of the η10 value, is lower than many state-of-the-art NF based HER electrodes such as 
NiFe-MOF/ NF (134 mV) and  Ni2P/Ni/NF (98 mV) (Table S3)18,55–60. The Tafel slope of  Ni2P@Ni-MOF/NF was 
42.2 mV  dec−1 (Fig. 7b), which was much smaller than other electrodes, NF (98.1 mV  dec−1), pNF (79.3 mV 
 dec−1), Ni-MOF/NF (76.6 mV  dec−1) NiC/NF (39.3 mV  dec−1) and  Ni2P@NiC/NF (31.3 mV  dec−1). The results 
indicated that the  Ni2P@Ni-MOF/NF electrode had faster HER kinetics than other electrodes. Since the Tafel 
slope was smaller than 80 mV  dec−1, Heyrovsky step was suggested to be the rate-determining step of HER with 
 Ni2P@Ni-MOF/NF  electrode61.

The Nyquist plots of various electrodes for HER are presented in Fig. 7c. The fitting parameters of imped-
ance spectra of HER are summarized in Table S4. It can be clearly seen that the charge transfer resistance of the 
electrodes follows the same order as that for UOR. The results evidently confirmed that direct phosphidation 
process could significantly boost the conductivity of Ni-MOF. The electrochemical stability of  Ni2P@Ni-MOF/NF 
electrode for HER was further tested by chronoamperometry at − 0.1 V (vs RHE) for 10 h. As shown in Fig. 7d, 
the current density gradually increased from − 25 to − 20 mA  cm−2 in the first hour, which may be attributed to 
the slowly buildup of hydrogen gases bubbles on the surface of the electrode. At the end of the stability test, the 
current density still remained about 79.3% of the initial value. No obvious deterioration was observed for the 
LSV curves before and after stability test (Fig. 7e), substantiated the excellent durability of the  electrode62–65.
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Figure 7.  (a) LSV curves, (b) the corresponding Tafel plots and (c) the Nyquist plots of  Ni2P@Ni-MOF/NF, 
 Ni2P@NiC/NF, NiC/NF, Ni-MOF/NF, pNF and NF, (d) Chronoamperometric (i-t) curve of  Ni2P@Ni-MOF/NF 
for 10 h. (e) LSV curves of  Ni2P@Ni-MOF/NF before and after durability test. The electrolyte was 1.0 M NaOH 
with 0.33 M urea.
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Urea electrolysis. Given the fact that  Ni2P@Ni-MOF/NF electrode has excellent performance for both UOR 
and HER, we constructed an electrolyzer with  Ni2P@Ni-MOF/NF as bifunctional electrode for urea assisted 
hydrogen production. As shown in Fig. 8a, the electrolyzer could deliver a current density of 100 mA  cm−2 at 
1.65 V for urea electrolysis. While a much higher potential of 1.91 V was required to drive water electrolysis at 
the same current density. The result clearly demonstrated the advantage of urea electrolysis over water electroly-
sis for hydrogen production. Compared with other reported electrodes, the  Ni2P@Ni-MOF/NF was among the 
best ones for urea electrolysis (Table S3).

The long-term stability for urea electrolysis with  Ni2P@Ni-MOF/NF electrode at a current density of 
10 mA  cm−2 by chronopotentiometry (V-t). In Fig. 8b, the voltage increase in the first hour was attributed to 
the buildup of hydrogen gas bubbles on the surface of the cathode, consistent with that observed in Fig. 7d. At 
the end of the 20-h longevity test, the applied potential increased by only 1.1%, demonstrating the excellent 
longevity of the sample as bifunctional electrode for urea electrolysis. No appreciable change can be observed 
for the LSV curves obtained in 2-electrode configuration before and after stability test (Fig. 8c), advocating the 
excellent stability of the electrode. The results showed that  Ni2P@Ni-MOF/NF was a promising bifunctional 
electrode for urea electrolysis.

Conclusions
In summary,  Ni2P@Ni-MOF nanosheets were successfully grown on nickel foam through direct phosphidation 
of Ni-MOF nanosheets. The Ni-MOF structure was partially preserved as confirmed by XRD, TGA and FTIR 
characterization. The self-supporting  Ni2P@Ni-MOF/NF exhibited excellent electrochemical performance for 
both UOR and HER. It only required 1.41 V and 66 mV (vs RHE) to deliver a current density of 100 mA  cm−2 for 
UOR and 10 mA  cm−2 for HER, respectively. The excellent UOR and HER performances of the  Ni2P@Ni-MOF/
NF were attributed to both the enhanced conductivity and the fast release of the gases bubbles from the surfaces 
of the electrode. The electrolyzer constructed with  Ni2P@Ni-MOF/NF as both anode and cathode could deliver 
a current density of 100 mA  cm−2 in 1 M NaOH with the presence of 0.33 M urea at 1.65 V, which was 0.26 V 
lower than water electrolysis. Furthermore, the  Ni2P@Ni-MOF/NF also demonstrated excellent longevity for urea 
electrolysis. Considering the low cost, easy preparation, long term stability and excel activity,  Ni2P@Ni-MOF/NF 
electrode could be a promising bifunctional electrode for hydrogen production through urea electrolysis and to 
retrieve energy from urea-rich wastewater.

Methods
Chemicals and materials. Nickel chloride hexahydrate  (NiCl2·6H2O), N, N-dimethylmethanamide 
 (C4H9NO, DMF), 1,4-benzenedicarboxylic acid  (C7H6O2, BDC), ethanol  (C2H6O), acetone  (C3H6O), urea 
 (CH4N2O), sodium hydroxide (NaOH) and sodium hypophosphite  (NaH2PO2) were bought from Aladdin 
(Shanghai, China). Nickel foam (NF) was purchased from Shenzhen Green Creative Environment Technology 
Co. Ltd. (Shenzhen, China). All of the chemicals and materials were used as received without further purifica-
tion. Ultrapure water generated using a Ulupure system was used throughout all experiments.

Synthesis of Ni‑MOF/NF. Typically, 0.188 mmol  NiCl2·6H2O and 0.375 mmol BDC were dissolved in a 
mixture solvent containing 16 mL DMF, 1 mL ethanol and 1 mL water to form a clear solution. The NF was cut 
into small pieces (2 cm × 3 cm) and sonicated in 2 M HCl for 15 min to remove surface oxides. After washed with 
copious water and blown dry with pure nitrogen gas, it was then transferred into a Teflon-lined hydrothermal 
reactor with the above-mentioned solution. Subsequently, the hydrothermal reactor was heated in an oven at 
140 °C for 48 h to grow Ni-MOF on NF. Finally, the sample was rinsed with ethanol and ultrapure water thor-
oughly and dried in air for later use.

Synthesis of  Ni2P@Ni‑MOF/NF. To synthesis  Ni2P@Ni-MOF/NF, the Ni-MOF/NF and  NaH2PO2 with 
a mass ratio of 1:4 were placed on both sides of a porcelain boat. The porcelain boat was then put in a quartz 
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tubing that housed in a tube furnace. The  NaH2PO2 was placed on the upstream of the gas flow. Afterwards, the 
phosphidation process was carried out for two hours at 300 ℃ under Ar flow. The sample was labelled as  Ni2P@
Ni-MOF/NF. For comparison, the Ni-MOF was fist calcined at 600 ℃ for 2 h under the protection of Ar to get 
NiC/NF, which was subsequently phosphidized using the same procedure to obtain  Ni2P@NiC/NF. Direct phos-
phidation of NF was also performed using the same procedure and the electrode was labelled as pNF.

Characterization. The morphology of the material was characterized by using scanning electron micros-
copy (SEM, TESCAN MIRA 3, Czech) equipped with an energy-dispersive X-ray spectrometer (EDX) and 
transmission electron microscope (HR-TEM, JEM-2010, Japan). X-ray diffraction patterns (XRD, Ulitma IV, 
Japan) were obtained on a PANalytical XPert instrument with Cu Kα radiation (λ = 0.1542 nm). X-ray photoelec-
tron spectroscopy (XPS, Thermo ESCALAB 250XI, America) was used to study the composition and chemical 
state of the samples using an Al Kα X-ray source, and the binding energy was calibrated according to the refer-
ence C 1s peak at 284.6 eV.

Electrochemical measurements. Except the test with the electrolyzer, all electrochemical measurements 
were performed in standard three-electrode configuration on a CHI 760E potentiostat with Ag/AgCl and graph-
ite rod used as reference and counter electrode, respectively. The potentials were reported against reversible 
hydrogen electrode (RHE) scale by converting the measured potential using the following equation,

Electrochemical impedance spectra (EIS) were recorded in the frequency range of 100 kHz to 0.1 Hz at a 
voltage amplitude of 5 mV. The EIS spectra were fitted to obtain the charge transfer resistance,  Rct. The electro-
chemical double-layer capacitance  (Cdl) of electrodes were evaluated by using cyclic voltammetry at scan rates 
of 20, 40, 60, 80, 100 and 120 mV  s−1 in a non-Faradic potential range.
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