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Diagnosis of different breast cancer stages using histopathology whole slide images (WSI) is the gold standard in determining the
grade of tissue metastasis. Computer-aided diagnosis (CAD) assists medical experts as a second opinion tool in early detection to
prevent further proliferation. The field of pathology has advanced so rapidly that it is possible to obtain high-quality images from
glass slides. Patches from the region of interest in histopathology images are extracted and trained using artificial neural network
models. The trained model primarily analyzes and predicts the histology images for the benign or malignant class to which it
belongs. Classification of medical images focuses on the training of models with layers of abstraction to distinguish between
these two classes with less false-positive rates. The learning rate is the crucial hyperparameter used during the training of deep
convolutional neural networks (DCNN) to improve model accuracy. This work emphasizes the relevance of the dynamic
learning rate than the fixed learning rate during the training of networks. The dynamic learning rate varies with preset
conditions between the lower and upper boundaries and repeats at different iterations. The performance of the model thus

improves and attains comparatively high accuracy with fewer iterations.

1. Introduction

Deep learning has emerged as a state-of-the-art technology in
computer vision and speech recognition in recent years. The
convolutional neural network (CNN) is the predominant
method used in analyzing medical images [1]. CNN can learn
spatial features in medical images adaptively using the back-
propagation algorithm. Early diagnosis and treatment of
breast cancer (BCa) prevents the proliferation of cells and
thereby reduces morbidity and mortality [2]. In addition to
diagnostic information, features such as nuclear atypia and
the presence or absence of mitosis are indicative features
indispensable for grading cancer stages. Metastasis detection
with the assistance of the algorithm requires training the
model with adequate images so that the model learns charac-
teristic features in the spatial domain. Deep learning methods
are effective [3] when the number of available images is large
during the training stage. Model parameters and hyperpara-
meters are selected foreseeing the application and availability
of a sufficient number of images for training. The network

then learns from the given dataset by updating the weights
after each training step for the given number of classes and
classifies images by reducing training loss. Optimization of
the deep neural network (DNN) model involves fine-tuning
of hyperparameters like the learning rate, batch size (BS),
and momentum to improve model performance in task-
specific applications. Conventional learning rate (LR) strate-
gies include the constant learning rate, step decay, and expo-
nential decay which possess a trial-and-error method to
identify the optimal learning rate suited for the application.
As a baseline method, model training with a fixed learning
rate strategy is used than its counterparts. When the learning
rate is too low, the model converges slowly, and for the high
learning rate, the model training diverges resulting in subop-
timal solutions. In optimal learning rate settings, the network
converges after fewer iterations. The learning rate determines
the extent of the loss gradient backpropagated in order to
advance in the direction of global minima. If the gradient is
stuck at local minima, noticeable progress is made only at
the expense of computational cost. Adaptive LR methods
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for training involve the learning rate that changes by a prede-
fined value, if no improvement is observed in accuracy after
few epochs or stuck at local minima. On the other hand, in
the nonadaptive schedule, the LR will either be constant till
the end of the training or decrease gradually on every epoch
by small steps. Other dynamic LR strategies that evolved
recently are the cyclical learning rate (CLR) [4], stochastic
gradient descent with warm restarts (SGDWR) [5] referred
to as cosine annealing, and stochastic weight averaging
(SWA) [6]. Variations in the learning rate are shown in
Figure 1 for reference.

In the cyclical learning rate, the learning rate cyclically
varies between the predefined lower and upper boundary
values while training. Initially, the learning rate is kept very
low which is then increased until it reaches the maximum
value.

The learning rate then descends back to the initial value
completing one cycle. Thus, a cycle consists of two steps
with a fixed step size, which is the number of iterations over
which the learning rate transitions from the minimum value
to the maximum value. After every cycle of training, the pat-
tern repeats itself till the last epoch in the triangular learning
rate. Increasing the learning rate will have a short-term effect
on accuracy, but in the long run, it alleviates loss during
training,.

In this work, we explore the optimal settings for attain-
ing high classification accuracy for the CNN model by
maneuvering the hyperparameter—learning rate. The
dynamic learning rate is applied for the training phase
which reduces the model loss significantly. During training,
the optimizer uses the gradient descent algorithm to calcu-
late the steepest descent and moves along the loss landscape
in the direction opposite to the gradient at that point. The
deep neural network with stochastic gradient descent
(SGD) [7] is the training algorithm used for the training
of deep neural networks. The optimizer updates the param-
eters (0) after every epoch by 6, =6, ; — €,(0L/06), where L
is the loss function, €, is the learning rate, and 0, is the
weights at time t. For low values of the learning rate, opti-
mization takes place in small steps but convergence time
increases at saddle point plateaus as shown in Figure 2.
Increasing the learning rate is a fruitful way of escaping
saddle points in nonconvex optimization problems. Cosine
annealing is another modality of the dynamic learning rate
schedule which starts with a large learning rate that is grad-
ually decreased to a minimum value, then increased rapidly
again, and the annealing schedule depends on the cosine
function.

Equation (1) depicts the cosine annealing schedule:

i 1 i i Tcur
’7t=rlmin+ E(rlmax_ﬂmin) <1+COS ( T ﬂ)) (1)

i

For the i-th run, the learning rate decays with cosine
annealing for each batch as in Equation (1), where 7
and 7/ are the ranges for learning rates and T, is the
number of epochs elapsed since the last restart. Our aim is
to explore optimum hyperparameter settings to attain
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CNN model performance with fewer epochs, where an
aggressive annealing schedule is combined with periodic
“restarts” to the original learning rate. The SWA algorithm
for the learning rate [6] with default settings allows the
learning rate to be controlled by an external learning rate
scheduler or the default optimizer. In this strategy, the cyclic
mode activates only after few epochs have elapsed. SWA will
affect the final weights and the learning rate of the last epoch
if batch normalization is also enabled during the model
training.

The remaining section of the paper is organized as
follows. Section 2 outlines the related works. The dataset
and evaluation metrics are described in Section 3. Section 4
explains the typical CNN architecture. Section 5 portrays
the methodology followed in this work. Experimental results
are drawn in Section 6. Discussion on the obtained results is
included in Section 7. Section 8 concludes with highlights
and insights for further research.

2. Related Works

Detection of mitosis from breast cancer images is a challeng-
ing task since the slide has to be analyzed under a micro-
scope by a pathologist which is tedious and often prone to
subjective variations. Sommer et al. proposed a hierarchical
learning workflow with a pixel-wise classifier [8] for auto-
matic mitosis detection in breast cancer. Khan et al. [9]
proposed a statistical approach which modeled the intensity
of pixels in mitotic and nonmitotic regions by a gamma-
Gaussian mixture model that effectively detects mitosis in
standard histology images. Roullier et al. [10] presented a
graph-based multiresolution approach for mitosis extraction
in breast cancer histology images by segmentation at differ-
ent resolutions based on a top-down approach. Fatakdawala
et al. [11] in their work used an expectation-maximization-
driven contour technique with overlap for segmentation of
lymphocytes in histology images. Another similar method
[12] for nucleus segmentation was based on multiscale
Laplacian-of-Gaussian filtering performed after selecting
the image foreground by graph-cut-based binarization.
Irshad [13] aimed to improve the detection accurately by
transforming color images into blue ratio image channels
that better capture statistical and morphological features
followed by binary thresholding and segmentation by refin-
ing the boundaries using an active contour model. Veta
et al. [14] presented an automatic detection of mitotic cells
in breast histology images by candidate extraction using a
Chan-Vese level set, and classification was done by a statisti-
cal classifier trained with various features like shape, color,
and texture. They also summarized various results from
the Assessment of Mitosis Detection Algorithms (AMIDA)
challenge [15] by multiple observers. Albayrak and Bilgin
[16] proposed a Haralick feature descriptor with different
window sizes to detect spatial dependency among different
cellular structures in neighborhood pixels. They used
machine learning to compare extracted features with various
samples and suggested that an increase in window size
improves accuracy in separating mitotic cells from nonmito-
tic cells. Machine learning (ML) algorithms are also applied
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Ficure 1: Different dynamic learning rate strategies. In both (a) and (b), the learning rate changes between the lower and upper boundaries
and the pattern repeats till the final epoch.
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FIGURE 2: Saddle point. Saddle points are pseudominima which represent neither local minima nor global minima in the loss landscape. The
gradient is recomputed after every iteration till it converges.
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FI1GURE 3: Sample images from the database with ground truth labels. The label shows the presence of malignancy in two patches and
absence in benign differentiated by the extent of staining in each image.

to analyze handcrafted features in digital pathology images. =~ Peikari et al. [17] used texture in the histology slide images
Several preprocessing steps are carried out prior to applying  that are identified by applying a Gaussian filter and calcu-
ML algorithms. The extracted patches from whole slide  lated statistical measure from the histogram. They subse-
images are then used for training traditional classifiers.  quently applied a support vector machine (SVM) classifier



to distinguish clinically relevant regions. Machine learning
techniques are widely used [18] nowadays in different med-
ical images to leverage diagnosis and detection of several
anomalies by analyzing the extracted handcrafted features.
Similar attempts were also made by [19, 20] to train SVM
classifiers based on features like nucleus properties, color,
texture, and global image properties. These methods use
handcrafted features with traditional classifiers which are
inspired by domain-specific design and cannot handle the
high variable sizes and shapes of mitoses very well.

The remarkable success of deep convolutional neural
networks (CNN) in object detection and classification
[21-24] of natural images inspired researchers to employ
CNN in the analysis of medical images. Deep learning tech-
niques extract global features from images which are subse-
quently used for classification of test images. Aratjo et al.
[25] performed training of the CNN model using patches
and showed that when CNN is combined with the SVM
algorithm, it yields better results. Spanhol et al. [26] used
patches with different patch sizes (32 x 32, 64 x 64) using a
sliding window scheme for training and classification of
images. The reported accuracies were 83.3% for the patient
level and 82.8% for the image level with a 200x magnifica-
tion factor. Bejnordi et al. [27] compared performances of
several algorithms and showed that deep learning with
pretrained models outperformed in the machine learning
challenge. Also, they revealed that the performance of few
deep learning algorithms was comparable with expert
pathologists interpreting WSI without time constraints.
Cruz-Roa et al. [28] performed a deep learning approach
in Invasive Ductal Carcinoma (IDC) using WSI of breast
cancer and reported an Fl-measure and balanced accuracy
of 71.08% and 84.23%, respectively. In their work, the non-
overlapping patch size was 100 x 100 after discarding slide
background images. The magnification independent method
of training in [29] obtained an average recognition rate of
83.25% with a single-task CNN model and 82.13% in a mul-
titask network. Litjens et al. [30] trained CNN with patch
sizes of 128 x 128 under two different settings that obtained
an area under the curve (AUC) between 0.88 and 0.90 for
receiver operating characteristics (ROC). The pretrained
model used by Chen et al. [31] trained 224 x 224 patches
from WSI by image preprocessing and stain normalization
steps and obtained an AUC score of 0.90. They also produced
heat maps showing the probability of metastases in sentinel
lymph nodes. An ensemble of deep learning networks by
Kassani et al. [32] reported an accuracy of 90.84% for the
single classifier and 94.64% for the ensemble method in the
same open-access dataset. Wang et al. [33] utilized a 27-
layer deep network to detect metastatic breast cancer in
whole slide images of sentinel lymph nodes and won the
Camelyon Grand Challenge 2016. Kieffer et al. [34] used
possibilities of two pretrained models to train the dataset
and compared performance before and after tuning. Yi
et al. [35] used mammography data and a pretrained model
for training, with hyperparameters for the model set to a
dropout of 0.1, learning rate of 0.001, and batch size of 120
for 800 epochs. The GoogLeNet-based architecture produced
a test accuracy of 85% among different algorithms. Sun et al.
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TaBLE 1: Evaluation metrics used.

Metrics Definition Range
TP + TN
A Acc= ——MMM 0,1
i T TP+TN+FP+EN 1)
Precision Pr=TP/(TP + FP) (0, 1)
Recall R=TP/(TP +FN) (0,1)
F1-score F1 =2 x (Pr x Re/Pr + Re) (0, 1)

[36] used a probability map to delineate the tumor border
using CNN trained from small patches cropped from histol-
ogy images. Thagaard [37] presented an algorithm which can
automatically detect cancer and classify WSI into metastasis
subtypes in the Camelyonl7 challenge which focused on
patient-level analysis. From a large cohort of patients, they
reached a weighted kappa value of 0.81 on the validation
set. Xie et al. [38] used the BreakHis dataset for classifying
histopathological images using pretrained models and
obtained better results in binary as well as multiclass classifi-
cation tasks. They also used the K-means clustering algo-
rithm to cluster histopathology images to reduce interclass
variation.

Motlagh et al. [39] compared the performance of pre-
trained Inception and ResNet models to identify subclasses
of breast cancer and found that the latter was more sensi-
tive to cancer datasets. They initialized the weight of their
network by pretrained models and used the final layer for
classifying cancer image datasets by updating continuously
during each epoch. Deep neural network-based techniques
suggested by Nahid et al. [40, 41] performed classification
based on structural and statistical information from images
using a combination of CNN and Long Short-Term Memory
(LSTM). Patch-based classification was proposed by Roy
et al. [42] using hierarchical CNN supported by data aug-
mentation that produced a classification accuracy of 84.7%
for the binary class. Jaiswal et al. [43] proposed a single-
cycle learning rate policy with two steps throughout the
training where LR increases in one step and decreases in
the next iteration with a maximum learning rate of 0.00055
and a minimum of 0.0001. The method suggested by Pang
et al. [44] takes input image slides of different resolutions
scaled t0256 x 256 on a pretrained model and reported
78.1% accuracy on embedding tile-based features. Fan et al.
[45] generated a heat map using a pretrained model which
is trained from patches cropped from whole slide images.
Most works on CNN presented in the literature are based
on pretrained models owing to ease of implementation and
fewer epochs taken. On the other hand, Bardou et al. [46]
created their own CNN model with 5 layers for binary and
multiclass classification in their work along with a compari-
son of performance with traditional classifiers.

3. Dataset and Evaluation

The dataset PatchCamelyon (PCam) [47] is used in our
work which contains 96 x 96 pixel color images (patches)
annotated by experts with labels indicating the presence or
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2 while epochs not finished do
3 if callbacks = CLR then

Data: cycle, callbacks, CLR, Ir, step size, iterations
Result: cyclical learning rate with repeated cycles
1 Ir = base_Ir + (max_Ir — base_lr) * scale_factor;

4 select mode;

5 switch CLR do

6 cyclical learning rate (overrides default)

7 end

8 case triangular do

9 scale_factor «—— max (0, 1 — (iterations/step size))

10 end

11 case triangular2 do

12 scale_factor «— max (0, 1 — (iterations/step size))/2 = cycle

13 end

14 case triangular_exp do

15 scale_factor «— max (0, 1 — (iterations/step size)) * y **iterations
16 end

17 case custom cycle do

18 scale_factor «— max (0, 1 — (iterations/step size)) = 1/2(1 + sin (cycle = 77/2))
19 end

20 case cosine learning rate do

21 Ir e—1Ir i + 1/2(Ir 0 — i ) (1 + cos (epoch_current/epochs_total « 1))
22 end

23 else

24 Ir «—— constant learning rate (default);

25 end

26 end

ArcoriTHM 1: Pseudocode for the cyclical learning rate (CLR).

Data: epochs, callbacks, Ir

1 initialization;

2 while epochs not complete do
3 if callbacks = swa then

4 switch SWA do

5 select the SWA mode
6 end

7 case constant do

8

Result: SWA after predefined epochs

Ir «— fixed learning rate

9 end

10 case cyclic do

11 SWA «— update (SWA starts);

12 continue till last epoch

13 end

14 else

15 Ir «— default learning rate by optimizer;
16 end

17 end

ArLgoriTHM 2: Pseudocode for the stochastic weight averaging (SWA).

absence of metastatic tissue. These patches were extracted
from histopathology images of lymph node sections encom-
passing the benchmark classification dataset—PCam. Sam-
ple images from the database are shown in Figure 3.
Evaluation metrics used in this work are precision, recall,
and F1-score as in Table 1.

Each metric is calculated based on the true positive (TP),
true negative (TN), false positive (FP), and false negative
(FN) obtained from the confusion matrix at the end of train-
ing. The performance of the CNN model using the AUC
metric shows the discriminative capability of the model on
binary classification tasks.
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FI1GURE 4: General architecture of CNN. The first convolutional layer extracts features from the input image with dimension M x N x C with
C channels. The pooling layer performs dimensionality reduction, and the data is converted to a one-dimensional array by the flattening
layer. The fully connected layer generates the output after classification.

Input: image

Output: classification result

Data: training data

/I function for convolution

1 Function Conv(activation, weights):
2 de—H1s W

3 conv ¢« Z

4 return conv

// function for max pooling

5 Function Pool(activation(l thlayer)):
6 hiy — max(i:0,~~,s,j:0,~~,s)hl(:c-l+i)(y+i)

7 returnhi},

/1 function for the fully connected layer

8 Function FC(activation, learnable parameters):
9 Zle—w.p!

10 returnz!

// Main program calls function

11 Function Main(input image, image class):

12 Conv «— inputimage

13 Pool «— Conv

14 FC«— Pool

15 Output «— FC

16 return Output(classification result)

ALGORITHM 3: Pseudocode for the convolutional neural network.

The ROC curve is obtained by plotting the false-positive
rate (FPR) and true-positive rate (TPR) at various thresh-
olds. The area under the ROC curve is used to identify the
capability of the model to differentiate benign and malignant
classes which is crucial in diagnosing the disease. Optimizing
the objective function in a deep neural network suffers from
the existence of both local minima and global minima.
Almost all local minima will have a very similar function
value to the global minima, and hence, finding a local mini-
mum is essential for model optimization by computing the
gradient at every point. Such algorithms may get stuck at
saddle points and never escape if the learning rate is less.
Increasing the learning rate in this context has only short-
term benefits. The cyclical learning rate is desirable in this

scenario as it oscillates between two learning rate boundaries
throughout the experiment.

Algorithm 1 shows the pseudocode for implementation
of the cyclical learning rate and cosine learning rate. The
mode select function accepts one strategy at a time, based
on which the LR mode can be changed. Algorithm 2 shows
the pseudocode for implementing the stochastic weight aver-
aging learning rate strategy.

4. CNN Architecture

The convolutional neural network is used to implement the
proposed work. Figure 4 shows the general architecture of a
CNN which includes convolutional, pooling, flattening, and
fully connected layers. The test image with different pixel
intensities is given as input to the convolutional layer which
consists of several filters to capture the main features in the
image.

The pooling layer reduces the dimensionality of the fea-
tures extracted by performing max pooling or average pool-
ing. In max pooling, the maximum value is taken, whereas
in average pooling, the average value will be considered in
the filter region. The flattening layer converts the output
of the previous layer into a one-dimensional array as the
input of the fully connected layer. From the feature vector
array, the fully connected layer performs classification and
the result is given to the output layer. For binary classifica-
tion, there will be two output classes, whereas for the multi-
class classification task, there will be more than two
outputs. Algorithm 3 describes the pseudocode for the con-
volutional neural network.

CNN can capture important features automatically
from the inputs, especially images when compared to mul-
tilayer perceptrons. The good performance and accuracy of
CNN in image recognition applications [22] makes it more
suitable than other traditional techniques. The challenge
associated with CNN is that the number of images required
for training the network is higher which results in more
training steps. Moreover, hyperparameter tuning is inevita-
ble for obtaining optimized performance results.
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FIGURE 5: Block diagram of the proposed model. Two fully connected dense layers in the model with sigmoid activation in the output layer
perform the classification based on the features extracted by the previous convolutional layers.

TaBLE 2: CNN model architecture details.

TaBLE 3: Overview of model configuration.

Layer Dimension Stride Activation
Input 96 x 96 x 3 — —
Convolutional layer 30@8 x 8 2 ReLU
Max pooling 3%x3 1 —
Convolutional layer 100@5 x 5 2 ReLU
Max pooling 3x3 1 —
Convolutional layer 100@5 x 5 2 ReLU
Max pooling 3x3 1 —
Fully connected 300 — ReLU
Fully connected 200 — ReLU
Output 1 — Sigmoid

5. Methodology

The CNN model used for the experiment is a custom model
with three convolutional layers with max pooling layers in
between and ReLU [48] as the activation function after each
convolutional layer. Figure 5 shows the block diagram of the
model used in our experiment. Details of model architecture
are given in Table 2. Details of model configuration settings
befitting our experiment are given in Table 3. Algorithm 4
describes the pseudocode for the proposed CNN model.

In task-specific applications, there barely exists a definite
method to find the number of layers or amount of neurons
required in each layer for training the model. The selection
of few parameters is based on our previous work in [49],
and we found that the training to test the ratio of the dataset
is fixed to 80:20 for a batch size of 32 with 500 epochs
throughout the experiment. Initialization of the network

Model parameters and hyperparameters with ranges

Model/hyperparameter Value/range
Epochs [49] 500
Batch size [49] 32
Learning rate [49] 102-10*

Optimizer [50, 51]

Loss function

Stochastic gradient descent (SGD)

Binary cross-entropy

Input shape 96 x 96
Pooling Max pooling
Activation ReLU

weights is done using the Gaussian distribution with a low
standard deviation for all the layers. The depth of deep
learning and the number of neurons in each layer were
selected after heuristic analysis since the size of the input
image varies among different applications. In task-specific
binary classification, in order to differentiate benign and
malignant images in the test dataset, we chose binary
cross-entropy (or log-loss) as a common practice to compute
cross-entropy loss between true labels and predicted labels
with the stochastic gradient descent optimization algorithm.
The log-loss function for the binary class is represented in

N

Loss(L) == 27,108 (p(r) + (1.-7,) log (1= (),
@)

where y represents the ground truth label for the target
binary class (label =0 for benign, label =1 for malignant)
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Input: input image

Output: binary classification
1 initialization;

3 extract features;

4 for each epoch do

5 train CNN();
6 for each minibatch do

18 end

20 end

Data: image, epochs, batch size
Result: classification with prediction

2 while epochs < epochs(max) do

/* feature extraction: layer-1
7 extract low-level features;

8 perform dimensionality reduction (max pooling);
/* feature extraction: layer-2

9 extract high-level features;

10 perform dimensionality reduction (max pooling);
/* feature extraction: layer-3

11 extract high-level features;

12 perform dimensionality reduction (max pooling);
/* flatten layer

13 feature vector arranged as a one-dimensional array;
/# classification layer

14 two fully connected layers performs classification;

15 end

16 calculate average loss over each epoch in a minibatch;

17 backpropagation applied to every iteration;

19  Output «— (binary classification);

ALGORITHM 4: Pseudocode for the proposed CNN model.

TaBLE 4: Performance metrics for conventional learning strategies.

Learning method

Performance metrics

Accuracy Precision Recall F1-score AUC
Constant 0.8718 0.8561 0.8445 0.8535 0.92
Time based 0.8236 0.8258 0.8236 0.8233 0.91
Step decay 0.8173 0.8196 0.8173 0.8168 0.90
Exponential 0.8296 0.8317 0.8296 0.8293 091

and p(y) is the probability of prediction of the sample being
in that class for N images in the dataset. For each malignant
image (y=1), log (p(y)) is the log probability of it being
malignant, and for each benign image, the log (1-p(y))
component in the loss is the log probability for it being
benign.

Training the neural networks with traditional learning
methods, namely, exponential decay and step decay learning
rate strategies, suffers from overfitting and longer conver-
gence time due to the nonconvex nature of the loss land-
scape. Here, the training starts with a high learning rate,
and towards the end of training epochs, LR decays mono-
tonically till the last epoch in both methods. Towards the
end of training, for small learning rates, the gradient enters
local minima and never escapes [49]. Table 4 shows the
obtained values of performance metrics corresponding to
the conventional learning strategies mentioned in Section

1. By utilizing the dynamic nature of the learning rate during
training, the gradient of the loss function is mitigated from
being trapped at local minima or plateaus. For the current
gradient vector and the learning rate, the gradient is recom-
puted after every iteration, and the process is repeated till it
converges. The trained model is then used to predict the
label for an unknown test image based on the loss function
L as in Equation (2).

The changes in the learning rate from the default to
cyclic mode [4] are done by changing the following param-
eters: lower limit (base_Ir), upper limit (max_Ir), and num-
ber of steps (step_size). These predefined parameters are
activated along with the callback function during the train-
ing. In this mode, the learning rate increases from the lower
limit in the cyclic mode with constant frequency but the
amplitude is scaled after each cycle. The algorithm is shown
in Figure 4. We selected the lower limit of base_Ir =0.001,
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F1GURE 6: Comparison of accuracy curves for different learning rates. The validation accuracy curves for all learning rate methods shown in
the figure indicate a change in accuracy as epochs progress when compared with the fixed learning rate. Here, we observed that there is no
noticeable change in validation accuracy for fixed LR where all other dynamic learning rates exhibit an appreciable increase in accuracy with

epochs.

TaBLE 5: Cosine annealing (with restart) performance metric.

Learning rate Accuracy Precision Recall Fl-score AUC
Cosine LR (cycle = 10)
0.01-0.001 0.8045 0.8446 0.8045 0.7983 0.94
0.01-0.0001 0.9068 0.9078 0.9069 0.9067 0.96
0.001-0.005 0.8861 0.8896 0.8858 0.8858 0.96
Cosine LR (cycle = 20)
0.01-0.001 0.8361 0.8364 0.8361 0.8360 091
0.001-0.0001 0.8975 0.9020 0.8975 0.8971 0.97
0.001-0.005 0.8953 0.8955 0.8953 0.8953 0.96
Cosine LR (cycle = 50)
0.01-0.001 0.8526 0.8652 0.8526 0.8512 0.95
0.001-0.0001 0.8714 0.8789 0.8713 0.8708 0.96
0.001-0.006 0.9183 0.9205 0.9183 0.9181 0.98
Cosine LR (cycle = 100)
0.01-0.001 0.7866 0.8175 0.7866 0.7809 0.92
0.001-0.0001 0.9038 0.9072 0.9038 0.9036 0.97
0.001-0.006 0.68 0.7782 0.677 0.6433 0.88
TaBLE 6: Cyclic learning rate (triangular) performance metric.
Learning strategy N Triangular LR (step_size = 2000)
Accuracy Precision Recall F1-score AUC
triangular 0.9184 0.9185 0.9183 0.9183 0.97
triangular2 0.9065 0.9066 0.9065 0.9064 0.97
exp_range 09116 0.9142 09116 09114 0.97
custom cycle 0.9048 0.9049 0.9048 0.9048 0.96

upper limit of max_Ir = 0.005, and step size step_size = 2500
in our experiment. The weights are updated after every
epoch for each minibatch in the whole training data. Differ-
ent modalities of CLR (triangular, triangular2, exp_range,
and custom cycle) are applied subsequently for training the
network. In the triangular2 policy, the difference in lower
and upper bounds is reduced to half after each cycle without

affecting predefined learning rates. Another variation of tri-
angular policy exp_range resembles triangular2 but declines
the cycle amplitude exponentially after each cycle which
imparts controlled fine-tuning in max_Ir during training.
We also implemented the model with a custom cycle policy,
a variant of the triangular method that scales the cycle
amplitude sinusoidally. The accuracy values for each
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TABLE 7: Stochastic weight averaging (SWA) performance metric.

Learning method

SWA performance metric

Accuracy Precision Recall F1-score AUC
Constant 0.8892 0.8914 0.8892 0.8890 0.96
With BN 0.9001 0.9045 0.9001 0.8998 0.97
Cyclic 0.8236 0.8258 0.8236 0.8233 091
With BN (f =5) 0.9105 0.9122 0.9105 0.9104 0.97

TaBLE 8: Comparison of execution time and loss.

Learning strategy Execution time (sec) Validation loss

CLR (triangular learning strategies) (step_size = 2000)

Triangular 19190.43 0.1996
SGDWR (cosine annealing strategies)

cycle =10 19064.76 0.2122
cycle =20 18999.30 0.2765
cycle =50 18998.74 0.2088
cycle = 100 18993.48 0.2303
SWA learning strategies

Cyclic 19117.48 0.2609
Constant 18996.33 0.2369
Conventional learning strategies

Fixed LR 19011.60 0.3298
Time-based decay 19001.54 0.3712
Step decay 19078.44 0.3891
Exponential decay 19057.34 0.3791

training phase are tabulated. After the training epochs, the
model converges faster with competent classification perfor-
mance as shown in Figure 6. The cosine annealing learning
strategy is also applied to the same model to investigate the
effect of warm restarts on training the model. Mode selection
is done inside the callback function as mentioned in Algo-
rithm 1 shown as Figure 4. The parameter T, represents
repetition cycles in the cosine annealing learning strategy,
with restarts at the end of every cycle. The learning rate is
varied in three ranges for each cycle under consideration.
The T, and LR range are set to different values as shown
in Table 5 to estimate changes in performance in each case.
We applied the stochastic weight averaging (SWA) method
also in our model for training the dataset with batch normal-
ization [52] in order to reduce covariate shift. The imple-
mentation algorithm is shown in Figure 5. The parameters
in our method were set to change the LR after 75% of the
epochs have been completed in both the cyclic and constant
modes. Initial settings with a lower learning rate (Ir = 0.001)
enable the model to converge within a reasonable time. Fur-
thermore, in high-dimensional weight space, local minima
towards the end of every learning rate cycle accumulate near
the boundary of the loss surface where the loss value is
comparatively low [6]. By taking the average of several such

points, it is possible to achieve a solution with a lower value
of loss. The model is implemented with an SGD optimizer
for computing the average of multiple points along its trajec-
tory any time after 75% of total epochs have elapsed effec-
tively making it an ensemble mode of training.

6. Results

The results obtained for each learning modality are tabu-
lated and compared. The accuracy, precision, recall, F1-
score, and AUC of the triangular learning rate are shown
in Table 6. It reflects higher performance for all triangular
learning strategies with step_size = 2500. Performance met-
rics for cosine annealing LR are given in Table 5 corre-
sponding to various cycles. For each range of the learning
rate, performance metrics obtained are shown. The perfor-
mance of the native model for the SWA learning method
is tabulated in Table 7.

The performance values for the CLR strategy are ana-
lyzed categorically. In the triangular method, the maximum
accuracy is 91.84% while comparing all triangular LR
methods with mean and median values of 91.4% and
91.2%, respectively. On the contrary, in the cosine annealing
LR method, the maximum accuracy value is 91.8% for itera-
tion with a cycle = 50 and a learning rate between 0.001 and
0.006.

When comparing the obtained values of performance
metrics, it is evident that the model with a dynamic learning
rate strategy outperforms the fixed learning rate. AUC for
the fixed learning rate is obtained as 0.92, whereas a score
greater than 0.97 is obtained for all dynamic learning rates
which are considered. From the curves obtained, dynamic
learning rates are found more suitable for the application
considered.

Execution time and loss (val_loss) are two key factors
which decide the efficiency of the algorithm on model train-
ing. The proposed model is implemented in Python3 using
the Keras [53] library on a GPU-enabled Intel Core i7
processor-based system with 32 GB RAM. Table 8 shows
the average execution time required and validation loss for
various dynamic learning strategies. The obtained results
show that the triangular learning strategy generates mini-
mum validation loss during training when compared to
other learning strategies with a comparable time of execu-
tion. In general, we observed that all cyclical learning rates
converge faster with few iterations and higher validation
accuracy.
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F1cure 7: ROC curves. The figure depicts the highest AUC values obtained for various LR schemes during the experiment. The ROC curve
of the model for different LR shows that it is able to discriminate malignant from benign.

7. Discussion

For task-specific medical applications like the classification
of histopathological images, we propose a custom model
with a dynamic learning rate as it can be configured for
the same. The cyclical learning rate shows better perfor-
mance over the conventional learning rate. We experimen-
ted with both types of learning strategies on the model
based on a common performance metric. All the perfor-
mance metrics are equally considered in our experiment
for analyzing the model predictability and trainability under
different learning schemes. The fixed learning rate shows
little improvement in accuracy after 50% of the epochs as
shown in Figure 7, due to local minima while computing
the cost gradient on the training dataset. On the other hand,
significant improvement in model performance is obtained
when the learning rate swings between the upper and lower
learning ranges irrespective of the number of cycles. It is
observed that the triangular learning policy produced the
highest accuracy among the other CLR schemes as in
Table 6. High precision and recall which are observed in
the triangular cyclic method make it more suitable for the
classification of histopathological images. In the case of the
cosine learning rate, changing the upper and lower limits
reflects in the model performance while keeping the number
of cycles fixed as in Table 5. Accuracy is improved when the
learning rate is between 0.001 and 0.0001 irrespective of the
number of cycles. By changing the number of cycles per iter-
ation and ranges of the learning rate, higher accuracy can be
obtained in the SWA strategy. The performance metrics
were calculated for constant and cyclic SWA learning strate-
gies with and without batch normalization as shown in
Table 5, where a notable performance metric is observed with
batch normalization. This method utilizes the advantage of
ensemble training where more than one neural network with
different initializations averages the predictions from models
to reduce the error rate. The performance of stochastic
weight averaging with batch normalization in terms of accu-

racy is moderately high, but the capability of the model to
differentiate binary class images is lesser than that of the tri-
angular and cosine LR methods. From the results obtained in
Section 5, it is apparent that triangular LR gives appreciable
performance based on evaluation metrics.

8. Conclusion

A custom CNN model is designed and trained using a
dynamic learning rate to improve the performance of the net-
work for the classification of histology images. The learning
rate is the crucial hyperparameter which decides the quality
of CNN model training as it imparts fine-tuning in classifica-
tion tasks. Using the standard database PCam, our custom
model classified benign and malignant patches accurately
by setting variable learning rates during the model training.
We show that the use of cyclical learning rates for training
produces promising optimal results than conventional learn-
ing rates. Changing the learning rate while training creates
repercussions but benefits escaping from saddle points and
local minima producing better accuracy. We conducted
experiments for the accurate classification of histopathologi-
cal images with various dynamic learning strategies. The per-
formance of different methods is compared, and it is found
that in applications which are task-specific, the triangular
method outperforms other modalities in discriminating
benign from malignant. Prediction of metastasis in medical
images is effectuated with reduced false-positive rates. Train-
ing the CNN model with variable learning rates achieved
91.84% validation accuracy with lesser epochs than fixed
learning rate counterparts. Increasing the learning rate dur-
ing training assists the model to escape saddle points in the
loss landscape and traverse towards global minima. By exam-
ining the area under the receiver operating characteristic
curve for all learning modalities, dynamic learning rates
produced superior classification accuracy in the detection of
metastasized and benign cells in histopathology images.
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