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Regulatory T cells (Tregs) are an important subset of adaptive immune cells and control 
immune reactions for maintaining homeostasis. Tregs are generated upon their encoun-
ter with self or non-self-antigen and mediate tolerance or suppress aberrant immune 
responses. A high level of specificity of Tregs to recognize antigen(s) suggested their 
instrumental potential to treat various inflammatory diseases. This review will first intro-
duce seminal basic research findings in the field of Tregs over the last two decades 
pertinent to therapeutic approaches in progress. We will then discuss the previous 
approaches to use Tregs for therapeutic purposes and the more recent development 
of gene-modification approaches. The suppressive function of Tregs has been studied 
intensively in clinical settings, including cancer, autoimmunity, and allotransplantation. 
In cancer, Tregs are often aberrantly increased in their number, and their suppressor 
function inhibits mounting of effective antitumor immune responses. We will examine 
potential approaches of using gene-modified Tregs to treat cancer. In autoimmunity and 
allotransplantation, chronic inflammation due to inherent genetic defects in the immune 
system or mismatch between organ donor and recipient results in dysfunction of Tregs, 
leading to inflammatory diseases or rejection, respectively. Since the recognition of anti-
gen is a central part in Treg function and their therapeutic use, the modulation of T cell 
receptor specificity will be discussed. Finally, we will focus on future novel strategies 
employing the therapeutic potential of Tregs using gene modification to broaden our 
perspective.
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inTRODUCTiOn

Regulatory T cells (Tregs) are an important T cell subpopulation that maintains immunological 
homeostasis. In the early 1970s, a few papers provided evidence for an inhibitory role of thymus-
derived T  cells. Seminal research by Gershon and Kondo introduced the concept of infectious 
tolerance (1, 2). Over the next decade, these thymus-derived T  cells were termed “suppressor 
T cells.” Later, suppressor T cells were renamed as “regulatory T cells,” based on their capability 
to regulate autoimmunity. Since the 1990s, Tregs have been one of the most intense research fields 
in immunology. The negative regulation of immune responses by Tregs is vital in autoimmune 
and auto-inflammatory disorders, acute and chronic infection, allergy, metabolic inflammation, 
transplantation, and cancer. Accordingly, modulation of Tregs holds the therapeutic potential to 
treat numerous disease classes. The unique history of Tregs has been well-reviewed previously (3).
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identifying Treg Markers and Mechanistic 
Studies of Treg Function in Mice
Initial attempts to isolate and to identify Tregs for immunologi-
cal studies used IL-2 receptor α-chain (CD25), which is highly 
expressed on Tregs. Adoptive transfer of CD25+ Tregs prevented 
various experimental mouse models of autoimmunity (4–6). 
Other Treg markers were subsequently identified including 
lymphocyte activation gene (LAG)-3, CTLA-4, folate recep-
tor-4, latency-associated peptide, and IL-35 (7–10). Often these 
markers were also expressed in activated effector CD4 T cells, 
necessitating the identification of more definitive markers of 
Tregs.

In this regard, one of the most important findings in Treg 
biology was the discovery of Treg lineage transcriptional 
factor FOXP3. Mutations in the FOXP3 gene were identified 
in Immune dysregulation, polyendocrinopathy, enteropathy, 
X-linked syndrome (IPEX) human patients. The murine coun-
terpart of IPEX patients, scurfy mice, lacks functional FOXP3 
and showed similar phenotypes to IPEX patients (11–13). Two 
studies demonstrated the importance of FOXP3 in Treg devel-
opment and function (14, 15). Development of biological tools 
including Red Fluorescent Protein (RFP) FOXP3 reporter mice, 
Foxp3-Diphtheria Toxin Receptor mice which permitted Treg 
depletion, and the development of Treg-specific Foxp3YFP–Cre 
mice which allowed the conditional deletion of a gene in Tregs, 
facilitated the understanding of Treg biology in mice (16–19).

CD4+FOXP3+ Tregs can be induced from peripheral CD4+ 
naïve T cells in the periphery by many factors such as tolero-
genic dendritic cells expressing indoleamine 2,3-dioxygenase 
(IDO), commensal bacteria, retinoic acid, or transforming 
growth factor (TGF)-β and are designated peripheral Tregs 
(pTregs) to distinguish them from the thymic-derived Tregs 
(tTregs) (20–24). Similar to their tTregs, pTregs regulate 
immune responses in various types of inflammatory disease 
environments including spontaneous intestinal tumorigen-
esis, inflammatory bowel disease, asthma, and experimental 
autoimmune encephalomyelitis (EAE) (25–28). It has been 
reported that FOXP3+ Tregs express the immunosuppressive 
cytokine IL-10. Later, IL-10-expressing Tregs were further 
dissected into IL-10+FOXP3+ Tregs and Foxp3-negative type 
1 Tregs (Tr1) that are induced by dexamethasone and Vitamin 
D (29–31).

Using genetic, biochemical, and molecular biological 
approaches, functional modules of Foxp3 such as dimerization/
oligomerization of the transcriptional factor were identified, 
and the regulatory mechanism of Foxp3-mediated gene expres-
sion in Tregs was extensively studied (32–40). The molecular 
mechanism of stable FOXP3 expression has been under intense 
investigation by measuring DNA demethylation at the Treg-
specific demethylated region (TSDR), a conserved CpG-rich 
region within the Foxp3 locus where methylation maintains 
stable lineage commitment of Tregs (41, 42). In parallel to the 
regulation of FOXP3 expression, posttranslational modifica-
tion by acetylation, ubiquitination, or phosphorylation has an 
important role in modulating the Foxp3-mediated transcrip-
tional repression that is required for suppressor function 
(43–48).

Human Tregs in Basic and Clinical Studies
In the past two decades, there has been significant progress in 
the understanding of regulatory mechanisms of tolerance in 
humans. Various markers for the identification of human Tregs 
were found including CD25, FOXP3, and CD127 (IL-7Rα chain) 
(49–52). Further studies revealed that human conventional 
T cells transiently express FOXP3 without acquiring suppressive 
activity (53). Human Tregs are functionally and phenotypically 
distinguished by their activation status. Suppressive Treg cells are 
CD45RA+FOXP3lo in resting state and CD45RA−FOXP3hi in acti-
vated state while CD45RA−FOXP3lo T cells are non-suppressive. 
The proportion of the three subpopulations was markedly dif-
ferent between aged individuals, cord blood and patients with 
immunological diseases (54, 55).

Expansion of Tregs using rapamycin or induction of Tr1 cells 
has been utilized to induce polyclonal Tregs for clinical interven-
tion (56, 57). Tr1 cells express similar markers to FOXP3+ Tregs 
such as CTLA-4, PD-1, CD39, and ICOS. Tr1 cells do not express 
FOXP3 constitutively, but they do express IL-10 and TGF-β 
once they are activated via T cell Receptor (TCR). Tr1 cells show 
bystander suppressor activity (58). IL-10 and TGF-β from Tregs 
inhibit effector CD4 T cells proliferation and production of effec-
tor cytokines, such as IL-2 and IFN-γ (59). Other than cytokine-
mediated suppression, it is known that granzyme B-mediated 
cell death of myeloid APCs is mediated by the stable adhesion 
between HLA-class I molecules on Tr1 cells and CD112/CD115 
on myeloid APCs (60).

In clinical settings, modification of TCR has been utilized to 
modulate Treg activity to intervene in various types of inflam-
matory diseases in an antigen-specific manner (61, 62). Treg-
based therapies with freshly isolated or expanded Tregs have 
been implemented in clinical practice for patients undergoing 
allogeneic hemopoietic stem cell transplantation to prevent graft-
versus-host disease (GVHD) (63), inhibiting rejection in solid 
organ transplantation and controlling autoimmunity in patients 
[e.g., Type 1 Diabetes (T1D)] (64). Since Tregs have multiple roles 
in a variety of clinical settings, the generation of gene-modified 
Tregs and administration of those Tregs via adoptive transfer is 
a promising approach to treat chronic inflammatory diseases, 
cancer, or rejection in transplantation medicine.

Gene-MODiFieD Tregs in CAnCeR 
iMMUnOTHeRAPY

Regulatory T  cells are found at high frequencies in the tumor 
microenvironment in a variety of cancers (65). Analysis in a 
variety of human carcinomas suggested that the accumulation of 
Tregs in the tumor microenvironment is associated with a poor 
prognosis (65).

Generating Tumor Antigen-Specific  
CAR+ Tregs
Over a decade ago, a seminal study proposed the thera-
peutic potential of genetically engineered T  cells bearing a 
tumor antigen-specific TCR in cancer immunotherapy (66). 
Overexpression of the α and β chains of a specific TCR has been 
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used as a traditional approach to engineer T cell specificity. The 
antigen-specific suppressor function of Tregs on effector T cells 
was demonstrated by the tumor antigen NY-ESO-1. Depletion 
of Tregs enabled the activation of NY-ESO-1-specific naïve CD4 
T cells in healthy subjects and melanoma patients with NY-ESO-
1-expressing tumors (67, 68). TCRs recognizing melanoma 
antigens have been successfully transduced in human Tregs 
in vitro (69). Interestingly, the affinity of the TCR did not affect 
the antigen-specific suppressive function. This indicated that 
tumor antigen-mediated TCR signals do not affect the function 
of fully differentiated Tregs ex vivo.

An alternative strategy is to transduce a chimeric antigen 
receptor (CAR) into Tregs to generate antigen-specific Tregs. 
CARs are synthetic proteins generated by fusing an extracel-
lular domain for antigen recognition with transmembrane and 
signaling domains from the TCR and co-stimulatory receptors 
(70). The antigen-recognizing domain of a CAR is generated by a 
single-chain variable fragment (scFv) fusion protein of the com-
plementarity determining regions of the heavy and light chains 
of a monoclonal antibody. A major advantage of generating 
scFvs is to avoid the limitation of MHC restriction. This expands 
the pool of treatable patients compared to the TCR overexpres-
sion approach. Expression and engineering of CARs that are 
specific to tumor antigens is now a primary interest in cancer 
immunotherapy employing CAR Tregs (71). Further studies for a 
more diverse set of tumor antigens are warranted to broaden the 
therapeutic potential of this approach.

Modulating Foxp3 expression in Tregs
Another approach to inhibit the suppressor function of Tregs 
is to downregulate FOXP3 expression. Use of lentiviral FOXP3 
shRNA delivery inhibited Treg-like leukemia in mice (72). This 
lentiviral strategy was used to knockdown FOXP3 mRNA in 
human Tregs, and this approach demonstrated the loss of sup-
pressor function, indicating that it has potential to be used in 
cancer immunotherapy (73). However, Tregs that are transduced 
with the lentivirus have not been tested for safety, and thus fur-
ther research is needed. Stat3 has been reported to play a crucial 
role to maintain FOXP3 expression in human. Delivery of small 
interfering RNA (siRNA) for Stat3 into Tregs demonstrated the 
loss of the suppressor function (74). Recently, it has been reported 
that siRNA can be delivered in gold nanoparticles, circumvent-
ing the issue with a lentiviral system in human patients (75). 
A stable FOXP3 expression is dependent on posttranslational 
modification. Genetic or pharmacologic modulation of FOXP3 
acetylation via the histone/protein acetyltransferases (HATs), 
p300, and CBP downregulated suppressive function of Treg and 
promoted antitumor immunity (76).

A recent study demonstrated that the pharmacologic inhibi-
tion of a single de-ubiquitination enzyme, Usp7, determines 
the fate of FOXP3 and Tip60 in Tregs, thus providing a target 
for therapeutic modulation of Treg function in antitumor 
immunity (77). It has been shown that selective small molecule 
inhibitors for the bromodomains of CREBBP/EP300 reduced 
FOXP3 expression, as well as expression of functional mark-
ers in Tregs (e.g., LAG-3, CTLA-4, and TIM-3) (78). It has 
also been reported that intranuclear interactomic inhibition 

of FOXP3 could abrogate suppressor function via nuclear 
delivery of FOXP3 (79). These approaches are promising at a 
preclinical stage, yet assessment of target-specific delivery of 
siRNA or Protein Transduction Domain-FOXP3 protein, and 
their side effects have not been assessed. Potential autoimmune 
responses should be considered when Treg dysfunction is imple-
mented as a therapeutic approach in cancer immunotherapy.  
An additional concern is that a series of surprising reports found 
that a high incidence of tumor-infiltrating Tregs is associated 
with improved prognosis in cancer patients (80–83). Thus, the 
inhibition of FOXP3 expression needs further study and care-
ful consideration regarding the role of Tregs in a given tumor 
microenvironment.

Gene-MODiFieD Tregs in 
AUTOiMMUniTY

Past successes using genetically enhanced T-cells in the cancer 
arena have prompted interest in the development of related 
approaches to suppress unwanted autoimmune responses. 
Refractory autoimmune disease is associated with a markedly 
decreased life expectancy urging consideration of intensive thera-
peutic approaches. Tregs provide an attractive tool for genetic 
targeting against autoantigens present in the organ(s) of interest.

Modulating Antigen Specificity and CAR 
Approach in Tregs to Treat Autoimmunity
Therapeutic effect of purified Tregs have been demonstrated in 
preclinical studies in a range of autoimmune disease models in 
mice, including Systemic lupus erythematosus (84), T1D, auto-
immune hepatitis, inflammatory bowel diseases, and autoim-
mune encephalomyelitis (85–88). Subsequently, studies in several 
disease model systems have demonstrated that antigen-specific 
Tregs were present in diseased animals and more potent in sup-
pressing pathogenic immune responses compared to polyclonal 
Tregs (9, 89).

Among autoimmune diseases, T1D has been an intense area 
of development for gene-modified Treg-mediated therapy with 
islet-specific Tregs. Most recently, it has been demonstrated 
that lentiviral TCR gene transfer to polyclonal human Tregs 
achieved human islet-specific and viral-specific CD4 T  cell 
clones. This enabled antigen-specific suppression at increased 
potency compared to polyclonal Tregs, increasing optimism for 
the success of this approach (90). However, T cells transduced 
with islet-specific TCRs were less responsive to cognate antigen 
than T cells with virus-specific TCRs, suggesting further work 
in this area is needed. The animal model of multiple sclerosis, 
EAE, has been instrumental in testing gene-modified Tregs for 
therapeutic intervention in neurological autoimmune diseases. 
For example, a lentiviral gene delivery system was used to 
express a CAR targeting myelin oligodendrocyte glycoprotein 
with the murine FOXP3 in CD4 T cells. Intranasal administra-
tion of these cells diminished ongoing neuronal inflammation 
in vivo (61).

Several other attempts to utilize CAR+ Tregs to treat autoim-
munity have revealed the important fact that activation of Tregs 
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needs to be antigen-specific; this was found in murine colitis and 
arthritis models as well as in human Treg activation (91–93). This 
appears a critical point since in many autoimmune disorders 
autoantigen(s) that trigger autoimmune responses are unknown. 
In the case of murine arthritis, naïve CD4+ T-cells were engineered 
to co-express FOXP3 with HLA-DR1, covalently linked to an 
immunodominant peptide capable of driving collagen-induced 
arthritis. HLA-DR1 is associated with human rheumatoid 
arthritis. By this approach, T-cells were equipped with a bait 
molecule that allowed them to engage collagen autoreactive CD4+ 
T-cells in a TCR-dependent manner. In DR1 humanized mice, 
the engineered T-cells could inhibit the development of autoim-
mune arthritis more effectively than cells engineered to express 
FOXP3 alone (94). However, this approach warrants further 
studies, among other reasons because of the distinct subset of 
CD4+CD25+ Tregs expressing HLA-class II in humans (95).

inducing FOXP3 expression to Treat 
Autoimmunity
In addition to TCR modulation, modulation of FOXP3 expres-
sion itself is a promising strategy to treat autoimmune diseases. 
IPEX syndrome is a hereditary immunodeficiency character-
ized by the loss of function of FOXP3-expressing Tregs (11).  
A recent study demonstrated the lentiviral delivery of the 
FOXP3 gene into IPEX-derived CD4 T cells produced a stable 
Treg population. In this study, CD4 T cells from IPEX patients 
were converted into FOXP3-expressing Tregs, and they acquired 
Treg-like phenotypes in vivo. When FOXP3 is expressed by len-
tiviral gene transduction, T-cells express several Treg markers 
such as CD25, CTLA-4, and GITR. Functionally, the cells resem-
bled Tregs with decreased proliferation, hypo-responsiveness, 
reduced cytokine release, and suppressive activity similar to 
purified Tregs (96). This approach for FOXP3 gene transfer with 
adoptive cell therapy may potentially be a promising approach 
to treat IPEX patients as well as other autoimmune patients 
with dysfunctional human Tregs. Further studies regarding the 
stability of FOXP3 expression in these CD4 T cells and further 
assessment of the efficacy of this approach in clinical settings 
are warranted.

Retroviral delivery of the FOXP3 gene into purified CD4
+CD25−CD45RO− human T  cells showed unstable levels of 
FOXP3 and Treg-associated phenotypic markers while lentivi-
ral delivery using elongation factor-1α showed reliable expres-
sion of CD25 and GITR (97). An alternative approach may be 
to enforce Treg differentiation using a cell-permeable form of 
FOXP3 protein with a transduction domain. The introduction 
of FOXP3 in protein form induced a Treg phenotype in human 
and mouse T cells, respectively (98, 99). Repeated infusion of 
FOXP3 with a transduction domain showed amelioration of 
the scurfy phenotype, and inflammatory bowel disease and 
rheumatoid arthritis mouse models (100, 101). The cost of 
infusion for protein delivery in a clinical setting for human 
patients, the stability of a functional Foxp3 protein in  vivo, 
and lack of specificity in immunosuppression due to Foxp3 
protein delivery to the nucleus awaits further optimization of 
this approach.

MAniPULATiOn OF Tregs in 
ALLOTRAnSPLAnTATiOn AnD  
OTHeR DiSeASeS

Clinical evaluation of adoptive immunotherapy using Tregs is 
attracting increasing interest. Most experience has been gained 
using donor-derived Tregs, which have been infused safely in 
patients treated with allogeneic stem cells (102). These studies 
have also provided encouraging evidence of efficacy in preven-
tion of GVHD, even in the context of haploidentical stem cell 
transplantation (102, 103).

Approaches to Generate  
Alloantigen-Specific Tregs
Similar to improved ability of autoantigen-specific Treg to control 
autoimmune inflammation, alloantigen-specific Tregs are more 
effective than polyclonal Tregs at preventing organ or tissue graft 
rejection. These alloantigen-specific Tregs were enriched by 
in vitro alloantigen-stimulated expansion or the expression of a 
TCR transgene (104–106). A humanized mouse model of skin 
graft rejection has also shown the potency of suppressor function 
of alloantigen-expanded human Tregs (107). Tregs expressing 
CARs could also be used in the context of transplantation. For 
example, a CAR approach targeting HLA-A2 has been used to 
produce alloantigen-specific Tregs (108). CAR-stimulated Tregs 
showed minimal cytotoxicity. In vitro, HLA-A2-CAR Tregs 
maintained high levels of FOXP3 expression and other Treg 
markers, and stable demethylation of the TSDR ensured sup-
pressor function. The HLA-A2 approach may have significant 
advantages in the clinical setting where a sufficient number of 
APCs are required (107), and the potential loss of FOXP3 after 
repeated stimulation has been reported (109). With improved 
stability alloantigen-specific Tregs will have more versatile uses 
in future transplantation trials.

Other Gene-Modification Approaches for 
Generating Suppressor Lymphocytes
In vitro generation of Tr1 cells has been developed for clinical 
purposes. However, a major caveat of clinical use of Tr1 cell 
therapy is lack of purity. Andolfi et al. showed lentiviral deliv-
ery of IL-10 and GFP could generate a homogeneous Tr1 cell 
population to circumvent this issue (110). These “pure” Tr1 
cells showed an anergic phenotype and TGF-β/IL-10 -depend-
ent suppression of allogeneic T-cell responses and successfully 
controlled GVHD (110). Tr1 cells were generated in  vitro 
using genetically modified B  cells in an allergy model in an 
antigen-specific manner. Retroviral transduction of the fusion 
protein, Derp 2, a major house dust mite allergen, with an 
endosomal targeting sequence (gp75) was performed in B cells 
for efficient MHC class II presentation. The engineered B cells 
were adoptively transferred to the host (BALB/c mice) before 
or after peptide immunization. The production of IL-10 from 
these retrogenic B cells and the induction of IL-10 expressing 
Tr1 cells achieved allergen-specific immune tolerance against 
asthma (111). Although the result is encouraging, more studies 
with different types of allergens, or the use of humanized mouse 
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models, could be considered to assess the potential scope of this 
approach.

Corneal allograft failure is mediated by CD4 T cells (112). 
CD25 in CD4 T cells plays an important role in the induction of 
corneal graft rejection. CD25-mediated signaling is associated 
not only with the expression of Treg cytokines (IL-10, TGF-β) 
but also T helper 1 type cytokines (IFN-γ, IL-1β, and TNF-α). 
A recent study showed that the use of CD25 siRNA in a corneal 
transplantation model significantly prolonged graft survival 
time on Sprague-Dawley rat recipients with Wistar rat donors 
(113). In this study, neovascularization and maintenance 
of transparency of the cornea were significantly improved. 
However, similar studies have not been extended to human 
patients, and the safety of this approach remains to be tested.

FUTURe PeRSPeCTive in Gene-
MODiFieD Treg THeRAPY

Recent technical advances and developments in the field of 
gene-modified Treg therapy have evolved into a new era. It is 

clear that the approach is very promising, yet several hurdles 
need to be overcome before broad clinical implementation. 
One of the biggest concerns is to ensure the purity of clinical 
products using GMP-based protocols. There is some concern 
about the stability of engineered Tregs and the fact that some 
Tregs might be converted into effector T cells, particularly into 
Th17 type cells (114, 115). Approaches that may be helpful to 
maintain FOXP3 expression have been discussed including all-
trans-retinoic acid, IL-2, vitamin C or ex vivo treatment with 
rapamycin (116–119). For lentiviral gene transfer approaches, 
studies in the past showed long-term safety in human immu-
nodeficiency virus patients who received gene-modified 
T-cells without genotoxic effects such as clonal expansion 
(120). Development in vector engineering has also achieved 
enhanced genetic stability and greater stability of transgene 
expression, providing greater safety (121). In TCR engineering, 
there is a concern about TCR cross-reactivity which is caused 
by recognition of low-affinity antigen by a TCR. There were two 
cases in which T cells were engrafted with an affinity-enhanced 
TCR selected for the tumor antigen, MAGE A3, and this TCR 
was found to have cross-reactivity and cardiovascular toxicity 
(122, 123).

COnCLUSiOn

The regulatory functions of Tregs and specificity to various types 
of stimuli triggered intense research efforts to develop these 
cells for various clinical treatments. For example, CAR-T cells, 
lentiviral gene transfer, small molecule compounds that regu-
late FOXP3 expression, and infusion of cell-permeable FOXP3 
proteins were developed (Figure 1). Potential uncertainties of 
gene-modified Treg therapy remain, as well as the challenges of 
the manipulation of Tregs under GMP conditions, and concerns 
of effector-mediated toxicity due to lack of purity, unstable 
Treg phenotypes and TCR cross-reactivity. However, alternate 
approaches are being sought and tested and as the clinical data 
emerge, these challenges shift to the further evolution of innova-
tive therapeutic approaches.
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