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The adaptive immune system in vertebrates has evolved to recognize non-self antigens,

such as proteins expressed by infectious agents andmutated cancer cells. T cells play an

important role in antigen recognition by expressing a diverse repertoire of antigen-specific

receptors, which bind epitopes to mount targeted immune responses. Recent advances

in high-throughput sequencing have enabled the routine generation of T-cell receptor

(TCR) repertoire data. Identifying the specific epitopes targeted by different TCRs in these

data would be valuable. To accomplish that, we took advantage of the ever-increasing

number of TCRs with known epitope specificity curated in the Immune Epitope Database

(IEDB) since 2004. We compared seven metrics of sequence similarity to determine

their power to predict if two TCRs have the same epitope specificity. We found that

a comprehensive k-mer matching approach produced the best results, which we have

implemented into TCRMatch, an openly accessible tool (http://tools.iedb.org/tcrmatch/)

that takes TCR β-chain CDR3 sequences as an input, identifies TCRs with a match in

the IEDB, and reports the specificity of each match. We anticipate that this tool will

provide new insights into T cell responses captured in receptor repertoire and single

cell sequencing experiments and will facilitate the development of new strategies for

monitoring and treatment of infectious, allergic, and autoimmune diseases, as well

as cancer.
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INTRODUCTION

T cells are lymphocytes that play a critical role in the function of the adaptive immune system (1).
Each T cell expresses a characteristic T-cell receptor (TCR) typically consisting of an α and β chain,
which are formed during T cell maturation as a result of stochastic V(D)J gene recombination (2).
Different TCRs are capable of recognizing different epitopes presented by major histocompatibility
(MHC) class I or class II proteins on the cell surface (3). The specificity of a given TCR is
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dependent upon the amino acid sequence of each chain,
particularly the three highly polymorphic complementarity-
determining regions (CDR1, CDR2, CDR3). Broadly speaking,
CDR3 directly interacts with the presented peptide, while CDR1
and CDR2 primarily interact with the MHC molecule (4).
The varying antigen specificity of different TCRs allows T
cells to initiate immune responses against a broad and ever-
changing range of non-self entities, including infectious agents
and mutated cancer cells.

TCR repertoire sequencing has emerged as an accessible and
efficient approach to capture the diversity of TCRs in blood
or tissue samples of an individual (5). Using different next-
generation sequencing and bioinformatics approaches, TCRs can
be sequenced to different levels of resolution, ranging from paired
sequencing of full α and β chains to partial sequencing of the
TCR β chain by itself. Single cell sequencing with targeted TCR
identification, as provided by, for example, the 10x Genomics
technology platform (6), identifies the gene expression state of
individual T cells, along with the receptor sequences that—in
principle—indicate the specificity of these T cells. All of the main
TCR repertoire sequencing approaches in use today generate
information about the CDR3 region in the TCR β chain, as that
part of the TCR is thought to convey the most information about
TCR specificity and can serve as a “barcode” to track T cells with
different specificities.

While TCR repertoire sequencing can track perturbations
in the composition of antigen-specific T cell populations, it
does not yield information on which TCRs are recognizing
which epitopes. Such determination typically requires additional
targeted experiments that can be challenging to perform. The
desire to determine the specificity of T cells based on their
receptor sequence has led to the development of different
approaches. GLIPH and GLIPH2 (7, 8) were developed to cluster
large sets of TCR sequences into groups with shared specificity,
but these tools do not themselves predict likely recognized
epitopes. Machine learning-based models designed to predict
specificity of a receptor “ab initio” have also been developed (9–
12). While useful in many research contexts, these methods are
computationally expensive and require large numbers of known
TCRs and their epitopes for training, validation, and testing in
order to avoid overfitting and to learn models that generalize
well. Thus, there is a need to develop new approaches to identify
the specificity of TCRs in repertoire sequencing data that do not
require additional experimentation, can recover the specificity
for many different epitopes, and are efficient enough to process
current repertoire dataset sizes in reasonable times.

In the years since high-throughput TCR sequencing became
commonplace, various databases have been created to collect
TCR and epitope information, such as McPAS, VDJdb, and the
TBAdb subset of PIRD (13–15). Here, we set out to address the
challenge of predicting epitope specificity by taking advantage
of the ever-growing dataset of epitopes in the Immune Epitope
Database (IEDB) that have been experimentally determined to be
recognized by T cells, and for which information on the specific
TCR recognizing the epitope is also available (16, 17). We tested
several approaches to evaluate the sequence similarity between
TCRs and examined how well they distinguished if the TCRs

recognized the same epitopes or not. Using an initial test set of
24,678 TCR CDR3β sequences from the IEDB, we found that a
comprehensive k-mer matching algorithm adopted fromwork by
Shen et al. (18) performed best. This algorithm, which we called
TCRMatch, also performed well on an independent dataset and
a small dataset of paired CDR3α-CDR3β sequences. TCRMatch
has now been implemented as a web server tool (http://tools.
iedb.org/tcrmatch/); it is also freely available for download as a
standalone command-line tool (github.com/IEDB/TCRMatch).

METHODS

Compilation of TCR Dataset
A dataset of CDR3β sequences and corresponding epitopes
was compiled by querying the IEDB on May 30, 2020 for
all curated TCR entries. Starting from the IEDB homepage
(iedb.org), the following filters were applied: For Epitope, “Any
Epitopes”; for Assay, “Positive Assays Only” and “T Cell Assays”;
for Antigen, no filters for Organism or Antigen Name; for
MHC Restriction, “Any MHC Restriction”; for Host, “Any
Host”; and for Disease, “Any Disease.” Any records that lacked
either a CDR3β sequence or at least one peptidic epitope
were filtered out. CDR3β sequences were trimmed of excess
flanking residues, where necessary, using a custom pHMM-
based trimming tool (manuscript in preparation). This tool was
based on the ImMunoGeneTics (IMGT) (19) notation of the
CDR3β region, which excludes the constant N-terminal cysteine
(C) residue and C-terminal phenylalanine (F) or tryptophan
(W) residue; given that the exclusion of these residues is
inconsistent across published CDR3β data, this step ensured
uniformity among sequences from different sources. Following
trimming, the dataset consisted of 24,973 receptor groups, each
defined by a unique CDR3β sequence, and 993 unique peptidic
epitopes. Of these 993 epitopes, 495 were recognized by only one
receptor, which were excluded from the benchmarking analysis
to ensure that all TCRs in the dataset had at least one other
TCR recognizing the same epitope that could be identified. The
final IEDB dataset consisted of 24,678 CDR3β sequences and
498 epitopes. Of the 24,678 receptor groups, 21,851 (88.5%)
recognized one epitope, while 2,827 (11.5%) recognized multiple
epitopes. As a control, a shuffled dataset was established that
used the same CDR3β:epitope pairs from the final dataset, but
shuffled the pairings between receptor groups and epitopes. The
randomized dataset was analyzed against the real dataset to serve
as a benchmark for the likelihood of finding true positive matches
by random chance.

10x Dataset
A dataset containing 15,769 CDR3β sequences and their epitope
specificities was downloaded from a published application note
by 10x Genomics (20). Like the IEDB dataset, all 10x sequences
were run through a custom trimming tool (manuscript in
preparation) to ensure adherence to IMGT guidelines. Any
CDR3β that did not recognize an epitope found in the IEDB was
excluded in order to ensure successful predictions were possible
for all sequences. Following this filtering step, the final dataset
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TABLE 1 | Description of the scoring metrics used to identify receptors with identical epitopes.

Metric Description

Alignment Score Alignment score divided by length of alignment

Identity Alignment Percent identity within length of alignment

Identity Long Percent identity within length of longer sequence

Identity Short Percent identity within length of shorter sequence

Levenshtein Minimum number of edits (substitutions, insertions, and deletions) necessary to transform one sequence into another

TCRdist Similarity-weighted mismatch distance between two sequences

TCRMatch Comprehensive comparison of all possible k-mers using BLOSUM62 observed frequency matrix

consisted of 3,218 CDR3β sequences recognizing one or more of
18 unique epitopes.

Similarity Metrics
Seven scoring metrics were tested to measure similarity between
all possible pairs of CDR3β sequences in the IEDB dataset
(Table 1). We used Parasail (21) to carry out Needleman-
Wunsch pairwise alignments using the BLOSUM62 substitution
matrix. An open-gap penalty of −7 and extend-gap penalty
of −1 were used in tandem with default scoring settings.
From these alignments, we generated the metrics Identity
Alignment, Identity Long, Identity Short, and Alignment Score.
“Identity” metrics were calculated by dividing the number of
exact matches by either the length of the overlap between the
aligned sequences (Identity Alignment), the length of the longer
sequence, where applicable (Identity Long), or the length of the
shorter sequence, where applicable (Identity Short). Alignment
Score was calculated by dividing the score of the optimal
alignment by the length of the alignment overlap. We also
increased the Parasail gap penalties to −50 and −20 (open-
and extend-gap, respectively) to test whether precision and
recall improved when gaps were reduced for each of the four
aforementioned metrics; however, we did not find any significant
change in performance. Levenshtein distance, also known as
edit distance, was measured between sequences using an open
source Python implementation of the algorithm (https://pypi.
org/project/python-Levenshtein). TCRdist was adapted from
work published by Dash et al. (11). TCRMatch was implemented
from work by Shen et al. (18).

The TCRMatch algorithm relies on a modified version of
the BLOSUM62 observed frequency matrix for amino acid
substitutions (18). The two sequences being tested for similarity,
seq1 and seq2, are split into sets of k-mers, beginning with k =

1 and incrementing by 1 up to the length of the sequences, or
the shorter sequence if seq1 and seq2 differ in length. For each
value of k, all possible combinations of k-mer pairs between the
seq1 set and seq2 set are compared and assigned a similarity
value derived from the values of the transformed BLOSUM62
matrix. For k = 1, values for each amino acid pair are looked up
and summed. For k > 1, each amino acid of each seq1 k-mer is
compared to the amino acid at the same position in the seq2 k-
mer, and the matrix values are multiplied together prior to being
summed across all possible k-mer pairs. The sums from each
value of k are added together and divided by the normalization

factor,
√

TCRMatch
(

seq1, seq1
)

× TCRMatch(seq2, seq2),

to yield a score between 0 and 1, where 1 signifies a perfect
match (i.e., seq1= seq2).

Evaluation of Prediction Performance
Using Precision and Recall
To test a given similarity metric, it was applied to compare each
of the 24,678 CDR3β sequences to all other CDR3β sequences
in the same dataset. A range of similarity cutoffs were employed
for each metric, and CDR3β sequences surpassing the similarity
cutoff (“matches”) were considered true positives (TPs) or false
positives (FPs) based on whether the matching CDRs recognized
the same epitope or not. A TP was defined as an epitope
recognized by thematch sequence that was also recognized by the
input CDR3β. Conversely, a false positive (FP) was defined as a
match epitope that was not recognized by the input CDR3β. For
a given similarity cutoff, precision was defined as TP/(TP+FP),
while recall was defined as the fraction of epitopes recognized by
input CDR3β sequences for which a matching CDR3β sequence
with the same epitope was identified.

Bootstrapping Approach to Compare
Metrics
To compare the performance of similarity metrics, we simulated
100 datasets by sampling (with replacement) 24,678 CDR3β
sequences from the IEDB dataset. Each sampled sequence was
scored for similarity to the remaining 24,677 sequences using the
algorithms Identity Long, TCRMatch, TCRdist, and Alignment
Score. Precision and recall were calculated at each score threshold
for each method. For each precision-recall curve, we calculated
the area-under-the-curve (AUC) for the recall range of 0 to 0.5,
yielding a distribution of 100 AUCs for each method. The AUCs
were compared in pairwise fashion between TCRMatch and each
of the other methods, and the fraction of the 100 comparisons in
which the AUC of TCRMatch was exceeded by the AUC of the
other method (i.e., the p-value) was determined.

Assembly of Paired CDR3α-CDR3β Dataset
Using the same starting IEDB query as was used to compile the
benchmark CDR3β dataset, we filtered out all returned TCRs that
did not contain both a CDR3α and a CDR3β sequence. As above,
we used a custom pHMM-based trimming tool (manuscript in
preparation) on all CDR3β sequences to ensure adherence to the
standard ImMunoGeneTics (IMGT) (19) notation of the CDR3β
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region. Similarly, for CDR3α sequences, we carried out a simple
trimming step to remove a C residue from the first position
and an F or W residue from the last position if both residues
were present at the specified positions. To avoid the influence
of exact matches, we removed any TCRs that shared an identical
CDR3α or CDR3β sequence. Finally, as before, we excluded any
TCRs that recognized a unique epitope in order to ensure that
all TCRs would have at least one potential true positive match.
After these filters were applied, the final paired CDR3α-CDR3β
dataset contained 2,656 unique TCRs recognizing a total of 272
unique epitopes.

RESULTS

Assembly of TCR Dataset With Known
Epitopes for Cross-Validation From the
IEDB
We used the IEDB (16) to retrieve T cell receptors and their
known epitope specificities to serve as our benchmark dataset
(see Methods). Receptors were assembled into groups defined
by a unique CDR3β sequence found in the IEDB that had
one or more corresponding epitopes. Our goal was to evaluate
algorithms that take a query CDR3β as an input, identify similar
CDR3β sequences in the database, and determine how well
the similarity in CDR3β predicts that different TCRs recognize
the same epitope. Given that goal, we excluded epitopes for
which only one CDR3β was retrieved. All told, our IEDB dataset
contained 24,678 receptor groups, each with specificity for one or
more known epitopes.

Selection of Similarity Metrics
We set out to identify established sequence similarity metrics
that would be most applicable for comparing TCR sequences
(Table 1). We identified four metrics based on pairwise
alignment of CDR3β sequences, one on edit distance, one
on similarity-weighted mismatch distance, and one on k-
mer composition. Alignment-based methods are an established
approach to measuring similarity between amino acid sequences,
including TCRs (22). We carried out Needleman-Wunsch
pairwise alignments for all sequence pairs and computed four
similarity scores: Alignment Score, Identity Alignment, Identity
Long, and Identity Short. Similarly, Levenshtein distance, which
has been used previously for similarity-based clustering of TCR
sequences (23), was calculated for each pair of TCR sequences.
TCRdist was implemented from work by Dash et al. (11); they
and others have demonstrated its utility for TCR clustering (22).
Finally, the TCRMatch algorithm was implemented based on the
work of Shen et al. (18) and used to calculate similarity scores for
all IEDB pairs. This algorithm has been shown to be effective in
identifying MAIT cell TCRs from unknown sequences (24).

Establishment of Performance Evaluation
Metrics
Each of the TCR sequence similarity metrics was tested for its
ability to take input TCR sequences with known epitopes and
match them with similar TCRs that recognize the same epitope.

To measure performance, we calculated precision and recall on
the epitopes recovered from such matches in cross-validation for
a series of similarity cutoffs (Figure 1).

Comparison of Algorithms on IEDB
Dataset and Randomized Dataset
We tested seven similarity metrics on IEDB data and evaluated
the relative success of each method using precision and recall
(Figure 2A). TCRMatch was the strongest performer for recall
values between 0.05 and 0.40. For example, at a similarity cutoff
of 0.94, TCRMatch showed a recall of 0.213 and a precision
of 0.532; in other words, for 21.3% of epitopes recognized
by input TCRs, TCRMatch correctly identified a matching
TCR recognizing the same epitope (recall), and 53.2% of the
total match calls made at that threshold were correct (positive
predictive value). At similar recall levels, ranging from 0.196 to
0.230, TCRdist, Levenshtein distance, Alignment Score, Identity
Long, and Identity Alignment yielded maximum precision rates
ranging between 0.441 and 0.482. The poorest performing metric
was Identity Short, which at a comparable recall of 0.255 yielded a
precision of 0.113; moreover, across all thresholds tested, Identity
Short never exceeded 0.124 in precision. These subpar results
were largely driven by perfect or near-perfect alignments of short
CDR3β sequences to longer CDR3β sequences, which proved
to be only weakly associated with finding a matching epitope.
Starting around a recall of 0.5 and precision of 0.25, all methods
except for Identity Short began to show similar precision as recall
increased toward 1.

Upon inspecting the precision-recall graph, it was apparent
that there were four metrics that had a precision above all others
at a given recall: Identity Long (for the recall range of 0 to 0.02),
TCRMatch (0.02 to 0.45), TCRdist (0.45 to 0.58), and Alignment
Score (0.58 to 0.75). To compare these four metrics statistically,
we performed a bootstrapping analysis (seeMethods) to calculate
the area-under-the-curve (AUC) for the part of the graph
where precision values were at least ∼3 times higher than the
baseline observed in analyzing a randomized dataset (baseline
precision = 0.084, dashed line in Figure 2). This corresponded
to recall values between 0.0 and 0.5. This bootstrapped AUC
analysis showed that the TCRMatch AUC of 0.241 (95% CI
[0.235, 0.247]) was significantly higher than the AUC of Identity
Long, 0.182 (95% CI [0.179, 0.190]; p < 0.01), TCRdist, 0.224
(95% CI [0.221, 0.230]; p < 0.01), and Alignment Score,
0.227 (95% CI [0.217, 0.232]; p < 0.01).

Analysis of the randomized dataset showed precision
consistently fluctuating around 0.084 regardless of similarity
metric used, a value consistent with the precision found when
analyzing the non-randomized dataset without any similarity
thresholds imposed. This result demonstrates that all of the
tested similarity metrics are better than a randomized control
at identifying receptors with the same epitope specificity, and
that the best performing methods far exceed the random
performance, especially at more stringent thresholds.

We further examined the similarity scoring methods
for their effectiveness as measured by ROC curves
(Supplementary Figure 1). By focusing on scoring thresholds
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FIGURE 1 | Example precision and recall calculation. Using a TCRMatch score cutoff of 0.9, the input sequence matches 3 out of 4 tested sequences. Of the 5

epitopes recognized by the 3 matches, 2 epitopes (E1, E1) are shared with A (true positives, TP) and 3 epitopes (E4, E5, E4) are not shared with A (false positives, FP),

resulting in a precision of 2/5. Of the input sequence’s three epitopes (E1, E2, E3), E1 is also recognized by the first and third match, while E2 and E3 are not

recognized by any of the matches; therefore, recall = 1/3.

FIGURE 2 | Precision-recall and ROC plots comparing different sequence similarity metrics. (A) Each similarity metric was evaluated at different thresholds for its

ability to recall TCR sequences in the IEDB that recognized the same epitope (x-axis) and compared that to the precision at the same threshold (y-axis), which

specifies the percentage of match epitopes that were also recognized by the input sequences. The gray dashed line indicates average performance on the

randomized IEDB dataset, wherein CDR3β-epitope pairs were shuffled. (B) All similarity metrics were evaluated for their performance as measured by true positive rate

(TPR, y-axis) and false positive rate (FPR, x-axis). The axis ranges of 0–0.005 show the differences in performance among similarity metrics at data points where recall

< 0.5, as determined from the analysis shown in (A). The dashed line indicates a random baseline for which TPR = FPR.
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FIGURE 3 | Precision-recall plots comparing performance of sequence similarity metrics on 10x dataset. Precision and recall were calculated for all seven metrics

across similarity thresholds in the analysis comparing the 10x dataset against IEDB.

found to produce recall < 0.5 (Figure 2A), we again found that
all seven metrics performed better than the random baseline
(Figure 2B).

Performance Evaluation on Independent
Test Dataset
Following initial tests based on the IEDB dataset, which showed
TCRMatch to be the highest performing metric, we assessed the
performance of all seven metrics on an independent, publicly
available dataset from 10x Genomics (20). This dataset was
generated using TCR repertoire sequencing of T cells found
to bind to pMHC multimers presenting peptides from various
viral and cancer proteins. Initially, this dataset contained 15,769
CDR3β sequences recognizing a total of 39 epitopes. The CDR3β
sequences were trimmed of any flanking residues in accordance
with IMGT notation (19) using a custom pHMM-based tool
(manuscript in preparation) prior to analysis. To utilize this
dataset for performance evaluation of a classifier trained on IEDB
data, we used the subset of the 10x TCRs that recognized one of
the 18 epitopes also recognized in the IEDB, resulting in a total
dataset of 3,218 CDR3β sequences.

We used the 10x dataset as input and asked if TCRs from this
dataset could have been assigned a putative epitope by searching

for similar TCRs in the IEDB dataset. We observed similar
results to those of the original dataset; TCRMatch leads the other
methods in precision when recall is below 0.50, but the methods
begin to converge as recall exceeds 0.50 (Figure 3). The precision
and recall of both metrics benefited from 232 10x sequences that
had exact matches in the IEDB; of these matches, 171 (73.7%)
recognized the same epitope. Overall, precision was lower than
when the IEDB dataset was tested against itself (Figure 2A),
as expected.

Analysis of Paired CDR3α and CDR3β

Sequences
To evaluate the utility of incorporating additional types of TCR
data in receptor specificity analysis, we assembled a dataset
from the IEDB that contained 2,656 unique CDR3α-CDR3β
pairs along with their epitope specificities. Each pair was tested
against the remaining 2,655 pairs using the seven similarity
metrics. CDR3α sequences were compared to CDR3α sequences,
CDR3β sequences were compared to CDR3β sequences, and
the two scores were averaged. Using the same score thresholds
as in previous analyses, we calculated the precision and recall
across various levels of stringency (Figure 4A). Alignment Score
produced the greatest AUC, followed by TCRdist, TCRMatch,
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FIGURE 4 | Precision-recall plots comparing performance of sequence similarity metrics on paired CDR3α-CDR3β data. Precision and recall were calculated for all

seven metrics across similarity thresholds on three related datasets: (A) CDR3α-CDR3β pairs, (B) CDR3α sequences only, and (C) CDR3β sequences only.
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and Levenshtein distance (Table 2). Meanwhile, Identity Short
remained the worst performing metric. We also calculated
precision and recall for the CDR3α and CDR3β sequences when
analyzed separately (Figures 4B,C). TCRdist had the greatest
AUC for the CDR3α sequences, while Alignment Score had
the greatest AUC for CDR3β (Table 2). TCRMatch, meanwhile,
yielded the second and fourth highest AUC for the CDR3α-only
and CDR3β-only analyses, respectively. For all metrics, the AUC
values for the separate CDR3α and CDR3β sets were lower than
the AUC values calculated from the paired analysis.

Implementation of a Web Server
The motivating use case for our work has been to enable users
to determine what the likely epitopes recognized are for their
TCR(s) of interest. We have implemented TCRMatch as a web-
based tool hosted on the IEDB (Figure 5). A user can upload
a set of up to 500 CDR3β sequences to query against the
IEDB. Stringency can be specified by the user through the score

TABLE 2 | AUC 0.5 values by metric from analysis of paired CDR3α-CDR3β

dataset.

Method AUC 0.5, paired

CDR3α-CDR3β

AUC 0.5,

CDR3α only

AUC 0.5,

CDR3β only

Alignment Score 0.235 0.115 0.120

TCRdist 0.223 0.135 0.111

TCRMatch 0.220 0.117 0.107

Levenshtein 0.213 0.079 0.075

Identity Alignment 0.199 0.083 0.112

Identity Long 0.193 0.103 0.106

Identity Short 0.090 0.041 0.034

threshold parameter. Currently, the recommended threshold for
matches in TCRMatch is 0.97, which yielded a precision of
0.699 and a recall of 0.078 in the TCRMatch analysis of the 10x
dataset. Lower thresholds of 0.90 and 0.84, as well as an option to
return all results regardless of score, can also be chosen if more
potential matches are desired. The TCRMatch algorithm is run
on the back end, and results exceeding the user’s score cutoff are
returned in tabular format, which can be downloaded as a CSV
file. For datasets exceeding 500 sequences, TCRMatch analysis is
also available through VDJServer (vdjserver.org) after creating
a free VDJServer account (25). Additionally, users have the
option to download and run a standalone version of TCRMatch
(github.com/IEDB/TCRMatch) to analyze large datasets.

DISCUSSION

T cells recognize epitopes presented to them by MHCmolecules.
Methods to identify epitopes recognized by T cells have primarily
focused on the prediction of epitope binding to MHC molecules,
which has been a cornerstone of immuno-informatics (26, 27).
More recently, methods analyzing T-cell repertoire sequencing
data have been derived to determine the specificity of a T cell
based on its TCR sequence (9–12), and more tools continue
to be developed (28, 29). Such methods, while powerful, are
often computationally expensive and offer limited predictive
power due to the data on which they were trained. While we
anticipate a prominent role for such approaches when the critical
mass of data becomes available, until then, approaches that can
efficiently characterize the hundreds of thousands of sequences
generated by TCR repertoire sequencing without requiring a
trained model represent a straightforward solution to an unmet
need. To meet this need, we introduce TCRMatch, a method that
balances efficiency and predictive power to find relevant TCRs

FIGURE 5 | Flowchart of TCRMatch. The user provides one or more CDR3β sequences and selects a similarity cutoff. If N-terminal cysteine (C) and C-terminal

phenylalanine (F) or tryptophan (W) are present, these residues are removed prior to the similarity search against the IEDB CDR3β sequences. The chosen similarity

cutoff is used to filter TCRMatch’s final results, which consist of matching sequences and corresponding epitopes from the IEDB.
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through sequence similarity. Our method utilizes the power of
k-mer-based methods for computing sequence similarity with
a low computational footprint. This approach allows for the
processing of full repertoire sequencing datasets in an efficient
and accurate manner.

The method was tested on the large amount of TCR sequence
data available through the IEDB, as well as on an independent
test repertoire sequencing dataset published by 10x Genomics
(20). These analyses supplied evidence that the k-mer-based
approach of TCRMatch provides a significantly higher number of
relevant results compared to alignment-based or distance-based
methods, in addition to being computationally efficient. Other
strong performers included Alignment Score and TCRdist, the
latter of which has been reported to be an effective clustering
metric (11, 22). However, our analysis of paired CDR3α-CDR3β
sequences demonstrated that TCRMatch is not the strongest
performing metric independent of dataset. Rather, these results
indicate that similarity search algorithms have strengths and
weaknesses that affect their performance depending on the
epitope specificities contained in the input dataset. This finding
is in agreement with prior studies demonstrating the difficulty
of consistently identifying epitope-specific repertoires via a
single approach to grouping similar TCRs (11, 22). Further
research on the underlying causes of differences in repertoire
heterogeneity, such as potential differences in TCR:epitope
binding modes, would provide important insights into these
epitope-specific differences.

As our tool is built around the CDR3β sequences stored
in the IEDB, the ability of TCRMatch to find matches is
limited by the number and diversity of curated sequences
available in the database. The baseline precision of 0.084 for
the randomized control dataset (Figure 2A) indicates that the
TCR-epitope data published to date, and collected by the
IEDB, is biased toward a subpopulation of well-characterized
epitopes. If the IEDB dataset containing 498 unique epitopes
had an equal number of TCRs for each epitope, the expected
baseline precision would have been ∼1/498 (0.002). Instead, the
frequency of TCRs per epitope varied considerably, with the
five most common epitopes accounting for 15,243 of 28,001
(54.4%) total epitopes recognized. Indeed, the presence of
heavily studied epitopes combined with the inevitability of false
positives should be borne in mind when interpreting results.
We have sought to minimize false positives by recommending a
TCRMatch score threshold of 0.97, which yielded the peak level
of precision, 0.699, with a recall of 0.078 in the 10x analysis
(Figure 3). To improve this, we plan to explore ways to adjust
TCRMatch results to account for an epitope’s commonness or
rarity, which would reduce the prominence of match TCRs
recognizing a well-characterized epitope while giving a boost
to those specific for rarer epitopes. If we are successful, we
expect to see an increase in AUC values for the precision-recall
curves (Figures 2A, 3, 4) and a stronger outperformance of the
random baseline in the ROC curve (Supplementary Figure 1,
Figure 2B). Further improvement will come from the IEDB
curating new studies of less characterized or uncharacterized
epitopes, which will expand the capability of TCRMatch to

find relevant matches for input CDR3β sequences. Nonetheless,
it is important to note that the imbalance of epitopes in
curated TCR data has no effect on the accuracy of the
tool in finding matching sequences. Furthermore, researchers
interested in searching CDR3β sequences against custom
databases can download and modify the TCRMatch code
(github.com/IEDB/TCRMatch) to do so; this option enables
users to apply the TCRMatch algorithm to the study of
epitopes not yet curated in the IEDB. The standalone version of
TCRMatch also enables users to generate TCRMatch scores for
any two TCR sequences, independent of the IEDB, which can be
applied to alternative analyses such as estimating homogeneity
within a TCR repertoire.

Currently, TCRMatch identifies matches based solely on the
input CDR3β sequence, which is the most closely associated
with TCR specificity. However, there is much room for
improvement. Our analysis of CDR3α-CDR3β pairs showed
that precision-recall AUCs increase considerably when both
CDR3α and CDR3β are used as inputs, as opposed to
using one or the other. As more data becomes available,
we anticipate that a more complex version of TCRMatch,
integrating additional data including CDR3α sequences, as
well as CDR1 and CDR2 sequences from both α and β

chains, gene usage information (V, D, and J), and MHC
restriction data, will improve the accuracy of the tool’s
epitope predictions.

The TCRMatch tool we develop here is well suited to
complement existing tools such as GLIPH2 (8), which identifies
clusters of TCRs in experimental data that likely recognize
the same epitope. For example, a researcher who carries
out TCR repertoire sequencing while studying a particular
immune response might use GLIPH2 to discover a few
hundred receptor clusters; each of those clusters can then be
queried for their putative epitopes using TCRMatch, which
further can enable follow-up experiments studying the epitopes
driving the immune response in question. As the IEDB
continues to accumulate immunological data, the quality and
quantity of results produced by TCRMatch will continue
to improve.
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