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Abstract

Rapid cellular growth and multiplication, limited replicative senescence, calibrated sensitivity to apoptosis, and a capacity to
differentiate into almost any cell type are major properties that underline the self-renewal capabilities of human pluripotent
stem cells (hPSCs). We developed an integrated bioinformatics pipeline to understand the gene regulation and functions
involved in maintaining such self-renewal properties of hPSCs compared to matched fibroblasts. An initial genome-wide
screening of transcription factor activity using in silico binding-site and gene expression microarray data newly identified
E2F as one of major candidate factors, revealing their significant regulation of the transcriptome. This is underscored by an
elevated level of its transcription factor activity and expression in all tested pluripotent stem cell lines. Subsequent analysis
of functional gene groups demonstrated the importance of the TFs to self-renewal in the pluripotency-coupled context; E2F
directly targets the global signaling (e.g. self-renewal associated WNT and FGF pathways) and metabolic network (e.g.
energy generation pathways, molecular transports and fatty acid metabolism) to promote its canonical functions that are
driving the self-renewal of hPSCs. In addition, we proposed a core self-renewal module of regulatory interplay between E2F
and, WNT and FGF pathways in these cells. Thus, we conclude that E2F plays a significant role in influencing the self-renewal
capabilities of hPSCs.
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Introduction

Human embryonic stem cells (hESCs) are pluripotent, with the

capability to differentiate into almost any cell type, unlike

differentiated cells or lineage-committed cells [1]. In addition,

hESCs are able to proliferate indefinitely by circumventing

regulatory processes such as apoptosis and replicative senescence

while retaining their pluripotent state, i.e. self-renewing. To do so,

hESCs require both intrinsic and extrinsic molecular signals.

The role of certain intrinsic factors as intracellular master

determinants of hESC properties was demonstrated when human

fibroblasts (hFs) were successfully reprogrammed into human

induced pluripotent stem cells (hiPSCs) by ectopic expression of

the transcription factors (TFs), OCT4 and SOX2, together with

either KLF4 and c-MYC [2], or NANOG and LIN28 [3]. Among

the TFs, OCT4, SOX2 and NANOG constitute a conserved core

transcriptional regulatory network that is essential for specifying

the undifferentiated state of both hESCs and mouse embryonic

stem cells (mESCs) [4,5]. In this work, hESCs and hiPSCs are

collectively referred to as human pluripotent stem cells (hPSCs).

Along with the intrinsic factors, extracellular molecular cues are

also required to maintain the undifferentiated state of hESCs. For

example, transforming growth factor b (TGF-b)/Activin A

signaling activates the TFs, SMAD2/3, which in turn induce the

expression of OCT4 and NANOG [6,7] as well as component

genes of the self-renewal associated fibroblast growth factor (FGF)

pathway (FGF2, FGFR1/2/3) [8]. As another example, Wnt

signaling promotes self-renewal through the activation of T cell

factors, e.g. Tcf3, which regulate gene expression of Sox2, Oct4

and Nanog, and co-occupy promoters with these pluripotent

factors [9,10] while extracellular bone morphogenetic proteins

(BMP) signaling induces differentiation through the activation of

the TFs SMAD1/5/8. Thus, the transduction of various

extracellular signals activates relevant TFs, thereby regulating

the expression of master determinants and associated ESC

properties [11–13].

Despite the key role of signaling pathways and other cellular

participants in determining hESC properties, much remains to be

done to understand their transcriptional regulation [13]. With the

advent of high-throughput technologies generating genome-wide
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gene expression and TF binding data (such as ChIP-seq and ChIP-

on-chip), in conjunction with the development of bioinformatics

and computational methods to analyze them, it is now possible to

shed more light on condition-specific transcriptional regulation

and the corresponding functions at the systems-level. Thus, we

developed an integrated bioinformatics pipeline to study the

differential gene expressions between hPSCs and their differenti-

ated counterparts, i.e. hFs, allowing us to better elucidate the

transcriptionally regulated functions associated with self-renewal

and/or reprogramming (Figure 1). At the outset, a list of genes

with differential expression score was obtained by comparing

microarray gene expression between the two cell types. The

promoter sequences of the genes were then screened for

enrichment of TF binding sites as reflected in the target propensity

scores of the genes. Subsequently, the over-representation of high

target propensity genes in sets of differentially-expressed genes is

then utilized as a proxy to detect direct gene regulation by the

candidate TF globally, which we termed transcription factor

activity (TFA).

Remarkably, among a preliminary list of TFs with consistently

significant TFA in various hPSC-hF comparisons, E2F was

selected in this work based on its significantly smaller P-values

compared to other candidates and consistent, elevated expressions

in hPSCs which indicate its potential importance in genome-wide

regulation. (See discussion for other candidates.) The E2F family

of TFs is known as key regulator of cell proliferation and

differentiation in eukaryotes, with target genes involved in

apoptosis, DNA replication, cell cycle control, etc [14–16].

Although E2F regulation of these canonical functions may bring

forth the notion that the TFs facilitate self-renewal, it remains

strikingly undemonstrated in the pluripotency-coupled context.

Furthermore, there are incentives to understand their global

pleiotropic effects as they have the ability to target overlapping

gene subsets with varying degree of antagonism, cooperativity and

redundancy. Consequently, the E2F family has the highly precise

roles of driving versus braking the cell cycle, promoting versus

inhibiting programmed cell death, as well as maintaining stemness

versus inducing differentiation, depending on their relative

expressions and the stage of differentiation [14–17]. For example,

both activator E2F1 (see result) and suppressor E2F8 (data not

shown) are highly expressed in hPSCs and it is unclear what are

their net effects on cellular functions. In addition, the recently

reported roles of new members (E2F7-8) mainly in early

development [18,19] suggests more unexplored regulatory mech-

anisms in the embryonic stage.

Thus, it would be helpful to qualify the effects of the TFs on

individual gene groups and in the process, also uncovers new

biological functions and mechanisms with the help of bioinfor-

matics in a systematic manner. This would give us a better

appreciation of the intricacies involved in the precise E2F control

of self-renewal propensity in hPSCs, noting that the pluripotent

state may present unique requirements during the development of

an organism. Toward this end, we newly designed a methodology

for identifying TF-regulated functional gene groups based on both

regulatory and gene expression information. In the initial step, a

novel test, termed target-cohort analysis, detects the presence of

target-cohorts, or genes that have specific properties of potential

target genes, compared to others in the group. Next, their

reliability and relevance can be augmented with biological

information from the literature and databases, and then used to

help us explain hPSC properties. The trans-activation of selected

target-cohorts by E2F was evaluated using a luciferase reporter

assay with E2F over-expression. Taken together, it suggests that

E2F transcriptionally coordinate signaling pathways (e.g. WNT,

FGF), metabolism (e.g. energy generation pathways and molecular

transports) and its canonical functions to promote self-renewal of

hPSCs.

Materials and Methods

Gene expression data
Microarray data with accession number GSE9440 and

GSE9832 were obtained from the Gene Expression Omnibus

(GEO) database [20] to make the following hPSC-hF compari-

sons: (1) T3 hESCs vs fibroblast-like cells (T3 differentiated), (2)

H1-OGN hESCs vs H1-OGN fibroblasts, (3) H1-OGN fibroblast

iPS vs H1-OGN fibroblasts, (4) H1-OGN cloned fibroblasts

iPS(cf16) vs H1-OGN cloned fibroblasts, (5) H1-OGN cloned

Figure 1. Integrated analysis pipeline. Differential expression
analysis between hPSCs and hFs and the in silico screening of
transcription factor (TF) binding sites in gene promoters, returned a
gene list with corresponding scores. In screening for TFA, the
enrichment of high target propensity genes in differentially-expressed
genes was assessed. Significant TFs were further assessed for their
transcript and protein levels. Subsequently, functional gene groups
were evaluated for regulation by the validated TFs (target-cohort
analysis). hPSC properties were then elucidated in terms of the
functions of regulated gene groups as well as biological information
from databases and literature. Trans-activation of interesting target-
cohorts by the TF was also validated using luciferase assay.
doi:10.1371/journal.pone.0027231.g001
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fibroblasts iPS(cf32) vs H1-OGN cloned fibroblasts, (6) fetal lung

fibroblast iPS vs fetal lung fibroblasts, and (7) neonatal fibroblast

iPS vs neonatal fibroblast. Note that transcript probe sets with IDs

ending with ‘_a_at’, ‘_s_at’ and ‘_x_at’ were omitted while the

same gene at different genomic loci is treated as separate genes.

Differential expression measures
For each hPSC-hF comparison, a significance analysis of

microarray (SAM) [21] score was computed for the differential

expression of individual genes and scaled to mean = 0 and

standard deviation = 1. To pool information from different

comparisons, the differential expression (score) for each gene is

defined as the mean of the absolute value of the scaled SAM scores

for different comparisons.

The dot product and covariance metrics were used as measures

of similarity for differential expression scores, un-scaled and scaled

by its average value respectively. To illustrate their usage, a and b
are defined as arrays of scaled SAM scores of gene A and gene B

respectively, under n different conditions and denoted as a = [a1,

a2, …, an] and b = [b1, b2, …, bn]. Then, dpB and covB are the

respective dot Product and covariance measures of similarity

between the differential expression score of cellular regulator A

(E2F) and gene B:

dpB~1=n
Xn

i~1

aibi and,

covB~(1=n)
Xn

i~1

(ai{�aa)(bi{�bb),

where �aa~(1=n)
Xn

i~1

ai; �bb~(1=n)
Xn

i~1

bi:

The corresponding similarity measures of differential expression

between a cellular regulator and a group of m genes are defined as:

DP~(1=m)
Xm

i~1

dpij j ; COV~(1=m)
Xm

i~1

covij j

Target propensity
TRANSFAC MATCH algorithm [22] was employed to identify

putative binding sites in curated gene promoter sequences

(,2500 bp and +100 bp transcription start site) downloaded

from Genomatix URL (http://www.genomatix.de/), using all 594

position weight matrices (PWMs) and a minimum false negative

profile.

Next, let I and li be the total number of global promoters and

the sequence length of promoter i respectively and,

l̂l~(1=I)
PI

i~1

li~657bp. It follows that the target propensity of a

gene = l̂l �maxfnj=lj
: j~1,2,:::,Jg, where J is the total number of

alternative promoters for the gene, nj is the number of binding sites

in promoter j and lj is the length of promoter j. Other than TFA

evaluation, all E2F analyses were conducted based on the model

‘V$E2F1_Q6_01’ (NTTT[C/G][C/G]CG[C/G][C/G]) which

reported the highest average 2log P-value ( = 58.8) for TFA.

Transcription factor activity (TFA) evaluation
Transcription factor activity refers to the state of direct gene

regulation by the associated TF at a system-level. This can be

suggested by the over-representation of high target propensity

genes in sets of differentially-expressed genes, reported in the form

of chi-square statistic. The maximum chi-square value among all

threshold combinations of SAM scores and target propensity is

used to infer the statistical significance of over-presentation. A

linear relationship based on randomized rankings, exists between

2log (P-value) and the maximum chi-square, allowing for

extrapolation of significance on the basis of a relatively small

number of simulations. More details can be found in Figure S1.

Target-cohort analysis
The analysis screens for gene groups regulated by a cellular

regulator, e.g. E2F. It evaluates if differential expression score and

score similarities with the regulator increases significantly across

iterative target propensity thresholds in each group. If so, it can be

concluded that regulator activity can partly explain the greater

scores of the higher target propensity subset (enriched in true

targets), ceteris paribus. The interim P-value at each target

propensity threshold is defined as the proportion of sampled

groups that have score increment larger than the tested gene

group. The final P-value is the proportion of sampled groups that

have their minimum interim P-value among all thresholds, smaller

than the tested gene group. Gene groups composed of 140

pathways, 244 molecular functions and 229 biological processes

from the PANTHER database [23] were screened for this analysis.

Details on pseudo-algorithm can be found in Supporting

Information S1.

Plasmids
Human promoter-firefly luciferase (FLuc) reporter constructs

(Switchgear, Menlo Park, USA) were obtained for FRZB, SMAD1

and WNT5A. Mutations were made on the E2F motifs in the

promoter regions of these constructs (Table S1) using the

QuikChange Mutagenesis kit (Stratagene, La Jolla, CA, USA),

and subsequently sequence-verified.

Cell culture
hESC line (HES-3) (ES Cell International, Singapore), hiPSC

lines hiPS (IMR-90) and hiPS (foreskin) [24] were cultured in

medium conditioned by mitomycin-C-inactivated immortalized

mouse embryonic fibroblast (DE-MEF) feeder supplemented with

4 ng/ml of FGF-2 (Invitrogen, Carlsbad, CA, USA) on Matrigel

(BD Bioscience, San Diego, USA)-coated plates as previously

described [25]. hF cell lines IMR-90, Hs27 and Hs68 (all from

ATCC) were cultured at 37uC/5% CO2 in complete medium

containing Dulbecco’s modified Eagle’s medium (DMEM; high

glucose) and 10% fetal bovine serum (FBS) according to the

manufacturer’s protocol.

RNA extraction and real-time PCR analysis
RNA samples were extracted from HES-3, hiPS (IMR-90), hiPS

(foreskin), IMR-90, Hs27 and Hs68 using QIAGEN RNAeasy kit

according to the manufacturer’s instructions and reverse tran-

scribed into cDNA using Superscript III reverse transcriptase

(Invitrogen). The cDNA were used for quantitative real-time PCR

analyses with gene-specific primer pairs. All samples were run in

triplicates at a reaction volume of 25 ml containing Power SYBR

Green PCR Master Mix (Applied Biosystems, Foster City, CA,

USA), and 200 nM primers. The reaction was run on the ABI

PRISM 7500 Sequence Detection System (Applied Biosystems)

using the following amplification parameters: 2 min at 50uC,

10 min at 95uC, and 40 cycles of 15 sec at 95uC and 1 min at

60uC. Data were analyzed using the DDCT method to obtain

E2F Modulates Self-Renewal in hPSCs

PLoS ONE | www.plosone.org 3 November 2011 | Volume 6 | Issue 11 | e27231



expression levels relative to endogenous GAPDH control in each

sample as previously described [25]. Primers used for these

analyses are provided in Table S2.

Western Blot analysis
Cell lysate prepared using 1% Igepal lysis buffer were resolved

on 4–12% NuPAGE gels (Invitrogen) and transferred onto

polyvinylidene fluoride (PVDF) membranes (BioRad). Membranes

were blocked in PBS with 5% low-fat milk and probed overnight

with primary antibody mouse anti-E2F-1 (Millipore, Billerica,

Massachusetts, USA). Loading consistency was determined with

mouse anti-actin (1:3000; Santa Cruz Biotechnology, Santa Cruz,

CA, USA). The membrane was then followed by incubation with

infrared fluorescent (IRDye)-labeled secondary antibodies (LI-

COR Biosciences, Lincoln, Nebraska, USA) and signals were

visualized using Odyssey Infrared Imaging System (LI-COR

Biosciences).

Luciferase reporter assay
0.6 mg of either wild-type (WT) or mutant promoter FLuc-

reporter construct (See ‘Plasmid’ section, Materials and Methods)

was co-transfected along with the E2F1/2/3 over-expression

vectors (Open Biosystems, Huntsville, AL, USA) and pRL-TK

internal control vector (0.012 mg) (Promega, Fitchburg, Wisconsin,

USA) into hESC lines (HES-3) using Lipofectamine 2000 reagent

(Invitrogen) according to manufacturer’s instruction. 24 hours

after transfection, medium was changed to either DE-MEF

conditioned medium or embryoid body differentiation medium

(KO-DMEM supplemented with 20% FBS, 1% nonessential

amino acids, 1 mM L-glutamine, and 1% penicillin-streptomycin

[all from Invitrogen] and 0.1 mM b-mercaptoethanol [Sigma, St.

Louis, USA]) and cultured for two days with daily medium

changing. Cells were harvested 72 h after transfection and assayed

for luciferase activity using the Dual-Luciferase assay system

(Promega) according to manufacturer’s protocol and as previously

described [26]. Briefly, cells were washed three times with PBS

buffer and lysed with 16Passive Lysis Buffer (PLB). Cell lysate

(50 ml) was mixed with 100 ml of Luciferase Assay Reagent II and

subsequently with 100 ml of Stop & Glo Reagent in a microplate.

Luciferase activities were measured for luminescence by Infinite

M200 microplate reader (Tecan, Switzerland). The luciferase

activity of each construct was calculated relative to that of the

vector control (pcDNA3.1) without over-expression. All transfec-

tion experiments were performed at least thrice using different

batches of cells with different preparations of plasmid DNAs and

similar results were obtained. Data were illustrated as mean 6

standard deviation (SD) of a minimum of three experiments, each

performed in triplicates.

Results

E2F is identified as global transcriptome regulator in
hPSCs

We made global gene expression comparisons between hPSCs

and their corresponding hFs or differentiated fibroblast-like cells

(two hESC vs differentiated hESC, one hiPSC vs differentiated

hESC, two hiPSC vs cloned differentiated hESC and two hiPSC vs

hF) using two public microarray datasets (See Materials and

Methods). The cell line variations in gene expression provided a

stringent criterion to evaluate the relevance of TF candidates to

gene regulation in hPSC, by requiring screened TF to show

significant TFA in at least 6 hPSC-hF comparisons.

To accelerate evaluation of TFA in large datasets, an algorithm

to compute the statistical enrichment of high target propensity

genes in global sets of differentially expressed genes was developed

(Figure S1), based on an efficient dynamic programming

procedure. From a screening of 594 PWMs which model the

preferred DNA-binding sequences of TF candidates, those of E2F

result in consistently high statistical significance for up-regulated

genes in every hPSC-hF comparison (Figures 2A and 2B). This is

in contrast to the lack of evidence for down-regulated genes

(median 2log P-value = 0.0). Hence, E2F target genes are

dominantly up-regulated in hPSCs. This is in good agreement

with a recent study which revealed that the role of E2F1-3 is

switched from an activator in progenitor cells to a repressor in

differentiating cells [17], implying up-regulated target genes in

progenitor cells.

Interestingly, there are clues pointing to expanded functions of

E2F-activated genes, beside their specific canonical roles related to

proliferation. Firstly, E2F-responsive genes responded to cell-cycle

periodicity in differentiated cells but the expressions of many such

genes in ES cells are cell cycle-independent [27]. Further support

for its role in hPSC functions comes from the fact that the

localization of pRb on E2F-responsive promoters facilitates

replicative senescence [28], indicating that E2F may regulate

replicative senescence in these cells.

E2F further regulates its canonical functions in hPSCs
compared to differentiated fibroblasts

We further investigated E2F1 activity, which is experimentally

supported by E2F1 up-regulation in hPSCs over hFs at the gene

expression (.2.5 time up-regulation) and protein levels by

quantitative real-time PCR and Western Blot analyses respectively

(Figure 2C–D). As E2F may regulate key phenotypic differences

between hPSCs and hFs, the next step is to characterize the

functions of target genes between these cells. To do so, the

expression profile of potential E2F-regulated genes was first

explored from a plot of differential expression (score) vs target

propensity ranking (Figure S2A) at a genome-wide level, which

showed a clear relationship between them, i.e., large differential

expression values for high target propensity rank. For a complex

transcriptional network, the correlation is considered large

(Spearman’s Rho = 0.168; two-tailed P-value = 1.0E-97) and

significant enough to recover canonically regulated gene groups

as described later. If the genes with both high target propensity

and differential expression represent true E2F targets, their

expression profiles should be similar to E2F’s among various

hPSC-hF comparisons. We quantified this similarity using two

metrics, the dot product and covariance, and observed their

increase with higher target propensity rank (Figure S2B–C).

Clearly, gene regulation by E2F is detectable, resulting in the

distinctive profiles of high target propensity genes. Motivated by

this discovery, a novel method, TF target-cohort analysis, was

developed to identify functional gene groups regulated by E2F.

Unlike other gene group analyses which only consider their

expression changes [29], our method evaluates the effect of TFs on

gene expression using binding site data. In our study, it detects

E2F regulation by testing if the expression properties of high target

propensity genes are significant compared to others in the group,

through random assignment of expression profiles from the

experimental data (Figure S2D–E). Subsequently, we could

identify E2F target-cohorts (genes) that have (a) high target

propensity, (b) significantly higher differential expression, and (c)

similarities to E2F expression profiles, in comparison to other gene

members. As such, these genes are enriched in true targets.

Target-cohort analysis showed much more diverse functional

regulation by E2F than previously identified. Figure S3A shows

the distribution of the P-values for the tested functional groups. A

E2F Modulates Self-Renewal in hPSCs
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balance between the coverage of E2F functions and the stringency

of q-value cut-off could be adjusted by choosing a value of 0.267

for the latter (See ‘significant tests vs q-value cut-off’ plot of FDR

analysis based on the method of Storey and Tibshirani [30] in

Data S1). It indicated that about 73% of uncovered groups were

truly E2F-regulated (True discovery rate = 1-FDR = 0.733, where

FDR or false discovery rate = 0.267). We speculated that genes are

mostly regulated according to their specific molecular functions

which resulted in good agreement between all differential

expression-associated metrics, compared to other gene ontologies

(Figure S3B). With an eye to recover canonical as well as novel

functions of E2F, identified gene groups were classified into eight

broad functional categories (Figure S3C). They include signaling,

energy generation, transports, protein/lipid/carbohydrate metab-

olism, adhesion, oncogene-related, development-related and cell

cycle-related. Only the last three categories were known canonical

functions of E2F. In discussing notable gene groups from the new

categories in the next section, we place more emphasis on larger

groups (more than 10 members if there is no supportive biological

information on their relevance) as they are less influenced by

outliers [29], and if supported by differential expression metric and

one similarity score. The findings were also carefully augmented

with biological information from the literature to mitigate the

somewhat large q-value threshold used, noting that target-cohort

Figure 2. Significant E2F activity and E2F1 differential expression between hPSCs and hFs. (A) Box plots depicting statistical significance
of TFA for all 22 TRANFAC PWMs, based on 7 hPSC-hF comparisons. (B) Box plots summarizing statistical significance of TFA for 7 hPSC- hF
comparisons, based on 22 PWMs. Median 2log10(P-value) is greater than 10 for most hPSC-hF comparisons. The whiskers represent 10th and 90th

percentiles while the circles outside them are outliers. (C) Quantitative Real-time PCR analysis of gene expression in hPSCs [iPS(IMR90), iPS(foreskin)
and HES-3] and hFs [IMR-90, Hs27 and Hs68]. Gene expression was normalized to that of GAPDH and expressed as fold change relative to HES-3. The
values shown are mean 6 SD of a representative experiment performed in triplicate and repeated twice for each biological replicate (cell line).
(D) Verification of up-regulation of the TF in hPSCs compared to hFs. Actin served as loading control.
doi:10.1371/journal.pone.0027231.g002

E2F Modulates Self-Renewal in hPSCs
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Figure 3. Identification of target-cohorts in WNT and FGF self-renewal pathways. (A) Target propensity separation threshold used to
separate genes above and below E2F target propensity thresholds. The P-values at each target propensity threshold for various measures of
differential expression profiles is computed during target-cohort analysis. The average P-value at each target propensity threshold is used to
determine the optimal target propensity threshold to separate high and low target propensity genes. As target propensity threshold decreased to
4.9, statistical significance increases sharply before plateau-ing off. This is called ‘target propensity separation threshold’. (B) Differential expression
similarity with E2F1 (covariance measure) is plotted against the differential expression scores for genes below (pink squares) and above (blue
triangles) separation threshold. For most genes below separation threshold (with the exception of one outlier), |covariance|,0.135 while differential
expression ,0.9. For genes above separation threshold, those with |covariance|.0.135 and differential expression .0.9 (outside red box), are called
target-cohorts, and likely to be enriched in target genes. (C) E2F target-cohorts identified in WNT pathway using separation threshold = 4.9 (red circle)
and 4.0 (black circle). For separation threshold = 4.9, target-cohorts are genes marked with an ‘*’ and have differential expression .0.9 and either

E2F Modulates Self-Renewal in hPSCs
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analysis is designed to report conservative P-values (Supporting

Information S1).

We recovered canonical functions of E2F in the form of its

targeted gene groups as discussed in Supporting Information S1.

These were primarily associated with cellular multiplication and

growth, apoptosis as well as differentiation, and can therefore

disrupt self-renewal if inappropriately regulated. It therefore

implied that the increased expression of E2F and its regulatory

activities in hPSCs indeed mediate self-renewal. Interestingly, the

other broad categories of E2F functions though largely unknown,

can also be interpreted with similar importance as discussed below.

E2F significantly regulates self-renewal signaling in hPSCs
One of the largest categories of gene groups detected with E2F

target-cohorts was signaling pathways and related gene groups

(Figure S3C), prompting us to look in more detail for evidence of

this much uncharacterized global regulation of signaling in hPSCs

by a TF. The list of pathways includes quite a number active in

stem cells: WNT, FGF, EGF, Hedgehog, p38 MAPK and FAS. Of

high interest with respect to hPSCs, Wnt signaling promotes cell

proliferation [31,32], participates directly in mitosis [33–35],

maintains pluripotency [10,36] and enhances somatic cell

reprogramming [10]. Similarly, FGF2 signaling promotes prolif-

eration and suppresses apoptosis of hESCs; its suppression

enhances differentiation [12,37]. Thus, a confirmation that E2F

regulates component genes in these pathways would suggest such a

novel modulation of self-renewal.

To investigate direct E2F regulation of some of these genes, a set

of target-cohort in the WNT pathway were selected according to

the criteria detailed in Figure 3. Again, target-cohorts have high

target propensity with significantly higher differential expression

score and similarities to E2F expression profiles, compared to

other genes in the group. Many of these identified genes were

shown to be differentially expressed between hPSCs and hFs using

real-time polymerase chain reaction (PCR) (Figure S4), and their

tentative self-renewal associated functions are described in Table

S3. Three shortlisted genes namely, WNT5A, FZRB and SMAD1,

showed a significant increase in the luciferase activities of their

promoter-reporter constructs compared to control vector when

assessed for trans-activation by E2F expression vectors in hESCs

(Figure 4A). In contrast, there was no increased activity when the

hESCs were cultured in a differentiation medium (Figure 4B), or

when the E2F binding sites were mutated in the promoter vectors

of tested genes (Figure 4C). In all, the results clearly confirm that

an elevated E2F level can result in the up-regulation of its target

genes in the self-renewal associated WNT pathway, spanning

extracellular signaling, signal reception as well as downstream

execution of expression regulation, compared to differentiating

cells. As activated SMAD1 regulates differentiation and self-

renewal via BMP signaling [12], E2F control of its expression as

demonstrated by our trans-activation experiments (Figure 4),

influences self-renewal. On the other hand, the role of non-

canonical WNT5A and FZRB remains to be elucidated.

The myriad of signaling-related gene groups with target-cohorts

supports the notion that E2F might coordinate interactions among

major pathways. For example, the Ras/Raf/MEK/ERK pathway

was theoretically proposed to negatively feedback into the

apoptotic machinery, and hence prevents apoptosis triggered by

a self-feeding E2F1 [38]. Interestingly, ERK1 and Ras were

suggested to be E2F target genes [39], implying that E2F

transcriptional regulation of these genes modulates the intensity

of Ras/Raf/MEK/ERK feedback loop, thereby regulating the

balance between proliferation/differentiation and apoptosis. E2F

transcriptional regulation of such component genes in feedback

loops is likely to be a common theme among various functional

processes in hPSCs.

E2F regulates metabolism of hPSCs
Another major finding of our work is the previously unknown

role of E2F in directly targeting broad classes of metabolism in

hPSCs. Interestingly, we found that metabolic gene groups

(spanning energy generation, transports and protein/lipid/carbo-

hydrate metabolism) account for almost 1/3 of all uncovered gene

groups, outnumbering canonical gene groups in the broad

functional categories of oncogenes, development and cell cycle

(Figure S3C). Our result clearly showed that metabolism

considered in its entirety, is significantly regulated by E2F. In

retrospect, this category together with signaling-related gene

groups may help explain the under-representation of known E2F

targets in their estimated number from cellular binding-site

profiling studies [40,41].

E2F’s direct regulation of metabolism may support the high

proliferation rate of hPSCs which imposes heavy demands on

energy generation and biomass production compared to differen-

tiated cells [42]. This is supported by the role of E2F1 acting as a

switch between the glycolytic mode during proliferation and the

oxidative phosphorylation under dormant or stressful conditions

[43]. Target-cohorts were detected in functional groups related to

energy generation (e.g. tricarboxylic acid pathway and electron

transport chains), fatty acid metabolism, lipid and fatty acid

transport, and exocytosis. Some of them are reported previously.

For example, human cytochrome c1, whose gene is regulated by

E2F [44], participates in an electron transport chain and the

mitochondria pathway of apoptosis whereas a similar set of

electron transport-related genes (COX8, CYB5-M, CYP51A1,

FDXR and SUCLG1) were found to be E2F4-bound in cancer

cell lines [45]. In addition, four transporter genes were identified

to be potential E2F targets [39]. As illustrated selectively in

Figure 4D, metabolic gene groups identified from target-cohort

analysis have genes with high target propensity (triangles)

significantly more dispersed away from the origin when drawn

in differential expression profile space, compared to low target

propensity genes (squares). This observation indicates the presence

of differentially expressed genes targeted by E2F. Similar results

were found for WNT and FGF pathways which illustrated the

biological significance of predictions using our analytical frame-

work.

Discussion

In this study, a differential E2F regulation of its canonical (cell

cycle, apoptosis and differentiation programs) and associated

functions has been newly demonstrated in hPSCs. We further

found that E2F is a novel regulator of the global signaling and

metabolic networks in pluripotent stem cells which include WNT

and FGF as well as energy generation, fatty acid metabolism and

|dot product|.3.2 or |covariance|.0.135. To explore more genes for trans-activation by E2F, target propensity separation threshold is lowered to 4.0
with the resulting criteria to identify target-cohorts being differential expression .0.55 and either |dot product|.2.0 or |covariance|.0.1. (D) Similar
to the procedure highlighted in (A) and (B), target-cohorts in FGF pathways were identified using separation threshold = 5.1, with differential
expression .0.617 and either |covariance|.0.126 or |dot product|.1.87.
doi:10.1371/journal.pone.0027231.g003
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transport pathways. All in all, the regulation of these functions

represents a more complete picture of different self-renewal

capabilities, indicating a definitive, central role for the TFs in

these cells (Figures 3 and 4). The ability of our integrated

bioinformatics pipeline to uncover the roles of E2F was due to the

relevance of our target propensity model, which is based on core

and proximal promoter enrichment of putative binding sites [39],

well-supported by its genomic binding profiles and known

Figure 4. Validation and increased differential expression scores of target-cohorts in various new and canonical E2F functions.
Luciferase activity of wild-type promoter-reporter constructs (WNT components- FRZB, SMAD1 and WNT5A) in (A) hESCs, (B) in hESCs cultured with
differentiation medium, and (C) in hESCs with E2F binding sites mutated. (a–c) Fold inductions using E2F expression vectors are in comparison to that
of empty vector. All luciferase activities were measured relative to the renilla luciferase internal control. Data are illustrated as mean 6 SD of a
representative experiment performed in triplicate and repeated twice. (D) Representative gene groups in functional categories identified by target-
cohort analysis. The X-axis represents differential expression score while the Y-axis presents the similarity with E2F1 (covariance measure). Overall,
high target propensity genes (triangles) have values more dispersed from the origin, compared to low target propensity genes (squares), implying
higher differential expression scores and similarities with E2F1. Corresponding P-values were displayed as a column in the order [differential
expression, dot Product, covariance].
doi:10.1371/journal.pone.0027231.g004
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Figure 5. Interplay between E2F and other cellular regulators in the direct regulation of self-renewal associated functions. (A) Co-
regulated functions of E2F [14–16, this work], HCF1 [46,47], NRF1/2 [48,49] are associated with cell proliferation (B) E2F, WNT and FGF activities are
deeply integrated in a self-renewal module of interplay between gene regulation and signal transduction. Besides directly targeting genes with the
canonical functions of proliferation, differentiation and apoptosis, E2F transcriptionally regulate the component genes of these signaling pathways
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participation in basal transcription (Supporting Information S1).

While we emphasize the usefulness of exploratory TFA

screening, complementary criteria in discerning candidate

priorities and caveats are described in Figure S1. Further down

the pipeline, similar approaches to target-cohort analysis are

envisioned to provide a rapid computational snapshot of E2F

targeted functions temporally such as during development or

oncological progression.

Further support for the direct role of E2F in metabolism comes

from its association with other TFs with similar functions. It was

found that gene promoters bounded by the self renewal-associated

complex, HCF1-Ronin, are associated with E2F1 binding in

mouse ESCs [46]. Target genes of the complex are involved in

protein transport, metabolism and modification, as well as

oxidative phosphorylation and mTOR signaling regulating

cellular growth and metabolism. It is further known that E2F1/

3/4 tether HCF1 to DNA, allowing HCF1 to recruit epigenetic

regulators, leading to the transcriptional activation of cell-cycle

controlled genes and the promotion of cell proliferation [47]. In

addition, NRF1/2, the other differentially-expressed candidate

regulators identified from our screening (Figure S5), are also

associated with E2F and similarly implicated in protein transports,

energy generation, mitochondrial DNA replication and cell cycle

control [48,49]. NRF2-b, in particular, was shown to interact with

HCF1 and E2F1 in yeast two-hybrid experiments [46]. The

hypothesis that E2F and NRF1/2 co-regulate genes in hPSCs is

underscored by the fact that a number of E2F targets involved in

mitochondria biogenesis, mitosis, DNA replication and cytokinesis

are transcriptionally regulated by NRF1/2 [45,48,49]. The

association of E2F with these metabolic regulators as summarized

in Figure 5A further lends support to the hypothesis that the

transcription factor regulates metabolism.

We also looked for empirical interactions between E2F and

WNT, FGF activities that mediate self-renewal associated

functions. Here, we emphasize the feedback relationship between

E2F and WNT activities. Previous works showed that Wnt-1

induces downstream E2F1 expression [50] while we demonstrated

WNT5A is a target gene of E2F1 and E2F2 (Figure 4A). The

mechanisms involved may be highly elaborate, as illustrated by the

discovery that cell cycle progression (such as E2F-driven) can

trigger a positive feedback with Wnt signaling [51]. The resultant

increase in WNT signaling may further induce E2F expression to

drive cell proliferation (Figure 5B).

For FGF pathway, its role with respect to self-renewal can be

attributed, in part, to mechanisms such as SMAD1 activity

antagonism and PI3K/AKT signaling [12], both found to be E2F-

mediated in our work (See Figure 4, and broad functional

categories of E2F target-cohorts in Data S1, respectively). Along

the same line, E2F1 was found to trigger AKT activation by

directly effecting the transcription of the adaptor protein Gab2

[52]. Further upstream, FGFR1, a key receptor for the canonical

self-renewal factor FGF2, was identified to be a target-cohort in

our study (Figure 3). This was supported by the findings that E2F1-

3 directly activate FGFR1-2 gene expression [53,54] promoting

mitosis. Figures 5A and 5B summarize our respective results on the

co-regulation of various aspects of proliferation by E2F and a core

self-renewal module in hPSCs depicting the interplay between the

TFs and WNT/FGF pathways; the hypothesis that E2F directly

control the expression of these self-renewal pathways is detailed in

Figure 5C.

Moving forward, the proposed functions of the E2F family

should be viewed as an invitation to clarify the roles (if any) of its

individual members in hPSCs, after highlighting their collective

importance. Our work suggests that their understanding may

bring about new perspectives on the characterization, modulation

and engineering of the self renewal/metabolism phenotype with

implication for the therapeutic application of stem cells. For

example, the propagation of hPSCs in culture medium may be

affected by differences in intrinsic E2F level such as between

hiPSCs and hESCs (Figure 2C), due to the influence of the TF on

the strength of WNT and FGF signaling.

Finally, we also highlight a number of studies that elucidate the

role of E2F with respect to somatic cell reprogramming. Since

promotion of proliferation and Wnt/b-catenin/Tcf3 pathway

activation enhance reprogramming [10], E2F potentiating these

two functions should have the same effect. It may also do so

through direct transcriptional activation of Oct4, Sox2, Nanog

and Klf4 [55]. Furthermore, the suppression of p53 and its

apoptotic activity were found to promote proliferation, leading to

increased reprogramming efficiency [56,57]. As such, E2F which

modulate expression of genes involved in the induction and

execution of apoptotic processes (14–16; this work), may further

influence reprogramming.

Supporting Information

Figure S1 Chi-square statistics as a proxy to detect
TFA. Chi-square statistics is used to represent gene number

enrichment in the overlap between subsets of high ranking (1)

SAM score and (2) target propensity. We incorporate the Yate’s

correction into the statistics and compute if the expected overlap is

greater than 10 genes. This ensures that its value is not unreliably

large for small expected overlap. In addition, we only evaluated

cases where the observed overlap number is greater than its

expected number. Subjected to these constraints, the maximum
chi-square value among all pairs of rank thresholds is the proxy

test-statistic to detect TFA, i.e., direct gene regulation by the TF at

a systems-level. However, true targets of a TF may not have the

largest differential expression scores. This is taken into account by

incrementally removing the highest-ranking genes from the SAM

score subset that give the maximum chi-square earlier, and re-

computing the test statistic. P-value extrapolation: Statistical

significance is evaluated by randomizing the gene rankings and re-

computing the maximum Chi-Square to obtain the sampled

distribution of 10000 values. A linear relationship (R2.0.99),

which exists between sampled maximum Chi-Squares and their

corresponding 2log P-values, is used to extrapolate the statistical

significance of observed maximum Chi-Square. Other criteria:

Candidate TFs are given higher priority for differential expression

evaluation if (a) their PWMs have high binding specificities, (b)

with the same functions. Remarkably, WNT pathway is engaged in a positive feedback with cell cycle progression [51]. With mitogens and
intracellular regulators (such as E2F) driving cell cycle progression in hPSCs, a self-feeding state of high cell-proliferation may be programmed into
hPSCs via the WNT pathway. (C) Key components of WNT and FGF pathway are regulated by E2F. The ovals and blocks represent key components of
the pathways while the black arrows depict direction of information flow. E2F target-cohorts (red) and known target genes (black) encoding signaling
components, are listed beside them. If a gene is both a known target and a target-cohort, it is colored red. Known targets include WNT2B, SMARCA3,
SMARCA5, RRAS, MAP2K7, YHWAE (BIND database), FGF1 [54], FGF2 [53], FGF7, PRKCL2, MAP3K7, MAPK3 (ERK1), [39,58], SOX2, OCT4, NANOG [55].
Genes denoted with ‘**’ are experimentally verified in this study to be regulated by E2F (Luciferase-based assay) while those with ‘*’ are
experimentally shown to be differentially expressed (RT-QPCR).
doi:10.1371/journal.pone.0027231.g005
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their PWMs are annotated from large set bound sequences, and (c)

their known genomic binding loci used in gene regulation are

largely confined to the core and proximal promoters. By requiring

differential expression of candidate TF as the last stringent

criterion, we believe shortlisted candidates are promising as follow-

ups. Note that the last criterion is likely to bypass potential TFs

that are activated in hPSCs through post-translational mechanisms

and not via changes in expressions.

(TIF)

Figure S2 Basic idea behind target-cohort analysis. The

analysis make use of the fact that there is a significant global

increase in (A) differential expression score, as well as score

similarities with E2F1 using (B) dot product metric and (C)

covariance metric (based on a 250-genes moving average) vs target

propensity ranking. The trends are attributed to the presence of

E2F target genes which increase the differential expression scores

of high target propensity genes. Similarly, target-cohort analysis

identifies significantly-regulated gene groups by looking out for

these trends. (D) Specifically, a non-significant gene group

sampled randomly have similar values for both high (triangles)

and low (squares) target propensity genes while (E) a significant

gene group has higher average values for high target propensity

genes (triangles), compared to low target propensity genes

(squares), as visually described in the diagrams. In general,

scores were sampled from the global microarray data without

replacement.

(TIF)

Figure S3 Summary result of target-cohort analysis. (A)

P-value histograms from target-cohort analysis evaluating E2F

regulation of gene groups. A P-value = 0.1 corresponds to the q-

value cut-off = 0.267 for differential expression score. (B) Venn

diagram showing overlaps numbers of identified gene groups using

differential expression score and score similarities. Interestingly,

gene groups detected using differential expression score and score

similarities show the greatest overlap for molecular functions with

only 8 (15%) detected by any one metric, followed by pathways

(23%) and biological processes (34.3%). (C) Identified gene groups

according to broad functional categories with number of gene

groups in brackets.

(TIF)

Figure S4 Gene expression of E2F target-cohorts in
hPSCs compared to hFs. Quantitative Real-time PCR analysis

of target-cohorts in hPSCs [iPS(IMR90), iPS(foreskin) and HES-3]

and hFs [IMR-90, Hs27 and Hs68]. Gene expression was

normalized to that of GAPDH and expressed as fold change

relative to HES-3. The values shown are mean 6 SD of technical

triplicate for various biological replicates (cell lines). A large

proportion of tested target-cohorts are significantly differentially

expressed between hPSCs and hFs.

(TIF)

Figure S5 Significant NRF1, NRF2 activities in hPSCs
compared to hFs. (A) NRF1 and NRF2 showed high statistical

significance during TFA screening for 7 hPSC-hF comparisons.

(B–E) Gene expression analysis by quantitative real-time PCR for

NRF1 and NRF2 subunits (GABPA, GABPB1, GABPB2) in

various biological replicates (cell lines). NRF1 and GABP2 showed

significant differential expression between hPSCs and hFs. (F)

NRF1 showed differential protein expression between hPSCs and

hFs by Western Blot analysis.

(TIF)

Table S1 E2F motifs (red) and corresponding mutations
(bold) on FRZB, SMAD1 and WNT5A promoters used in
this study.
(DOC)

Table S2 Primers used for gene expression validation
(real-time PCR analysis) of E2F1 and WNT-associated
target-cohorts.
(DOC)

Table S3 Tentative self-renewal associated functions
regulated by E2F target-cohorts in WNT and FGF
pathways. Some genes in the WNT pathway as listed in

Figure 3 are cited under FGF pathway instead, due to dual

memberships.

(DOC)

Supporting Information S1

(DOC)

Data S1

(PDF)
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22. Kel AE, Gößling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, et al. (2003)

MATCHTM: A tool for searching transcription factor binding sites in DNA
sequences. Nucleic Acids Res 31: 3576–3579.

23. Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, et al. (2005) The

PANTHER database of protein families, subfamilies, functions and pathways.
Nucleic Acids Res 33: 284–288.

24. Yu JY, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, et al.
(2007) Induced Pluripotent Stem Cell Lines Derived from Human Somatic

Cells. Science 318: 1917–1920.
25. Chan KK, Wu S, Nissom PM, Oh S, Choo A (2008) Generation of high-level

stable transgene expressing human embryonic stem cell lines using Chinese

hamster elongation factor-1a promoter system. Stem Cells Dev 17: 825–836.
26. Wu S, Choo A, Yap MGS, Chan KK (2010) Role of Sonic hedgehog signaling

and the expression of its components in human embryonic stem cells. Stem Cell
Res 4: 38–49.

27. Galderisi U, Cipollaro M, Giordano A (2006) The retinoblastoma gene is

involved in multiple aspects of stem cell biology. Oncogene 25: 5250–5256.
28. Helin K, Harlow E, Fattaey A (1993) Inhibition of E2F-1 transactivation by

direct binding of the retinoblastoma protein. Mol Cell Biol 13: 6501–6508.
29. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005)

Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

30. Storey JD, Tibshirani R (2003) Statistical significance for genome-wide

experiments. Proc Natl Acad Sci USA 100: 9440–9445.
31. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, et al. (1998) Identification

of c-MYC as a Target of the APC Pathway. Science 281: 1509–1512.
32. Shtutman M, Zhurinsky J, Simcha I, Albanese CDM, Pestell R, et al. (1999) The

cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad

Sci USA s96: 5522–5527.
33. Aoki K, Taketo MM (2007) Adenomatous polyposis coli (APC): a multi-

functional tumor suppressor gene. J Cell Sci 120: 3327–3335.
34. Huang P, Senga T, Hamaguchi M (2007) A novel role of phospho-beta-catenin

in microtubule regrowth at centrosome. Oncogene 26: 4357–4371.
35. Bahmanyar S, Kaplan DD, Deluca JG, Giddings TH, Jr., O’Toole ET, et al.

(2008) beta-Catenin is a Nek2 substrate involved in centrosome separation.

Genes Dev 22: 91–105.
36. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004)

Maintenance of pluripotency in human and mouse embryonic stem cells
through activation of Wnt signaling by a pharmacological GSK-3-specific

inhibitor. Nat Med 10: 55–63.

37. Eiselleova L, Matulka K, Kriz V, Kunova M, Schmidtova Z, et al. (2009) A
complex role for FGF-2 in self-renewal, survival, and adhesion of human

embryonic stem cells. Stem Cells 27: 1847–1857.

38. Aguda BD, Algar CK (2003) A structural analysis of the qualitative networks
regulating the cell cycle and apoptosis. Cell Cycle 2: 538–544.

39. Kel AE, Kel-Margoulis OV, Farnham PJ, Bartley SM, Wingender E, et al.
(2001) Computer-assisted identification of cell cycle-related genes: new targets

for E2F transcription factors. J Mol Biol 309: 99–120.

40. Bieda M, Xu XQ, Singer MA, Green R, Farnham PJ (2006) Unbiased location

analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human
genome. Genome Res 16: 595–605.

41. Xu XQ, Bieda M, Jin VX, Rabinovich A, Oberley MJ, et al. (2007)
Comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and

tumor cells reveals interchangeable roles of E2F family members. Genome Res

17: 1550–1561.

42. Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency

and mitochondrial DNA proliferation during early embryo development and
embryonic stem cell differentiation. Stem Cell Rev 5: 140–158.

43. Blanchet E, Annicotte JS, Lagarrigue S, Aguilar V, Clapé C, et al. (2011) E2F
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