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ABSTRACT

The protein–protein docking programs typically
perform four major tasks: (i) generation of docking
poses, (ii) selecting a subset of poses, (iii) their struc-
tural refinement and (iv) scoring, ranking for the final
assessment of the true quaternary structure.
Although the tasks can be integrated or performed
in a serial order, they are by nature modular,
allowing an opportunity to substitute one algorithm
with another. We have implemented two modular
web services, (i) PRUNE: to select a subset of dock-
ing poses generated during sampling search (http://
pallab.serc.iisc.ernet.in/prune) and (ii) PROBE: to
refine, score and rank them (http://pallab.serc.iisc
.ernet.in/probe). The former uses a new interface
area based edge-scoring function to eliminate>95%
of the poses generated during docking search. In
contrast to other multi-parameter-based screening
functions, this single parameter based elimination
reduces the computational time significantly, in add-
ition to increasing the chances of selecting native-
like models in the top rank list. The PROBE server
performs ranking of pruned poses, after structure
refinement and scoring using a regression model
for geometric compatibility, and normalized inter-
action energy. While web-service similar to PROBE
is infrequent, no web-service akin to PRUNE has
been described before. Both the servers are publicly
accessible and free for use.

INTRODUCTION

Docking provides a mechanistic understanding of
protein–protein interaction allowing fundamental insight
to the researchers. The field of docking has received
increasing attention due to its primary role in studying
protein interaction networks. However, in absence of ex-
perimental or evolutionary information, protein docking

is difficult due to the low free energy of biological com-
plexes in general, as well as the computational demands of
time to execute the docking scheme to arrive at the
putative answers. A number of docking methods have
been developed over the past three decades (1). Some of
them have also been implemented as free web service
(2–10). All docking methodologies typically perform
four major tasks: (i) generation of docking poses, (ii) se-
lecting a subset of poses, (iii) their structural refinement
and (iv) scoring, ranking for the final assessment of the
true quaternary structure. These tasks can be integrated or
performed in a serial order; however, they are by nature
modular allowing an opportunity to substitute one algo-
rithm with another. This allows us to take the best com-
ponents from one method and use it as input into another
to process and provide an output that has a significant
improvement in performance, both in the time-taken
and the accuracy. This is a different paradigm than the
meta servers, which take output from different servers to
provide a filtered final output; here we combine compo-
nents from various methods to improve the final outcome.
One of the tasks that make protein–protein docking

unwieldy for common use is the generation of a large
number of docking poses. Although attempts have been
made to use directed search (11) or pseudo-random
methods (12) to reduce the search space, the structural re-
finement of poses and the integrated or edge-scoring
strategy can be further improved. For example, multi-
parametric scoring functions require a considerable com-
puting time and reduction of parametric space without
losing efficacy can be of significant advantage. We have
recently shown that a single parameter edge-scoring func-
tion can select a subset of poses from a large pool of un-
refined docking poses arising out of exhaustive sampling
search (13). Only interface area (IA) is sufficient to screen
the poses and can be used as simple rule-based edge-
scoring function using the proposition that native like
poses must have largest to near the largest interface
areas. This edge-scoring function can be integrated into
any docking search scheme to eliminate >95% of the
poses generated during the docking search. Our single
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parameter-based pruning technique reduces the computa-
tional time significantly, yet increases the chances of se-
lecting native-like models in the top rank list. This unique
method, named PRUNE, has been benchmarked (13)
against PatchDock (6) and FireDock (14) program, two
state-of-the-art methods, widely used for protein–protein
docking. In this article, we provide additional results
by benchmarking against docking search inputs from
FTDock (15), ZDock (8) and Gramm-X (5) as well.
To extend the advantages of the modularly designed

method of PRUNE, we have developed another modular
method, protein binding evaluation (PROBE), which can
work on a subset of docking poses by optimizing their
side-chain contacts to score and rank them using a regres-
sion model for geometric compatibility [based on two
highly correlated geometric parameters (16)], and normal-
ized interaction energy (calculated from correlated non-
bonded and solvation energies). This simple-scoring
function has been benchmarked on state-of-art predictive
docking methods and has been shown to perform either
equally well or much superior to their sophisticated counter-
parts (17). We provide additional comparison of PROBE
results on a test data set against top two successful servers
in the recent CAPRI evaluations (18). The kind of service
provided by PROBE is infrequent: FireDock (3) and
FiberDock (10), are the only two sister web services we are
aware of that allows upload of a subset of docking poses
for ranking, although a number of other softwares exist
for re-ranking docking poses in local machine (14,19–22).
Here we describe the web servers that we have de-

veloped using the PRUNE and PROBE algorithms. We
briefly discuss their methods and describe their modular
usage. These are further elaborated in the Help pages
and Tutorials depicted at the web site. The execution
time usually takes a few hours. The job status is available
in the browser and notifications are sent by email, if email
address is provided at the job submission page. The
servers PRUNE (http://pallab.serc.iisc.ernet.in/prune)
and PROBE (http://pallab.serc.iisc.ernet.in/probe) are
publicly available and free for use.

PRUNE: A RULE-BASED METHOD TO SELECT
SUBSET OF DOCKING POSES CONTAINING
NATIVE-LIKE MODELS

The output of a docking sampling search results in gener-
ation of new docking poses that are described by the trans-
formation matrix applied on the initial coordinates of the
docking partners. In PRUNE, we only calculate the IA of
the unrefined docking poses generated between the refer-
ence (static) and the mobile molecule (13). We define IA as
the accessible surface area (ASA) of individual subunit
buried on complex formation. For IA, ASA of all the
atoms in the individual subunits and that of the complex
are first calculated as per definition of Lee and Richards
(23) using a default probe radius of 1.4Å. An atom is
thereafter defined to be an interface atom if it loses its
ASA by >0.1Å2 upon complex formation. The summation
of the loss of ASA by all the interface atoms divided by 2
is the IA for the dimer. After computing IA of all docking

poses, a histogram of 50 bins based upon IA is drawn. A
sixth-order polynomial [f(x)] is fitted on this histogram.
After that the saddle points of the polynomial f(x) are
determined. Proceeding towards increasing absolute
values of x for the polynomial f(x), the first two saddle
points (I1 and I2) are chosen, where I1 is the saddle point
corresponding to the highest frequency value in the histo-
gram and I2 is the immediate next saddle point. The bin
number at which the straight line joining I1 and I2 inter-
sects X-axis is chosen as cut-off point (Cp). If I2 cannot be
computed, then Cp is chosen as double of I1. The poses
belonging to bin number �Cp is selected as the subset of
poses suitable for final scoring and ranking. The final
subset of docking poses has largest and near-largest inter-
face areas, chosen using the dynamically computed
parameter Cp.

The underlying rule as described above and used in the
PRUNE server has been extensively tested and bench-
marked (13). Briefly, the tests were done on 922 bound,
and 77 unbound binary docking targets covering
193–7658Å2 interface ranges. The unbound data set was
further divided into three categories: rigid body, medium
and difficult, as per the definition of Mintseris et al. (24).
Sampling at 12� rotation for the bound cases returned
91% cases, where at least one near-native docking pose
could be retrieved in the pruned subset. A near-native pose
was defined using the ‘acceptable’ (10 Å LRMSD) criterion
of Mendez et al. (25). Sampling at 12� rotation for the
unbound data set returned only 68% cases with near-
native poses. We, therefore, sampled the data set using
9� rotation which improved the success to 83%. This sug-
gested that the chance of locating a near native pose in
the pruned subset increased with lowering of the rota-
tion step size. Comparative tests on rank improvement
by FireDock scoring on the subsets of top 1000 poses
selected by PatchDock program and our method showed
that for 61 unbound rigid body docking cases, our subset
gave improved rank in 2-fold more cases than PatchDock
input; for the 10 medium category cases the comparative
improvement was in �3-fold cases and in six difficult cat-
egory cases there were no winners. The ability of the
FireDock program to return a correct result within top
10 rank is increased by at least 2-folds if the subset of
poses obtained by our method was used, in contrast to use
of all the docking poses available from the sampling search.

PRUNE SERVER: INPUT, OUTPUT AND USER
INTERFACE

Input and output

The PRUNE server requires four inputs: (i) receptor co-
ordinate file (Protein Data Bank, PDB format), (ii) ligand
coordinate file (PDB format), (iii) a file containing the
transformation matrices for generating docking poses
and (iv) information on the source of the file format of
the transformation matrices. Currently, four different file
formats for transformation matrices from FTDock (15),
ZDock (8), PatchDock (6) and Gramm-X (5) are sup-
ported by the server. All the inputs are mandatory as
they are used to recreate the three-dimensional
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representation of the docking poses and compute their IA.
A typical example executed in a 2.3GHz single CPU
workstation for pruning 10 000 poses takes 5min for gen-
eration of the protein-complex coordinates and another
76min for pruning based on interface area, when the
two molecules are of chain length 294 and 76. IA is
computed using the NACCESS program (26), which
takes 1–2 sec per protein molecule depending on the size
of the complex.

The result page outputs transformation matrices of only
those poses that lie beyond the cut-off point (Cp) of the IA
distribution, in the same format as the input. The user
may download the information on the pruned poses and
use it for ranking by any software of his/her choice.
Alternately, a single button click option is also provided at
the PRUNE result page to score and rank using our scoring
method by forwarding the pruned poses to the PROBE
server. Example size of the pruned subsets and the percent-
age of near native poses obtained from PRUNE server is
shown in Table 1. These can be compared against the total
number of near native poses available from the docking
search. As can be seen, for all the targets in the test set, a
small subset of the total number of poses is selected which
contain at least one near native pose.

PROBE FOR SCORING AND RANKING DOCKING
POSES

The subset of docking poses available after the use of
edge- or integrated-scoring function during a docking

search is suitable for use with the PROBE algorithm
(17). The subset of docking poses received by PROBE
are structurally refined using the Restricted Side-Chain
Optimization (RISCO) algorithm which includes a step
of Monte Carlo based rigid-body optimization (14).
However, since a geometry optimization does not guar-
antee that all steric clashes be eliminated, we use a
pseudo-scaling procedure to eliminate spurious estimation
of energy/ASA values. It may be noted that both van der
Waals and Coulomb interaction makes significant contri-
bution at closer than canonical contact distances and the
pseudo-scaling procedure eliminates these potential errors.
The same is true, when ASA is used for estimation of
solvation energy. The final scoring in PROBE is based
on four physiochemical parameters: interface packing
(IP) (16), surface complementarity (SC) (16), pseudo-
scaled non-bonding energy (NE) and solvation energy
(SE). The SC and IP value of the docking pose is used
to calculate a distance surface complementarity/interface
packing (SP) from an expected SC and IP value represent-
ing a geometric model, derived from the linear regression
curve fitted on SC and IP values from a non-redundant
data set of interfaces (mathematically, SP= jSC�IP�
0.6547�0.1495j). The poses are grouped that are alike
within �1.0Å root-mean-square deviation (RMSD) and
the difference of SP within <0.04. Representative poses
for each group are chosen and group-based SP, NE and
SE values calculated. The NE and SE values are mapped
on to a normalized grid and their values are used together
along with SP in a scoring function to compute the scores.

Table 1. Performance of PRUNE showing the percentage of poses selected and the near nativesa isolated when a list of docking poses derived

from four different docking methods are input

Docking Total number of near
native poses generated

Percentage cases after pruning

Target Partner 1
PDB_
Chain

Partner 2
PDB_
Chain

FTDockb ZDockc PatchDockd Gramm-Xe FTDockb ZDockc PatchDockd Gramm-Xe

PDB_
Chains

IA
(Å2)

Poses Near
native

Poses Near
native

Poses Near
native

Poses Near
native

1J2J_ABf 605 1O3Y_A 1OXZ_A 33 850 22 18 3.42 0 0.61 0.4 0.94 0 0.66 0
1EAW_ABg 745 1EAX_A 9PTI_A 41 527 25 70 2.20 14.6 2.25 2.1 1.17 0 14.14 17.1
Capri 8 853 2 33 17 0 2.55 0 0.46 9.1 0.36 11.8 1.89 X
1Z0K_ABf 893 2BME_A 1YZM_A 68 1105 24 12 5.60 10.3 0.27 0.1 0.79 0 5.64 8.3
1CLV_AIh 1042 1JAE_A 1QFD_A 60 3020 40 41 3.66 55.0 0.84 7.7 4.47 80.0 3.26 100
1GPW_ABf 1049 1THF_D 1K9V_F 24 209 33 26 2.20 45.8 3.52 77.5 4.88 90.9 3.21 38.5
Capri 6 1086 19 188 4 0 1.00 26.3 3.41 55.9 4.30 100 3.09 X
1UGH_EIi 1096 2SSP_E 1UDI_I 30 666 32 11 2.24 40.0 2.22 36.0 2.33 31.3 0.43 0
Capri 26 1166 22 64 18 3 3.30 27.3 0.56 1.6 0.56 0 0.50 0
2G77_ABh 1262 1FKM_A 1Z06_A 20 400 26 8 2.72 30.0 2.78 13.3 2.07 30.8 2.08 25.0
1DFJ_EIg 1291 9RSA_B 2BNH_A 4 178 0 1 2.93 67.0 6.47 100 2.37 X 2.53 100
1KXP_ADg 1671 1IJJ_B 1KW2_B 3 151 0 0 2.31 100 4.33 86.1 1.07 X 3.09 X

aNear natives are defined as per the ‘acceptable’ criteria of Mendez et al. (25).
b12� rotation: 27 720 total poses.
c6� rotation: 54 000 total poses.
dUsing default parameters at PatchDock web server: http://bioinfo3d.cs.tau.ac.il/PatchDock/.
e10� rotation: 10 000 total poses.
fRef. (29).
gRef. (24).
hRef. (28).
iRef. (27).
X means that there were no near native pose in the total set of poses generated, so no near natives could be pruned.
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The scores are sorted to compute ranks of representative
poses. Data showing performance of PRUNE+PROBE
on 12 unbound targets chosen arbitrarily—three from dif-
ferent CAPRI targets (http://www.ebi.ac.uk/msd-srv/
capri/), one from Bernauer et al. (27), two from the
recently published Benchmark 4.0 (28) and the rest from
Benchmark 2.0 (24) and 3.0 (29) are given in Table 2. The
P-values of the poses calculated using hypergeometric dis-
tribution indicate a high confidence of the top ranked pre-
dictions (30). Comparison shows that the overall ranking
performance of ClusPro (31) is better, but PROBE is able
to give better results in cases where ClusPro under
performs or fails. Interestingly, the PROBE performance
competes strongly with FiberDock, despite use of much
simpler scoring function and methodologies.

PROBE SERVER: INPUT, OUTPUT AND USER
INTERFACE

Input and output

The primary task of PROBE server is to take a subset of
docking poses and rank them after refining and scoring.
Therefore, the inputs are designed to cater to two situ-
ations: (i) where the user has subset of poses generated
by some docking search technique and he/she wants to
rank them or, (ii) the user has two unbound protein mol-
ecules to dock them. For all uploaded coordinate files, a
number of preprocessing steps are performed, such as,
checking the minimum peptide length of 25, removal of
solvent molecules—like water, resolving the atoms with

multiple occupancy, or conversion of atoms under
amino acid type from HETATM MSE to ATOM MET
(if the user wish to do so) as per PDB file format. If the
first option is selected then additionally the file with trans-
formation matrix information is needed to recreate the
docking poses. The format of the matrix file also needs
to be mentioned using drop down box (currently sup-
ported formats are: FTDock, ZDock, PatchDock and
Gramm-X). For the second option, the server uses
FTDock module (15) to generate the docking poses. The
default rotation sampling is set to 12� (default of FTDock
module) for generating the poses, but the user can avail
other choices, such as 9�, 15� and 18�. The time taken for
docking-pose generation increases as the rotation step size
is decreased. We, therefore, strongly recommend that the
user generate their own docking poses and upload the
same for scoring and ranking by PRUNE+PROBE. In
any case, users wishing to avail denser sampling (<9�)
need to generate the docking poses locally in their own
system. By default, the server returns the top 10 predic-
tions, but the user may change it.

The output of the PROBE server is a rank-sorted list of
complexes with details on individual parameters, and the
final PROBE score values. Hyperlinks are provided to
download the coordinates of receptor and the ligand files.
A summary of results in tabulated form is also provided
(Figure 1). The coordinates of these files are post-
processed versions of the original PDB files uploaded by
the user. Each predicted complex can also be visualized
using the Jmol software (http://jmol.sourceforge.net/)
using java applet. For this the Java software has to be in-
stalled in the user’s system. The input/output contents are
similar to the FireDock and FiberDock server, although
derived from different scoring functions.

IMPLEMENTATION

The server is designed using C, Perl, Python, FORTRAN,
HTML and PHP. The front end of the server is designed
in PHP (version 5.2.9) and HTML. Perl has a very strong
string-handling features, so it has been used for initial
preprocessing of the protein coordinate files. The core of
the method has been implemented in C language. The
low-level features of C language helps to optimize and
parallelize the code wherever needed. The parallel code
in C language uses Message Passing Interface (MPI)—an
application programming interface which allows many
computers to interact with each other and thus distribute
the load of the job. The computation takes place in a
server which is a Linux cluster with AMD64 bit Opteron
system.

The pruning of docking poses designed for PROBE and
PRUNE server is implemented in Python (version 2.5.2).
The Python code first fits the sixth-order polynomial on
IA histogram generated by C language and then computes
the saddle points to draw a straight line. The cut-off point
(Cp) on X-axis is then returned to C program for further
computation. The IA calculations are done using
FORTRAN code.

Table 2. Comparative performance of PROBE on select unbound

targetsa

Target Rankb PROBE
P-value

PDB ClusProc FiberDockd PROBEe

1J2J 14 No result 12 0.179
1EAW 2 41 1 0.010
Capri 8 No result No result 19 0.011
1Z0K 12 28 5 0.098
1CLV 1 8 2 0.109
1GPW 2 1 3 0.011
Capri 6 1 45 1 0.003
1UGH 2 29 7 0.083
Capri 26 1 22 63 0.072
2G77 3 19 23 0.157
1DFJ 2 No result 7 0.023
1KXP 1 30 1 0.003

aThe PROBE scoring and ranking was done on the pruned subsets as
depicted in Table 1.
bRank of top ‘acceptable’ solution as per Mendez et al. (25).
cTo dock the proteins, the coordinate files of the subunits were
uploaded to the ClusPro web server: http://cluspro.bu.edu/.
dThe docking partners were uploaded in PatchDock web server for
docking. The maximum permissible top 100 poses output by the
PatchDock web server was scored and ranked using FiberDock web
server (http://bioinfo3d.cs.tau.ac.il/FiberDock/).
eThe poses were generated locally by the ZDock program using 6�

rotational sampling and pruned using the PRUNE server. The
pruned subset of poses were scored and ranked using the PROBE
server.
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CONCLUSION

Two modular web services, PRUNE and PROBE are desc-
ribed for protein–protein docking. The web services will
allow the users to try out a variety of methods to improve
their predictions. The advantage of such a web service is
that it can also be continually upgraded to include new
methods. PRUNE is a unique web-service that uses a
single parameter, interface-area-based edge function that
has been shown to time-efficiently select subsets of docking
poses for improved scoring and ranking of poses. PROBE
on the other hand, is similar to the previously described
FireDock and FiberDock server, using its own method
for scoring and ranking for a subset of docking poses. It
can also work as a standalone docking server using the
FTDock program’s docking-pose generation module. The
method has been shown to efficiently score docking poses
using its simple scoring function.
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