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Simple Summary: In Germany, thyroid nodules can be detected by ultrasound examinations in over
30% of the adult population, mainly as a result of prolonged nutritive iodine deficiency. Although
only a small proportion of the nodules are malignant, it is important to have a reliable examination
method that not only can detect these few thyroid carcinomas with a high degree of certainty, but
also not be unnecessarily invasive for the much larger number of benign nodules. Ultrasound is the
method of choice, and ultrasound-based risk stratification systems are important tools in clinical care.
However, many different systems have been introduced within the last decade. The aim of this study
was to evaluate five common ultrasound risk stratification systems for their diagnostic accuracy of
thyroid nodules from an area with long history of iodine deficiency.

Abstract: Germany has a long history of insufficient iodine supply and thyroid nodules occur in
over 30% of the adult population, the vast majority of which are benign. Non-invasive diagnostics
remain challenging, and ultrasound-based risk stratification systems are essential for selecting lesions
requiring further clarification. However, no recommendation can yet be made about which system
performs the best for iodine deficiency areas. In a German multicenter approach, 1211 thyroid
nodules from 849 consecutive patients with cytological or histopathological results were enrolled.
Scintigraphically hyperfunctioning lesions were excluded. Ultrasound features were prospectively
recorded, and the resulting classifications according to five risk stratification systems were retrospec-
tively determined. Observations determined 1022 benign and 189 malignant lesions. The diagnostic
accuracies were 0.79, 0.78, 0.70, 0.82, and 0.79 for Kwak Thyroid Imaging Reporting and Data System
(Kwak-TIRADS), American College of Radiology (ACR) TI-RADS, European Thyroid Association
(EU)-TIRADS, Korean-TIRADS, and American Thyroid Association (ATA) Guidelines, respectively.
Receiver Operating Curves revealed Areas under the Curve of 0.803, 0.795, 0.800, 0.805, and 0.801,
respectively. According to the ATA Guidelines, 135 thyroid nodules (11.1%) could not be classified.
Kwak-TIRADS, ACR TI-RADS, and Korean-TIRADS outperformed EU-TIRADS and ATA Guidelines
and therefore can be primarily recommended for non-autonomously functioning lesions in areas
with a history of iodine deficiency.
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1. Introduction

Iodine deficiency is a well-known risk factor in the development of nodular thyroid
disease [1]. Although nutritive iodine supply in the German population has improved in
the recent years, Germany has a long history of iodine deficiency and the requirements of
the World Health Organization (WHO) have not yet been fully met [2–5]. The prevalence of
thyroid nodules (TNs) ranges from 12.5% in young men to over 80% in older women [6–9].
Since the vast majority of the detected TNs are benign, the diagnostic challenge is to reliably
detect malignant nodules while avoiding unnecessary interventions for benign lesions [10].

Thyroid ultrasound (US) is a non-invasive, cost-effective, and accurate method for
detecting and describing TNs [11]. It is also the method of choice for assessing and select-
ing TNs for further diagnostic procedures such as fine-needle cytology (FNC) to rule-out
malignancy [12–14]. During the last decade, several international societies have published
different US-based risk stratification systems (RSSs, Thyroid Imaging Reporting and Data
System, TIRADS) based on US features and lesion size. The aim was to improve diag-
nostic performance of thyroid US, to reduce unnecessary interventions, and to provide a
standardized terminology for physicians [12,13,15–18]. In 2011, Kwak et al. published a
TIRADS (Kwak-TIRADS) to detect suspicious malignant features: microcalcifications, solid
composition, hypoechogenicity, a taller-than-wide shape, and an irregular/microlobulated
margin [19]. In 2016, The Korean Thyroid Association/Korean Society of Thyroid Radi-
ology (KTA/KSThR) proposed a pattern-based RSS (Korean-TIRADS) based on solidity
and echogenicity with additional suspicious features (microcalcifications, non-parallel
orientation, and spiculated/microlobulated margins) [20]. In 2015, The American Thyroid
Association (ATA) announced a pattern-based, five-tier RSS with different risks of malig-
nancy [21]. Similar to the Korean-TIRADS, the European Thyroid Association (ETA) in
2017 proposed a pattern-based five-tier RSS (EU-TIRADS) with US features showing a high
probability of malignancy (irregular shape and margins, marked hypoechogenicity, solidity,
and microcalcifications) [22]. Simultaneously, the American College of Radiology (ACR)
published the scoring-based ACR TI-RADS [18].

Recently, several studies were carried out to compare the diagnostic performance of
different US-based RSSs [13,14,17,23–30]. Although it is known that hyperfunctioning TNs
have a very high probability of being benign and need no further diagnosis [31], none of
these studies took the functional status of the TNs into account. Furthermore, in a previous
study, our group demonstrated that a relevant proportion of hyperfunctioning TNs were
classified as intermediate risk or high risk according to Kwak-TIRADS [32].

The aim of this study was to compare the diagnostic performance of five established
US RSSs for non-autonomously functioning TNs in iodine deficiency.

2. Materials and Methods
2.1. Patients and Ethics

Since 2012, an increasing number of physicians specializing in thyroid diagnostics have
been in constant communication regarding the diagnostic assessment of TNs, organized
in the “German TIRADS Study Group” (GTSG). In recent years, seven institutions set
up a continuously growing multicenter database containing the imaging and clinical
data of over 2000 consecutive TNs. US features were recorded prospectively in real
time immediately after the US examinations (see Section 2.2). Out of this pool, patients
recorded between January 2012 and August 2020 were considered for the study. Their
cases were consecutively recorded without influencing the treatment course, which was
conducted according to guideline-based clinical decisions by the respective sites. Since
August 2020, the rating of the RSSs was retrospectively conducted based on prospectively
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documented US features. Observers were blinded to the clinical results such as cytological
and histopathological findings. Communication between the observers regarding difficult
cases was, and is, consistently performed to reduce interobserver bias [33].

The inclusion criteria consisted of hypofunctioning or indifferent TNs on thyroid
scintigraphy and the availability of cytological (FNC) or histopathological (surgery) di-
agnoses. Bethesda II lesions were considered benign. Scintigraphically hyperfunctioning
TNs and those without scintigraphy as well as FNC findings outside Bethesda category II
without histopathological evaluation were excluded. Scintigraphy scans were conducted
according to the European guideline using 99 m-technetium-pertechnetate [31].

Recorded data comprised institution site, age, gender, number of TNs per patient,
lesion size in three dimensions (crania–caudal, ventral–dorsal, medial–lateral), lesion
functionality on scintigram, US features and RSS classifications (see Section 2.2), cytological
findings according to the Bethesda System [34], and histopathological results.

The multicentric data collection was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Ethics Committee of the Medical Faculty of
the University Hospital of Duisburg–Essen, Germany (ID: 16-7022-BO).

2.2. Ultrasound Examinations

US examinations were carried out according to the respective local standards with an
emphasis on high-resolution, state-of-the-art image quality, and acquisition in transversal
and sagittal orientation. Therefore, examination parameters, such as patient positioning,
frequency, focus number and focus positioning, zoom, depth, gain, virtual convex mode,
crossbeam mode, harmonic imaging modes, and breath-hold techniques were adapted to
individual patient and nodule–specific requirements.

The following US devices were used:

• A Mindray DC-6 (Mindray Medical International Limited, Shenzhen, China) and
Esaote MyLab 40 (Esaote SpA, Genova, Italy) equipped with a 10- and 12-MHz small
parts probe;

• Hitachi EUB 5000 G (Hitachi Ltd., Chiyoda, Tokyo, Japan) equipped with a 5–10 MHz
linear probe;

• Hitachi HI VISION Avius (Hitachi Ltd., Chiyoda, Tokyo, Japan) equipped with a
5–10 MHz linear probe; and

• GE LOGIQ E9 (GE Healthcare, Milwaukee, WI, USA) equipped with a 10–15 MHz
linear probe.

The following US features were recorded:

• Composition: solid, <10, 10–50, 50–90, >90% cystic, spongiform;
• Echogenicity: (marked) hypoechoic, isoechoic, hyperechoic, completely cystic;
• Margin: sharp/smooth, macrolobulated, microlobulated, irregular, ill-defined, ex-

trathyroidal extension (ETE);
• Calcifications/spots: none, colloidal-cystic associated spots, macrocalcifications, rim

calcifications, rim calcifications with small extrusive soft tissue component (SESTC),
microcalcifications; and

• Shape: taller-than-wide (TTW), non-TTW, round.

Of these features, all TNs were classified according to the five RSSs: Kwak-TIRADS [19],
ACR TI-RADS [18], EU-TIRADS [22], ATA Guidelines [21], and Korean-TIRADS [20].

2.3. Data Analyses and Statistics

Data were recorded on Excel software (Version 14.7.3, Microsoft Corporation, Red-
mond, WA, USA) and transferred to SPSS Statistics software (International Business Ma-
chines Corporation, Version 26.0, New York, NY, USA) for statistical analyses. Fisher’s
exact test was conducted to evaluate group differences for ordinal values (e.g., US features).
A Student’s t test was performed to investigate the differences among groups with nor-
mally distributed metric values (e.g., TSH-level, lesion size). For each RSS, calculations
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were made for positive predictive value (PPV), negative predictive value (NPV), sensitivity,
specificity, diagnostic accuracy (ACC), positive likelihood ratio (LHR+), negative likelihood
ratio (LHR-), diagnostic odds ratio (DOR), receiver operating curves (ROCs), and area
under the curve (AUC). The AUC values were compared using a Hanley and McNeil test
on MedCalc software (Version 20.009, Ostend, Belgium). If RSSs classifications were not
applicable (N/A), the respective TN was not included in the analyses.

Cutoff values between benign and malignant for performance calculations were
defined at 4c, TR5, 5, high, and high for Kwak-TIRADS, ACR TI-RADS, EU-TIRADS,
Korean-TIRADS, and ATA Guidelines, respectively. For each test, p < 0.05 was consid-
ered significant.

3. Results
3.1. Patient Data and Clinical Characteristics of the Thyroid Nodules

A total of 1211 TNs in 849 patients (604 females, 71.1%; 249 males, 28.9%; aged
51 ± 14 years) were included in this study. The majority of the lesions were benign
(N = 1022, 84.4%). Malignant lesions were diagnosed in 189 (15.6%) cases, of which 102
(54.0%) were carcinomas: papillary thyroid carcinoma (PTC) containing 19 (10.1%) papillary
thyroid microcarcinomas (PTMC) and 43 (22.8%) follicular variants of PTC (FVPTCs),
10 (5.3%) follicular thyroid carcinomas (FTCs), 7 (3.7%) medullary thyroid carcinomas
(MTCs), 5 (2.6%) poorly differentiated thyroid carcinomas (PDTCs), 1 (0.5%) anaplastic
thyroid carcinoma (ATC), 1 (0.5%) metastasis of a colorectal cancer (CRC), and 1 (0.5%)
manifestation of a Non-Hodgkin Lymphoma (NHL).

Histopathological and cytological results were available for 731 (60.4%) and 776
(64.1%) lesions, respectively. In total, 480 (39.6%) TNs were diagnosed as benign by
cytology (Bethesda II) only. For 296 (24.4%) lesions, cytological and histopathological
results were available. In 142 cases, Bethesda III/IV results were found on cytological
examinations. The rate of malignancy in these TNs was 15.5% (Table 1).

Table 1. Histopathological results of thyroid nodules (TNs) with fine-needle cytology (FNC) and surgery.

Bethesda Classifications [34] All (N = 296)
N (%)

Benign (N = 227)
N (% of All)

Malignant (N = 69)
N (% of All)

I—Nondiagnostic or Unsatisfactory 60 (20.3) 47 (78.3) 13 (21.7)
II—Benign 59 (19.9) 52 (88.1) 7 (11.9)

III/IV—AUS, FLUS, FN, suspicion for a FN 142 (48.0) 120 (84.5) 22 (15.5)
V—Suspicious for Malignancy 17 (5.7) 8 (47.1) 9 (52.9)

VI—Malignant 18 (6.1) 0 (0.0) 18 (100.0)

Abbreviations: AUS—Atypia of Undetermined Significance; FLUS—Follicular Lesion of Undetermined Significance; FN—Follicular Neoplasm.

The mean size (largest diameter) of the TNs was 26 ± 13 mm. Since in Germany thyroid
scintigraphy is only regularly performed (irrespective of the TSH level) on TNs ≥ 10 mm,
only eight (0.7%) TNs measured < 10 mm and 14 (1.1%) lesions showed a size of 10 mm.
These were resected along with other lesions and their RSS classifications as well as scintig-
raphy findings were retrospectively assessed (with blinded histopathological results). The
benign lesions were larger and more frequently hypofunctioning in the present study
population (Table 2).

Table 2. Scintigraphy results and lesion sizes.

Scintigraphy and
Lesion Size

All (N = 1211)
N (%)/Mean ± SD

Benign (N = 1022)
N (%)/Mean ± SD

Malignant (N = 189)
N (%)/Mean ± SD p-Value

Scintigraphy 1211 (100.0) 1022 (100.0) 189 (100.0)
0.001Indifferent 199 (16.4) 152 (14.9) 47 (24.9)

Hypofunctioning 1012 (83.6) 870 (85.1) 142 (75.1)
TN Size (mm) 26 ± 13 27 ± 13 19 ± 12 <0.001

Abbreviations: SD—Standard Deviation; TN—Thyroid Nodule.
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3.2. Ultrasound Features

US features that were documented for malignant and benign TNs are displayed in
Table 3. Over 75% of the included carcinomas showed at least one of the following features:
a solid composition, (marked) hypoechogenicity, and micro- or macrocalcifications, respec-
tively. In contrast, over 75% of the benign lesions were characterized by sharp/smooth
margins, non-TTW shape, missing calcifications, or demonstrating only colloidal-cystic
associated spots. The sensitivity (specificity) of solid composition, hypochogenicity or
marked hypoechogenicity, irregular or microlobulated shape, microcalcifications, and TTW
for the detection of malignant TNs were 81.5% (47.6%), 84.7% (51.8%), 47.6% (92.2%), 55.0%
(81.5%), and 33.3% (85.2%), respectively. The ACC values for solid components, (marked)
hypoechogenicity, microlobulated or irregular margins, microcalcifications, and TTW were
52.8%, 56.9%, 85.3%, 77.3%, and 77.1%, respectively.

Table 3. Ultrasound (US) features in relation to cytological and histopathological results.

US Features All (N = 1211)
N (%)

Benign (N = 1022)
N (%)

Malignant (N = 189)
N (%) p-Value

Composition

Solid 696 (57.5) 536 (52.4) 154 (81.5) <0.001
<10% cystic 296 (24.4) 273 (26.7) 19 (10.1) <0.001

10–50% cystic 160 (13.2) 148 (14.5) 12 (6.3) 0.002
50–90% cystic 27 (2.2) 24 (2.3) 3 (1.6) 0.788
>90% cystic 16 (1.3) 16 (1.6) 0 (0.0) 0.154
Spongiform 26 (2.1) 25 (2.4) 1 (0.5) 0.106

Echogenicity

Hypo 530 (43.8) 419 (41.0) 102 (54.0) <0.001
Marked hypo 132 (10.9) 74 (7.2) 58 (30.7) <0.001

Iso 534 (44.1) 505 (49.4) 28 (14.8) <0.001
Hyper 8 (0.7) 7 (0.7) 1 (0.5) >0.999

Completely cystic 17 (1.4) 17 (1.7) 0 (0.0) 0.092

Margin

Sharp/smooth 936 (77.3) 858 (84.0) 69 (36.5) <0.001
Macrolobulated 43 (3.6) 40 (3.9) 2 (1.1) 0.05
Microlobulated 42 (3.4) 27 (2.6) 15 (7.9) <0.001

Irregular 127 (10.5) 52 (5.1) 75 (39.7) <0.001
Ill-defined 66 (5.5) 42 (4.1) 24 (12.7) <0.001

ETE 7 (0.6) 3 (0.3) 4 (2.1) <0.001

Calcifications

None 742 (61.3) 660 (64.6) 75 (39.7) <0.001
Colloidal 157 (13.0) 147 (14.4) 9 (4.8) <0.001

Macro 155 (12.8) 102 (9.9) 42 (22.2) <0.001
Rim 17 (1.4) 12 (1.2) 5 (2.6) <0.001

Rim with SESTC 10 (0.8) 6 (0.6) 4 (2.1) <0.001
Micro 289 (23.9) 189 (18.5) 104 (55.0) <0.001

Shape

TTW 214 (17.7) 151 (14.8) 63 (33.3) <0.001
Non-TTW 980 (80.9) 857 (83.9) 113 (59.8) <0.001

Round 27 (2.2) 14 (1.4) 13 (6.9) <0.001

Abbreviations: US—Ultrasound; ACC—Diagnostic Accuracy; ETE—Extrathyroidal Extension; SESTC—Small Extrusive Soft Tissue
Component; TTW—Taller Than Wide.

3.3. Risk Stratification Systems

All TNs were classifiable according to Kwak-TIRADS, ACR TI-RADS, and Korean-
TIRADS. A total of 3 (0.2%, 1 malignant) and 135 (11.1%, 16 malignant) TNs could not
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be classified using EU-TIRADS and ATA Guidelines, respectively (Figure 1). The RSS
classification results are displayed in Figure 2.
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The PPV, NPV, Sensitivity, Specificity, and diagnostic accuracy ranged between 32.0%
(EU-TIRADS) and 44.9% (Korean-TIRADS), 93.0% (ACR TI-RADS) and 95.6% (EU-TIRADS),
67.7% (ACR TI-RADS) and 83.5% (EU-TIRADS), 67.3% (EU-TIRADS) and 84.7% (Korean-
TIRADS), and 69.8% (EU-TIRADS) and 82.0% (Korean-TIRADS), respectively (Table 4).

Table 4. Diagnostic performance parameters of the ultrasound risk stratification system (RSSs) for the differentiation
between benign and malignant thyroid nodules (TNs).

Diagnostic Parameters Kwak-
TIRADS

ACR
TI-RADS

EU-
TIRADS

Korean-
TIRADS

ATA
Guidelines

Cut-off
(benign vs. malignant) 4c TR5 5 high high

PPV 0.4 0.38 0.32 0.45 0.42
(CI-95) (0.36–0.43) (0.35–0.42) (0.30–0.34) (0.41–0.49) (0.38–0.46)

NPV 0.94 0.93 0.96 0.93 0.95
(CI-95) (0.92–0.95) (0.92–0.94) (0.94–0.97) (0.92–0.94) (0.93–0.96)

Sensitivity 0.7 0.68 0.84 0.67 0.77
(CI-95) (0.64–0.76) (0.61–0.74) (0.78–0.88) (0.60–0.73) (0.70–0.83)

Specificity 0.8 0.8 0.67 0.85 0.8
(CI-95) (0.78–0.82) (0.77–0.82) (0.64–0.70) (0.82–0.87) (0.77–0.82)

ACC 0.79 0.78 0.7 0.82 0.79
(CI-95) (0.76–0.81) (0.75–0.80) (0.67–0.72) (0.79–0.84) (0.77–0.82)

LHR+ 3.54 3.34 2.55 4.4 3.79
(CI-95) (3.04–4.13) (2.86–3.91) (2.29–2.84) (3.69–5.25) (3.23–4.42)

LHR- 0.37 0.41 0.25 0.39 0.29
(CI-95) (0.30–0.46) (0.33–0.50) (0.18–0.34) (0.32–0.48) (0.22–0.38)

DOR 9.58 8.26 10.4 11.37 13.08
(CI-95) (6.78–13.57) (5.88–11.62) (6.93–15.62) (8.03–16.11) (8.87–19.30)

Abbreviations: RSS—Risk Stratification Systems; PPV—Positive Predictive Value; CI-95—95% Confidence Intervals; NPV—Negative
Predictive Value; ACC—Diagnostic Accuracy; LHR+—Positive Likelihood ratio; LHR—Negative Likelihood ratio; DOR—Diagnostic Odds
Ratio; TIRADS/TI-RADS—Thyroid Imaging and Reporting Data System; ATA—American Thyroid Association. Thyroid nodules (TNs)
that were not classifiable (N/A) are not included.

The ROCs of the investigated RSSs are shown in Figure 3. The AUC values were
0.803 (95% Confidence Intervals: 0.765–0.840), 0.795 (0.759–0.831), 0.800 (0.765–0.834), 0.805
(0.768–0.842), and 0.801 (0.765–0.837) for Kwak-TIRADS, ACR TI-RADS, EU-TIRADS,
Korean-TIRADS, and ATA Guidelines, respectively. There were no differences in the AUC
values (Table 5).

Table 5. Comparison of Area under the Curve (AUC) values between the investigated risk stratifica-
tion systems (RSSs) via Hanley and McNeil Test *.

RSSs Kwak-
TIRADS

ACR
TI-RADS

EU-
TIRADS

Korean-
TIRADS

ATA
Guidelines

Kwak-TIRADS - p = 0.760 p = 0.909 p = 0.941 p = 0.939
ACR TI-RADS p = 0.760 - p = 0.844 p = 0.702 p = 0.814

EU-TIRADS p = 0.909 p = 0.844 - p = 0.849 p = 0.969
Korean-TIRADS p = 0.941 p = 0.702 p = 0.849 - p = 0.879
ATA Guidelines p = 0.939 p = 0.814 p = 0.969 p = 0.879 -

Abbreviations: RSS—Risk Stratification System; TIRADS/TI-RADS —Thyroid Imaging Reporting
and Data System; ACR—American College of Radiology; EU—European Union; ATA—American
Thyroid Association. * Thyroid nodules (TNs) that were not classifiable (N/A) are not included.
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4. Discussion

One of the most dynamic fields in clinical thyroid research is the sonographic risk
stratification of thyroid nodules. US devices are ubiquitous, and the procedure is a patient-
friendly, cost-effective, and repeatable approach that has no side effects. Many different
RSSs have been published in the recent years, and in the present study the diagnostic per-
formances of five important ultrasound-based risk stratification systems (Kwak-TIRADS,
ACR TI-RADS, EU-TIRADS, Korean-TIRADS, and ATA Guidelines) were evaluated in a
population that has a high prevalence of TNs due to a long history of iodine deficiency [7,8].

Since 2012, the German TIRADS Study Group has been recording consecutive thyroid
nodule cases from seven German institutions where there is a growing number of partic-
ipating members. In this manner, a large database was built. Constant communication
regarding difficult cases and the recent literature was conducted to achieve high perfor-
mance levels in the application of RSSs and to reduce interobserver variability among
the operators [33]. With the present multicenter trial, the group reported the first ex-
tensive German dataset regarding the diagnostic performance of five US-based RSSs for
non-autonomous TNs.

Because the study focused on TNs that had been invasively diagnosed according to
the clinical decision of the treating physicians, the preselected lesions (no hyperfunctioning
TN, cytology or histopathology demanded) did not accurately represent the underlying
patient population of Germany. Thus, malignant lesions were overrepresented: 15.5%
in comparison to their natural incidence of <5% [35]. However, the data also contained
TNs that had not been referred to the surgeons primarily for histopathological evaluation
but had been resected as part of other surgical indications in multinodular goiters. This
mitigates selection bias in favor of a higher classifications of the RSSs.

Meta-analyses are proposing sensitivities (specificities) for the detection of malignancy
of 73–87% (53–56%), 63–78% (55–62%), 51–66% (79–83%), 40–54% (80–88%), and 27–53%
(77–97%) for solid composition, hypoechogenicity, irregular margins, microcalcifications,
and TTW shape, respectively [36–38].The calculated sensitivities and specificities for these
US features in the current study were in good concordance with those in the literature.
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Diagnostic accuracies ranged between 52.8% (solid composition) and 85.3% (microlobulated
or irregular margins).

The diagnostic accuracy of EU-TIRADS (69.8%) was inferior to that of Kwak-TIRADS
(78.6%), ACR TI-RADS (77.9%), or Korean-TIRADS (82.0%), because of the relatively high
number of EU5 classifications. ATA Guidelines showed a comparably high accuracy of
79.3% but a remarkable number of TNs (11.1%) were N/A. The ATA Guidelines provided
an atlas that was primarily pattern-based, which was missing clear definition for isoechoic
TNs with suspicious further US features. This problem has already been described in
previous studies [33]. However, N/A TNs were excluded from the diagnostic performance
calculations. Based on these results, Kwak-TIRADS, ACR TI-RADS, and Korean-TIRADS
outperformed EU-TIRADS and ATA Guidelines in the study population, despite the AUC
values on ROCs of all five RSSs being very similar (between 0.795 and 0.805) without
significant differences (N/A TNs excluded). The diagnostic performance parameters were
in concordance with the results of current meta-analyses (Table 6). Wei et al. reported
a pooled sensitivity of 79% and a pooled specificity of 71% for mixed TIRADS studies.
Pooled sensitivity (specificity) values of 98% (55%), 54–82% (53–90%), 66–74% (64–91%),
55–86% (28–95%), and 74–87% (31–88%) were published for Kwak-TIRADS, EU-TIRADS,
ACR TI-RADS, Korean-TIRADS, and ATA guidelines, respectively. However, the cut-off
values between benign and malignant lesions were partly different among the respective
meta-analyses.

Table 6. Overview of meta-analyses regarding the diagnostic performance of ultrasound risk stratification systems (RSSs)
for thyroid nodules (TNs).

Author, Year
No of

Studies
(TNs)

RSSs
Sensitivity

Pooled
(CI-95)

Specificity
Pooled
(CI-95)

LHR+
Pooled
(CI-95)

LHR-
Pooled
(CI-95)

DOR
Pooled
(CI-95)

AUC
on ROC

Wei et al.,
2016 [39]

12
(10,437)

mixed 0.79 0.71 6.62 0.2 35.2
0.918TIRADS (0.77–0.81) (0.70–0.72) (4.39–9.99) (0.14–0.29) (19.5–63.4)

Migda et al.,
2018 [40]

6
(10,926) Kwak

0.98 0.55 2.67 0.05 51
0.938(0.98–0.99) (0.54–0.56) (1.69–4.20) (0.04–0.07) (15.2–170.8)

Kim et al.,
2020 [41]

29 (33,748)

ACR
0.66 0.91 0.89

(0.56–0.75) (0.87–0.94)

ATA
0.74 0.88 0.9

(0.62–0.84) (0.82–0.93)

Korean
0.55 0.95 0.88

(0.38–0.70) (0.90–0.98)

EU
0.82 0.9 0.91

(0.71–0.89) (0.77–0.96)

Kim et al.,
2020 [42]

34
(37,585)

ACR
0.7 0.89

(0.61–0.79) (0.85–0.92)

Korean
0.64 0.93

(0.58–0.70) (0.91–0.95)

EU
0.78 0.89

(0.64–0.88) (0.77–95)

Castellana et al.,
2020 [43]

12
(18,750)

ACR
0.74 0.64 1.9 0.4 4.9

(0.61–0.83) (0.56–0.70) (1.6–2.3) (0.3–0.6) (3.1–7.7)

ATA
0.87 0.31 1.2 0.4 3.1

(0.75–0.94) (0.24–0.40) (1.0–1.4) (0.2–0.7) (1.3–7.1)

EU
0.54 0.53 1.4 0.6 2.2

(0.51–0.57) (0.51–0.55) (1.0–1.8) (0.4–1.0) (0.9–5.1)

Korean
0.86 0.28 1.2 0.5 2.5

(0.73–0.94) (0.20–0.38) (1.0–1.4) (0.2–1.0) (1.1–5.5)

Abbreviations: RSSs—Risk Stratification Systems; TNs—Thyroid Nodules; LHR+—Positive Likelihood Ratio; LHR—-Negative Likelihood
Ratio; DOR—Diagnostic Odds Ratio; AUC—Area Under The Curve; ROC—Receiver Operating Curves; CI-95—95% Confidence Intervals;
TIRADS—Thyroid Imaging Reporting and Data System; ACR—American College of Radiology; EU—European Union; ATA—American
Thyroid Association.
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Considering the data from former iodine deficiency areas specifically, Dobruch-
Sobczak et al. observed a sensitivity of 93.4% and a specificity of 54.6% for EU-TIRADS
with a cut-off for EU5 in a Polish multicenter study containing 842 TNs (229 malignant) [44].
In a smaller study population from Austria (N = 195), EU-TIRADS, Kwak-TIRADS, ATA
Guidelines, and French-TIRADS were assessed suitable for the differentiation between
benign and malignant TNs. The authors found a sensitivity of 85% and a specificity of
45% with a cut-off of two or more positive US criteria. However, this was only true for the
45 included PTCs, but not for the eight FTCs [29]. In the present study, a large variety of
different malignant lesions were observed, containing 54.0% PTC, 5.3% FTC, 3.7% MTC,
2.6% PDTC, 0.5% ATC, and 1% other cancer types. Therefore, to the best of our knowledge,
the current data provide the most comprehensive results from an area with history of
iodine deficiency. In a recently published Italian real-life setting study (single-center, retro-
spective, observational) that included 6474 cytologically investigated TNs and comprised
five different RSSs, inferior sensitivities (50.1–94.5%), PPV (7.7–11.5%), and AUC values in
ROC analyses (0.606–0.632) were reported [45]. Among other reasons, such as a different
history of iodine supply between Germany and Italy [46], the superior performance of the
RSSs in the current study may be due to the exclusion of non-autonomously functioning
lesions. In a previous study, the GTSG revealed that a relevant number of hyperfunctioning
TNs showed high-risk US patterns [32]. Scintigraphically guided preselection can therefore
be recommended to improve the US-based risk stratification of TNs.

Further clinical examination data revealed larger sizes and a higher frequency of
scintigraphically hypofunctioning lesions for benign compared to malignant TNs. However,
since the decision for or against cytological or histopathological clarification of a TN was
carried out as a comprehensive clinical decision, the data were affected by a selection
bias after considering several additional findings such as laboratory results and disease-
related symptoms. Therefore, over 80% of the lesions were hypofunctioning in the study
population. The data showed a high sensitivity (75.1%) but a very low specificity (14.9%)
for the hypofunctional feature for detecting malignant lesions. Due to this selection bias
(especially the exclusion of hyperfunctioning lesions) these diagnostic parameters did not
display the findings in a clinical routine. However, the majority of the malignant TNs
showed up as hypofunctioning on scintigraphy scans, which was in accordance with the
literature [47].

The multicentric study design allowed a patient enrolled in the study to be managed
by different approaches during clinical practice. It needs to be underlined that this could
have affected the results. Since only TNs that were characterized by scintigraphy were
included, less than 1% of the TNs measured were < 10 mm. However, it is known that
lesions < 10 mm can be detected as hyperfunctioning on scintigraphy and can be reliably
assessed by I-124 positron emission tomography (PET)/US fusion imaging even in unfa-
vorable localizations [47–49]. Furthermore, TIRADS have been proven to perform well in
TNs < 10 mm [50].

So far, no uniform RSS has been established worldwide, although work has recently
begun on a new international US-based RSS for TN. With the participation of several
scientific societies, the so-called I-TIRADS will be proposed and established internationally
as a uniform evidence-based system. Currently, different working groups are investigating
individual ultrasound criteria [51]. In addition, promising data already exist regarding
the use of artificial intelligence (AI) to identify ultrasound patterns. This technique could
significantly reduce interobserver variability and account for regional differences such as
site-typical normal findings via variable databases [52]. Another important pillar in the
evaluation of TNs is related to the aforementioned topics: the establishment of (automated)
structured reporting (SR). It is already well advanced in other diagnostic examination
procedures such as mammography or prostate MRI as well as in professional study proto-
cols [53,54]. Concepts for the implementation of AI pattern detection and SR in the field of
thyroid US have already been proposed. In particular, the generation of automated findings
from manually acquired ultrasound image data has the potential to provide considerable
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time savings for medical staff and may thus also have health and economic relevance for
regions with a high prevalence of thyroid disease [55–57].

5. Conclusions

Kwak-TIRADS, ACR TI-RADS, Korean-TIRADS, and ATA Guidelines revealed high
performance levels with diagnostic accuracies of about 80% and AUC values of approx-
imately 0.8 without significant differences. However, over 10% of the TNs were not
classifiable according to ATA Guidelines. The diagnostic performance of EU-TIRADS was
slightly inferior in comparison with the aforementioned ultrasound risk stratification sys-
tems for thyroid nodules. Therefore, Kwak-TIRADS, ACR TI-RADS, and Korean-TIRADS
can be preferentially recommended in areas with a history of iodine deficiency. Scinti-
graphic preselection to exclude hyperfunctioning nodules may improve the performance
of ultrasound-based risk stratification systems.
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