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Abstract: In human type 2 diabetes, adipose tissue plays an important role in disturbing glucose
homeostasis by secreting factors that affect the function of cells and tissues throughout the body,
including insulin-producing pancreatic beta cells. We aimed here at studying the paracrine effect
of stromal cells isolated from subcutaneous and omental adipose tissue on human beta cells. We
developed an in vitro model wherein the functional human beta cell line EndoC-βH1 was treated
with conditioned media from human adipose tissues. By using RNA-sequencing and western
blotting, we determined that a conditioned medium derived from omental stromal cells stimulates
several pathways, such as STAT, SMAD and RELA, in EndoC-βH1 cells. We also observed that upon
treatment, the expression of beta cell markers decreased while dedifferentiation markers increased.
Loss-of-function experiments that efficiently blocked specific signaling pathways did not reverse
dedifferentiation, suggesting the implication of more than one pathway in this regulatory process.
Taken together, we demonstrate that soluble factors derived from stromal cells isolated from human
omental adipose tissue signal human beta cells and modulate their identity.

Keywords: EndoC-βH1; dedifferentiation; stromal cells; type 2 diabetes; adipose tissue; human
pancreatic beta cells

1. Introduction

The endocrine pancreas plays a crucial role in nutritional homeostasis through the
synthesis and secretion of hormones by cells aggregated into islets of Langerhans. The islets
of Langerhans are endocrine micro-organs implicated in glycemic regulation. They are
dispersed in the pancreatic gland. Each islet (1000 in a mouse pancreas, 1 million in a human
pancreas) contains five different cell subtypes: alpha-, beta-, delta-, PP- and epsilon-cells,
which produce and secrete glucagon (GCG), insulin (INS), somatostatin (SST), pancreatic
polypeptide (PPY) and ghrelin (GHRL), respectively. Diabetes is characterized by high
blood glucose levels, which, in most cases, result from the inability of the pancreas to secrete
sufficient amounts of insulin. Type 1 diabetes (T1D) is caused by the autoimmune-mediated
destruction of insulin-producing beta-cells [1]. Type 2 diabetes (T2D) is a life-threatening
metabolic disease currently attaining an epidemic scale. T2D develops when insulin-
producing pancreatic beta cells fail to respond to the increasing insulin demand produced
by peripheral insulin resistance in skeletal muscle and adipose tissue [2]. Although genetic
and environmental factors contribute to the risk of developing T2D [3], the molecular
basis of the disease is incompletely understood. More specifically, the fate of beta cells
in T2D remains a matter of intense discussion [4]. While data are available that indicate
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that the insulin-positive cell mass is lower in the pancreas of deceased T2D people when
compared to controls [5–7], the impact of decreased beta cell mass in type 2 diabetes
remains debated [8], and more work needs to be done on that topic. While it has been
proposed that the beta cell mass decreases in T2D patients due to premature programmed
cell death [9,10], recent data challenge the beta cell death hypothesis. They suggest that
beta cell dedifferentiation represents an alternative mechanism to explain the insufficient
insulin production observed in type 2 diabetes [11,12]. This concept is now supported by
experiments performed in a number of experimental models [13–15]. However, information
on human beta cell dedifferentiation remains scarce, when compared to that obtained in
mouse models [16,17]. We previously developed functional human beta cells lines [18,19]
and used them to model human beta cell dedifferentiation under pathophysiological
conditions [20,21].

In a number of pathophysiological contexts, adipose tissue has an important function
in disturbing glucose homeostasis by secreting factors that affect the function of cells and
tissues throughout the body, including beta cells [22,23]. In obesity, adipose tissue under-
goes morphological and cellular changes, leading to adipocyte hypertrophy and adipose
tissue inflammation, which represent hallmarks of maladaptive adipose tissue expansion
in obesity [24]. This pathological expansion of adipose tissue is more often observed in
visceral adipose tissue than in subcutaneous adipose tissue. Interestingly, adipose stromal
cells from obese adipose tissue acquire an atypical (or inflamed) phenotype that propagates
pathogenic signals to other organs, including the pancreas [25–28]. Indeed, pancreatic fat
has been proposed to regulate insulin production and beta cell function [29,30]. However,
the pathophysiological impacts and the cellular mechanisms by which adipose tissue im-
pacts human beta cell fate are poorly understood [31]. In the present study, we have focused
on the interactions between adipose tissue and human beta cells. We have reasoned that
secreted signals derived from human adipose tissue might affect human beta cells. We
demonstrate here that soluble factors derived from stromal cells isolated from human adi-
pose tissue signal human beta cells through different pathways, such as STAT, SMAD and
NFKB, previously shown to be involved in beta cell function [21,32–35]. We also observed
that such soluble factors decrease the expression of beta cell-specific transcription factors,
such as MAFA, PDX1 and NKX6-1 [36], while inducing at the same time the expression of
progenitor markers such as SOX9 [37], suggesting a beta cell dedifferentiation process [20].

2. Materials and Methods
2.1. Culture of EndoC-βH1 Cells

Human pancreatic beta cell line EndoC-βH1 cells were cultured in low-glucose DMEM
medium (5.6 mmol/L) (Thermo Fisher Scientific, Carlsbad, USA) supplemented with 2%
BSA fraction V (Roche Diagnostics, Basel, Switzerland), 50 µM β-mercaptoethanol (Sigma-
Aldrich, St. Louis, MO, USA), 10 mM nicotinamide (Calbiochem for Merck, Darmstadt,
Germany), 5.5 µg/mL human transferrin (Sigma-Aldrich), 6.7 ng/mL selenite (Sigma-
Aldrich), 100 U/mL penicillin and 100 µg/mL streptomycin (Thermo Fisher Scientific).
Cells were seeded at 8.104 cells/cm2 on plates coated with 1.2% Matrigel (Sigma-Aldrich)
and 3 µg/mL fibronectin (Sigma-Aldrich). The cells were cultured at 37 ◦C and 5% CO2,
and passaged once a week.

2.2. Isolation, Culture of Adipose-Derived Stromal Cells and Production of Conditioned Media (CM)

Fragments of subcutaneous and omental adipose tissue were obtained from
obese patients undergoing bariatric surgery at Geoffroy Saint-Hilaire hospitals (n = 26,
age = 40.8 ± 12.1 years, BMI: 43.1 ± 7.2 kg/m2). The clinical characteristics of patients
are provided in Supplementary Table S1. The study was conducted in accordance with
the Helsinki Declaration. The Ethics Committee of CPP Ile-de-France approved the clin-
ical investigations for all individuals, and written informed consent was obtained from
all individuals.
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Human adipose tissue fragments were minced and digested with collagenase type
II (Sigma aldrich) for 1 h at 37 ◦C, centrifuged, incubated with red blood cells lysis buffer
and filtered through a 70 µM filter before being plated. The cells were amplified in a
medium composed of 50% Human Preadipocyte Growth Medium (Sigma Aldrich) and
50% high glucose (25 mmol/L) DMEM medium (Thermofisher Scientific) with 10% fetal
bovine serum (EUROBIO, Courtaboeuf, France) for 4–6 days before being plated and used
for experiments. Conditioned media were prepared from cells, and were cultivated until
confluence in either the absence or presence of TNFα (1000 U/mL, R&D). Conditioned
media were also prepared from adipose-derived stromal cells transformed into adipocytes.
Then, confluent adipose-derived stromal cells were cultured for 4–5 days in an adipogenic
cocktail medium composed of 50% Human Adipocyte Differentiation Medium (Sigma
Aldrich) and 50% high-glucose (25 mmol/L) DMEM medium, 10% fetal bovine serum,
insulin (830 nM, Sigma Aldrich), IBMX (0.5 µM, sigma Aldrich), Rosiglitazone (5 µM, Sigma
Aldrich), and dexamethazone (1 µM, sigma Aldrich). The cells were then maintained for
2–3 days in the same medium lacking IBMX, rosiglitazone and dexamethazone. Once
the cells reached the desired stage, they were washed twice with PBS and cultivated in
EndoC-βH1 culture medium for 48 h for CM production, which were filtered and frozen.
CM were used on EndoC-βH1 cells diluted by half in the absence or presence of TNFα
(1.000 U/mL, R&D). The CM’s effect on EndoC-βH1 cells survival was measured by plating
3.5 × 105 cells/well. After 48 h of treatment with CM diluted by half in the absence or
presence of TNFα (1.000 U/mL, R&D), cell numbers were measured with an Invitrogen™
Countess™ 3 FL Automated Cell Counter (Thermofisher Scientific).

2.3. SiRNA Transfection

EndoC-βH1 cells were transfected as described [21] in OptiMEM using Lipofectamine
RNAiMAX (Life Technologies, Carlsbad, USA) with siRNA SMARTpools (Horizon Dis-
covery LTD, Cambridge, UK). The medium was replaced 2.5 h later with fresh culture
medium and analyses were carried out 4 days post-transfection. We used control non-
targeted siRNA (siCTRL, D-001810-01-20), and siRNA targeting STAT3 (siSTAT3) (M-
003544-00-0005), STAT1 (siSTAT1) (M-003543-00-0005), IL6ST (siIL6ST) (M-003543-00-0005),
SMAD2 (siSMAD2) (M-003561-01-0005), SMAD3 (siSMAD3) (M-020067-00-0005) and RELA
(siRELA) (M-003533-00-0005) at the final concentration of 80 nM.

2.4. RNA Isolation, Reverse Transcription, and qPCR

An RNeasy Micro kit (Qiagen, Courtaboeuf, France) was used to extract total RNA [38].
A First-Strand cDNA kit (Thermo Fisher Scientific) was used to synthesize cDNA. RT-qPCR
was performed using Power SYBR Green mix (Life Technologies), with a QuantStudio
3 analyzer (Thermo Fisher Scientific). Custom primers were designed with Primer-Blast
online, and their efficiency and specificity were determined for each pair by RTqPCR on a
serial dilution of cDNA samples. Relative quantification (2−dCt) was used to calculate the
expression levels of each target gene, normalized to CYCLOPHILIN-A transcripts. The list
of primers is presented in Supplementary Table S2.

2.5. Transcriptome Analysis

Total RNA was isolated using a RNeasy Micro kit (Qiagen, Hilden, Germany). The
quality of the RNA was assessed by a bioanalyzer 2100 (Agilent, Santa Clara, CA, USA).
In total, 100 ng of total RNA was used for each library. The RNA samples were processed
with the TruSeq mRNA Standard kit (Illumina) according to manufacturer’s instructions.
Libraries were sequenced with the NextSeq 500 on a High Output flow cell. In total,
38 ± 6 million read pairs were obtained for each sample. After sequencing, a primary
analysis based on AOZAN software (ENS, Paris, France) [39] was applied to demultiplex
and control the quality of the raw data (based on FastQC modules/version 0.11.5). Bioinfor-
matic Alignment was performed with STAR Version 2.5.2b and Ensembl Homo GRCh38p12
release 93 as reference. Differential analysis was performed with R version 3.5.1 (2 July 2018).
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We used the standard DESeq2 normalization method (DESeq2′s median of ratios with the
DESeq function), with pre-filtering of the reads and genes (reads uniquely mapped on the
genome, or up to 10 different loci with a count adjustement, and genes with at least 10 reads
in at least 3 different samples). Following the package recommendations, we used the Wald
test with the contrast function and the Benjamini–Hochberg FDR control procedure to iden-
tify the differentially expressed genes. R scripts and parameters are available on GitHub
(https://github.com/BSGenomique/genomic-rnaseq-pipeline/releases/tag/v1.0420), (ac-
cessed on 1 September 2021) RNAseq and raw data are available in the NCBI’s Gene
Expression Omnibus (GEO) database (accession GSE184795).

The data were analyzed using several softwares, such as Biojupies created by the
Ma’ayan laboratory and used to create the Heatmap and analysis pathways (https://
amp.pharm.mssm.edu/biojupies/upload/table (accessed on 1 September 2021)) [40] and
iDEP.91 established by Ge S.X et al. to confirm (http://bioinformatics.sdstate.edu/idep/
(accessed on 1 September 2021)) [41]. HeatMap illustrations of a set of genes selected on the
RNAseq were performed on Morpheus (https://software.broadinstitute.org/morpheus/
(accessed on 1 September 2021)).

2.6. Immunoblotting

For immunoblot assays, the cells were lysed in RIPA buffer and sonicated. Equal
amounts of protein (15 µg) were separated in 4–12% Bis-Tris gel (Thermo Fisher Scientific)
and transferred onto a PVDF membrane using an iBLOT2 Dry Blotting System (Thermo
Fisher Scientific). Membranes were blocked with 5% milk and immunoblotted with the
following primary antibodies overnight at 4 ◦C: SOX9 (1/500; ab5535; Millipore), MAFA
(1/500; Gift from A. Rezania, Betalogics), PDX1 (1/2000; [42]), ACTIN (1/2000; A5441,
Sigma Aldrich), PSTAT3 (1/1.000; 9131, Cell signaling), STAT3 (1/1.000; 9139, Cell sig-
naling), PSTAT1 (1/1000; 7649, Cell Signaling, Danvars, USA), STAT1 (1/1000; 9176, Cell
signaling), PSMAD2/3 (1/1000; 8828, Cell signaling), RELA (1/250, sc8008, Santa Cruz
Biotechnology). Species-specific HRP-linked secondary antibodies (Cell signaling) were
used for detection after washing and visualization was performed on an ImageQuant LAS
4000 following ECL exposure (GE Healthcare, Velizy, France).

2.7. Glucose-Stimulated Insulin Secretion (GSIS)

EndoC-βH1 cells were seeded onto Matrigel/fibronectin-coated 12-well plates at
3.5 × 105 cells/well. EndoC-βH1 cells were treated for 48 h with CM diluted by half in
the absence or presence of TNFα (1.000 U/mL, R&D). Then, they were starved in DMEM
(Thermo Fisher Scientific) containing 0.5 mM glucose for 24 h, washed twice and then
preincubated in Krebs–Ringer bicarbonate Hepes buffer (KRBH) containing 0.2% BSA in the
absence of glucose for 1 h. Insulin secretion was measured following a 60 min incubation
with KRBH containing 0.2% BSA that contained varying glucose concentrations or KCl. For
insulin content measurements, EndoC-βH1 cells were lysed in the culture wells in 50 mM
Tris-HCl, pH 8.0, 150 mM sodium chloride, 1.0% Igepal CA-630 (NP-40), 0.5% sodium
deoxycholate, 0.1% sodium dodecyl sulfate (Thermo Fisher Scientific), and anti-protease
tablets (Roche) for 20 min on ice. Insulin secretion and content were measured by ELISA
(Mercodia AB, Uppsala, Sweden).

2.8. Statistics

The graphs were constructed with Prism software (GraphPad). The results are pre-
sented as the mean ± SEM (Standard Error of the Mean). The number of experiments is
indicated in the figure legends. Differences from control were evaluated using one-way
ANOVA following by Dunnet’s multiple comparison test, or when the normality test was
not passed a Kruskall–Wallis followed by Dunn’s multiple comparison test was used. For
more than two groups, two-way ANOVA and a Bonferroni post-test was applied. A p-value
less than 0.05 was considered significant.

https://github.com/BSGenomique/genomic-rnaseq-pipeline/releases/tag/v1.0420
https://amp.pharm.mssm.edu/biojupies/upload/table
https://amp.pharm.mssm.edu/biojupies/upload/table
http://bioinformatics.sdstate.edu/idep/
https://software.broadinstitute.org/morpheus/
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3. Results
3.1. EndoC-βH1 Cells Are Sensitive to Conditioned Medium from Human Omental Stromal Cells

We first developed an assay to test the effects of soluble factors produced by adipose
tissue-derived stromal cells on human beta cells (Figure 1a). We obtained human omental
adipose tissue biopsies from morbidly obese candidates for bariatric surgery. We isolated
and amplified stromal cells. They were cultured until confluence in the absence or presence
of TNF-α to create a pro-inflammatory environment, or differentiated into adipocytes.
Conditioned media (CM) were next prepared by incubating adipose tissue-derived cells
for 48 h in EndoC-βH1 culture medium, and then filtered and frozen. Next, a human
beta cell line EndoC-βH1 was cultured with omentum-derived CMs diluted by half for 48
h, and its effects on gene expression were quantified by RNA-sequencing. Around 1000
genes were differently expressed between the control conditions and treatment with CM
by the stromal cells (1157 and 878 when stromal cells were pretreated or not with TNF-α
respectively), and 141 genes were deregulated in EndoC-βH1 pretreated with CM from
stromal cells differentiated into adipocytes. The CM from omental stromal cells activated
inflammatory pathways (Figure 1b) and up-regulated the STAT pathways (Figure 1c). As
examples, the expressions of STAT1, STAT3, IL6ST and IL13RA1 were induced upon CM
treatment (Figure 1c). The SMAD pathway was also induced by CM treatment, with
differential effects of stromal- vs. adipocyte-derived CM. Indeed, stromal-derived CM
and stromal/TNFα-derived CM induced the expressions of SMAD7, SMURF2, SKIL and
BMPR2, which was not the case for adipocyte-derived CM (Figure 1d). We also noted a
sharp decrease in the expressions of many genes involved in lipogenesis and cholesterol
synthesis upon treatment with CM from omental-derived cells (Figure 1b,e). Finally, many
beta cell-specific genes were down-regulated upon CM treatment. This was, for example,
the case for transcription factors such as NKX6-3, NKX6-1, MAFA, PDX1 and MNX1. It
was also the case for the RNA-encoding proteins implicated in insulin secretion, such as
CHGA, GCK, SCG5 and SCGN, or metabolic enzymes such as AACS, ENO2, and HADH
(Figure 1f) [43–48]. Altogether, the data suggest that soluble factors derived from adipose
stromal cells could regulate beta cell identity/fate.

Based on RNA-seq analyses, we first investigated the impact of the STAT pathway on
the regulation of beta cell reprogramming. Gene expression analyses revealed that omental-
derived CM increased STAT1 and STAT3 (Figures 2a and S1A–D for quantification). Time
course analyses via Western blotting indicated that the STAT1 and STAT3 levels increased
after 24 h of treatment, while STAT1 and STAT3 phosphorylation was already observed
after 1 h of treatment; STAT1 phosphorylation was transient, and STAT3 phosphorylation
was stable with time (Figures 2a and S1A–D for quantification). We also noted that STAT
targets such as SOCS3, FBG, IL6ST (Figure 2a), IL13RA1, PARP9, JUNB, DTX3L, PLOD2 and
SBNO2 (Figure S1E) were increased in EndoC-βH1 upon treatment with CM from omental-
derived cells, indicating that the whole STAT pathway was activated by CM treatment. We
next analyzed the SMAD pathway. We observed that treatment with omental-derived CM
induced SMAD7, BMP5 or SKIL mRNA level increases (Figure 2b). Moreover, this treatment
(either 1 or 48 h) induced SMAD2/3 phosphorylation (Figures 2b and S1F for quantification).
We also observed signs of induction of the NFKB pathway with increased NFKBIA and
IRF1 mRNA levels and RELA (p65) protein following CM treatment (Figure 2c).
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Figure 1. Impact of conditioned media (CM) from omental adipose stromal cells on EndoC-βH1 
cells. (a) Experimental scheme: CM was prepared from stromal cells isolated from omental adipose 
tissue and cultured without (CM-S) or with TNF-α (CM-S/TNF-α), or differentiated into adipocytes 
(CM-AD). CMs were added to EndoC-βH1 cells and RNAs were prepared 48 h later for tran-
scriptomic analyses. (b) Identification using Wikipathway of up- and down-regulated pathways in 
EndoC-βH1 cultured in omental conditioned media. (c–f) Heatmaps of genes of the STAT pathway 
(c), of the SMAD pathway (d), of lipogenesis and cholesterol synthesis (e) and enriched beta cells. 

We next validated, via RT-qPCR, the effects of CM derived from omental-derived 
cells on the expressions of genes involved in lipogenesis and cholesterol synthesis. Specif-
ically, RT-qPCR indicated a decrease in SREBF1, SCD, FASN, PCSK9, LDLR and HMGCR 
upon treatment with CM from omental-derived cells (Figure 2d). 

Figure 1. Impact of conditioned media (CM) from omental adipose stromal cells on EndoC-βH1 cells.
(a) Experimental scheme: CM was prepared from stromal cells isolated from omental adipose tissue
and cultured without (CM-S) or with TNF-α (CM-S/TNF-α), or differentiated into adipocytes (CM-
AD). CMs were added to EndoC-βH1 cells and RNAs were prepared 48 h later for transcriptomic
analyses. (b) Identification using Wikipathway of up- and down-regulated pathways in EndoC-βH1
cultured in omental conditioned media. (c–f) Heatmaps of genes of the STAT pathway (c), of the
SMAD pathway (d), of lipogenesis and cholesterol synthesis (e) and enriched beta cells.
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of treatment (n = 6). (c,d) Genes linked to the NFKB pathway and to lipogenesis and cholesterol 
synthesis were analyzed by RT-qPCR after 48 h of treatment (n = 9–24). Data are represented as 
mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001. 

We next used RT-qPCR to analyze the effects of CM from omental-derived cells on 
beta cell-specific genes. We observed a sharp decrease in beta cell-enriched transcription 
factors such as MAFA, NKX6.1 and PDX1 (Figure 3a). We also observed a decrease in 
mRNA-encoding beta cell-specific hormones, such as INS pre-mRNA and IAPP (Figure 
3a). Time course analyses indicated that the decrease in NKX6-1 mRNA level was ob-
served as early as after 6 h of treatment, while the effects on the other tested genes required 
at least 12 h (Figure 3b). CM from omental adipose tissue, cultivated as an explant, also 
showed a decrease in beta cell markers, but to a lesser extent (data not shown). 

Figure 2. Effects of CM from omental adipose stromal cells on the STAT, SMAD and NFKB pathways
and on lipogenesis and cholesterol synthesis genes in EndoC-βH1 cells. EndoC-βH1 cells were
exposed to CMs. (a) Genes linked to the STAT pathway were analyzed by RT-qPCR after 48 h of
treatment (n = 8–22). STAT1, pSTAT1, STAT3 and pSTAT3 were analyzed by Western blot after 1, 4, 24
and 48 h of treatment (n = 5). (b) Genes linked to the SMAD pathway were analyzed by RT-qPCR after
48 h of treatment (n = 8–18). PSMAD2/3 was analyzed by Western blot after 1 and 48 h of treatment
(n = 6). (c,d) Genes linked to the NFKB pathway and to lipogenesis and cholesterol synthesis were
analyzed by RT-qPCR after 48 h of treatment (n = 9–24). Data are represented as mean± SD. * p < 0.05,
** p < 0.01, *** p < 0.001.
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We next validated, via RT-qPCR, the effects of CM derived from omental-derived cells
on the expressions of genes involved in lipogenesis and cholesterol synthesis. Specifically,
RT-qPCR indicated a decrease in SREBF1, SCD, FASN, PCSK9, LDLR and HMGCR upon
treatment with CM from omental-derived cells (Figure 2d).

We next used RT-qPCR to analyze the effects of CM from omental-derived cells on
beta cell-specific genes. We observed a sharp decrease in beta cell-enriched transcription
factors such as MAFA, NKX6.1 and PDX1 (Figure 3a). We also observed a decrease in
mRNA-encoding beta cell-specific hormones, such as INS pre-mRNA and IAPP (Figure 3a).
Time course analyses indicated that the decrease in NKX6-1 mRNA level was observed as
early as after 6 h of treatment, while the effects on the other tested genes required at least
12 h (Figure 3b). CM from omental adipose tissue, cultivated as an explant, also showed
a decrease in beta cell markers, but to a lesser extent (data not shown). Interestingly, CM
from omental stromal cells induced increases in the expression levels of HES1, MYC, PAX4
and SOX9, all markers of beta cell dedifferentiation [20,21,49] (Figure 3c). This observation
was confirmed at the protein level with the induction of dedifferentiation markers, such as
SOX9, and the reduction in beta cell markers, such as MAFA and PDX1 (Figure 3d).

CMs from omental stromal cells pre-treated with TNF-α were the most effective in
modulating beta cell gene expression. In order to determine whether this was due to traces
of remaining TNF-α in the CM, we looked at the effect of recombinant TNF-α on beta cell
gene expression. The RT-qPCR analyses indicated that TNF-α had no additional effect on
the expression of beta cell markers, such as MAFA, and dedifferentiation markers such as
HES1 (Figure S2A). Then, we tested the effect of the CM from omental stromal cells on
EndoC-βH1 cell survival and function. Neither the survival of EndoC-βH1 cells, nor their
ability to secrete insulin in response to glucose, was affected following a 48 h CM treatment
(Figure S3).

Hence, CM from omental stromal cells leads to several modifications in EndoC-βH1:
activation of the STAT, SMAD and NFKB pathways, reductions in metabolic processes such
as lipogenesis and cholesterol synthesis, and losses of beta cell identity.

3.2. CM from Subcutaneous Stromal Cells Does Not Recapitulate the Effects of CM from Omental
Stromal Cells

We then compared the effects of omental vs. subcutaneous stromal cells on beta
cell-specific gene expression (Figure 4a). As expected, subcutaneous stromal cells had a
strong adipogenic potential (more adipocytes, higher expression of AP2), while omental
cells had a pro-inflammatory profile based on the IL6 and TGFB1 mRNA expression
levels (Figure 4b). Importantly, CM from omental stromal cells (either control, inflamed
or differentiated into adipocytes) decreased the expressions of beta cell genes (MAFA,
NKX6-1, PDX1, INSULIN and IAPP), while this effect was not observed with CM from
subcutaneous stromal cells (Figure 4c). It is noteworthy that a decrease in NKX6-1 and PDX1
was observed with CM from subcutaneous stromal cells differentiated into adipocytes
(Figure 4c). Experiments performed with CM from adipose tissue fractions from 26 patients
revealed the robustness of the effect (Figure 4c). CM from subcutaneous stromal cells did
not increase the expressions of dedifferentiation markers such as HES1, MYC, PAX4 and
SOX9, which differed from the induction observed with CM from omental stromal cells
(Figure 4d).
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and PDX1 following exposure to CMs for 1 and 48 h (n = 6). Data are represented as mean ± SD. * p 
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Figure 3. Effects of CM from omental adipose stromal cells on beta cell markers in EndoC-βH1 cells.
(a) EndoC-βH1 cells were exposed to CMs from omental adipose stromal cells for 48 h. Beta cell-
specific genes (MAFA, NKX6-1, PDX1, INS pre-mRNA, IAPP) were analyzed by RT-qPCR (n = 8–23).
(b) Time course effect of CMs from omental adipose stromal cells on beta cell-specific genes (n = 3–5).
(c) Effects of CMs from omental adipose stromal cells (48 h treatment) on beta cell dedifferentiation
markers (HES1, c-MYC, PAX4, SOX9) (n = 14–23). (d) Western blot analyses of SOX9, MAFA and
PDX1 following exposure to CMs for 1 and 48 h (n = 6). Data are represented as mean± SD. * p < 0.05,
** p < 0.01, *** p < 0.001.
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Figure 4. CM from subcutaneous stromal cells does not recapitulate the effects of CM from omental
stromal cells. (a) Experimental scheme. (b) qPCR analyses of AP2, IL6 and TGFB1 mRNA in
omental and subcutaneous cells (either control, inflamed or differentiated into adipocytes) (n = 4–10).
(c,d) EndoC-βH1 cells were exposed to CMs from omental or subcutaneous stromal cells for 48 h.
Beta cell-specific genes (MAFA, NKX6-1, PDX1, INS pre-mRNA, IAPP) (c) and dedifferentiation
markers (HES1, c-MYC, PAX4, SOX9) (d) were analyzed by RT-qPCR (n = 5–23). Data are represented
as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Taken together, CM derived from human omental but not subcutaneous stromal cells
decreased human beta cell identity.

3.3. Implication of STAT1 and STAT3 Pathways in the Effects of CM from Omental Stromal Cells
on Beta Cell Identity

We silenced STAT3 in EndoC-βH1 using siRNA (siSTAT3). The knock-down was
efficient, as demonstrated by the sharp decrease in STAT3 mRNA under basal and stimu-
lated (IL6 treatment) conditions (Figure 5a,b), and the absence of P-STAT3 following IL6
treatment (Figures 5b and S4A–B for quantification). SiSTAT3 treatment also inhibited the
induction of STAT3 by CM from omental stromal cells at the mRNA, protein and phos-
phorylation levels (Figure 5a,b). Knock-down also led to a decreased expression of many
STAT3 canonic targets, such as SOCS3, IL6ST and FGB (Figure 5c), and additional ones
such as NFKBIZ and C2CD4A [50–53] (Figure 5d). Interestingly, we observed that STAT3
knock-down reversed the induction of HES1 observed upon CM treatment (Figure 5d). On
the other hand, STAT3 silencing did not reverse the reduction in beta cell markers (PDX1,
MAFA, NKX6-1) upon CM treatment (Figure 5e). Similar results were obtained by silencing
STAT1 under the same experimental conditions (Figure S4C).

We finally tested the hypothesis that omental stromal cells secrete IL6-like cytokines
that could act on beta cells through the STAT pathway. Then, we blocked IL6-like cytokines
signaling using siRNA against IL6ST, one of the subunits of the IL6 receptor [54–57].
Thus, silencing was highly effective, based on the decrease in IL6ST mRNA under basal
and stimulated conditions, and the altered STAT1 and STAT3 expressions (both at the
mRNA and protein levels), as well as their phosphorylation under stimulated conditions
(Figures 5f and S4D–G for quantification). Consequent to siIL6ST, we observed reduced
expressions of STAT3 targets, such as SOCS3 and FGB (Figure 5f). However, IL6ST knock-
down did not reverse the decrease in beta cell markers (PDX1, MAFA, NKX6-1), but it did
reverse the induction of HES1 that was observed upon CM treatment (Figure 5g).

To sum up, omental stromal cells signal to beta cells through the STAT pathways by
modulating the genes involved inflammatory pathways. However, STAT signaling did
not regulate the gene network involved in the modulation of beta cell identity, with the
exception of HES1.

3.4. Implication of SMAD and RELA Pathways in the Effects of CM from Omental Stromal Cells
on Beta Cell Identity

We repeated the above-described strategy by silencing the SMAD pathway using
siRNA targeting SMAD2 and SMAD3. RT-qPCR indicated that siRNAs were specific
to their respective targets (Figure 6a). Western blot analyses showed that the CM from
omental stromal cells induced SMAD2/3 phosphorylation (Figure 6b). This induction was
specifically inhibited when SMAD2 was silenced, but was resistant to SMAD3 silencing
(Figures 6b and S5A for quantification). Moreover, siSMAD2 (but not SMAD3) decreased
the induction of the SMAD2/3 target gene, SMAD7 (Figure 6b) [58,59]. Finally, the effect
of CM on beta cell markers (MAFA, NKX6-1, PDX1) was not reversed by either siSMAD2
or siSMAD3 (Figure 6c). Thus, omental stromal cells signal on beta cells through SMAD2;
however, this signaling is not implicated in the regulation of beta cell identity.
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Figure 5. Role of STAT1 and STAT3 pathways in the effects of CM from omental stromal cells on
beta cell identity. EndoC-βH1 cells were transfected with control non-target siRNA (siCTRL) or
siRNA-targeting STAT3 (siSTAT3) (a–e) or IL6ST (siIL6ST) (f,g). Two days later, cells were treated
with either IL6 or CM for 48 h. Analyses were performed by either RT-qPCR or Western blot. Data
are represented as mean ± SD of 4–6 biological replicates. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 6. Role of SMAD and REL pathways in the effects of CM from omental stromal cells on beta
cell identity. EndoC-βH1 cells were transfected with control nontarget siRNA (siCTRL), or siRNA
targeting SMAD2 or SMAD3 (siSMAD2, siSMAD3) (a–c) or RELA (siRELA) (d–f). Two days later,
cells were treated with either IL6 or CM for 48 h. Analyses were performed by either RT-qPCR or
Western blot. Data are represented as mean ± SD of 4–12 biological replicates. * p < 0.05, ** p < 0.01,
*** p < 0.001.

We finally silenced RELA, a subunit of NF-kB (also named p65). The knock-down was
effective, with a sharp decrease in RELA mRNA and its target NFKBIA (Figure 6d). While
this silencing had no effects on beta cell markers (MAFA, NKX6-1, PDX1) (Figure 6e), it
reduced the induction of SOX9 observed upon CM treatment, at both the RNA and protein
levels (Figures 6f and S5B,C for quantification).

Taken together, omental-derived factors signal to human pancreatic beta cells through
different pathways (STAT, SMAD2 and RELA) to promote beta cell inflammation. Interest-
ingly, the STAT and RELA pathways were restricted to the regulation of dedifferentiation
markers, such as HES1 and SOX9, altering beta cell identity.
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4. Discussion

In this study, we demonstrate that soluble factors derived from stromal cells isolated
from human adipose tissue signal on human beta cells and modulate their identity.

We developed here a model to test the effects of a conditioned medium (CM) derived
from adipose tissue on human beta cells. We produced CMs from a large series of either
omental or subcutaneous human adipose tissue fat pads, and tested their effects on the
human beta cell line EndoC-βH1 [18]. This cell line has been characterized as a valid model
to study human beta cells, and can now be used for screenings to identify novel drug target
candidates [60]. EndoC-βH1 cells were also validated as a model to study human beta
cells under patho-physiological conditions, such as dedifferentiation [20], and sensitivity to
lipotoxicity [61] and viral infection [21].

We observed that CMs from human omental stromal cells gives rise to an inflammatory
signature in EndoC-βH1 cells. This was, for example, highlighted by the induction of the
STAT pathway. The importance of this pathway in pancreatic beta cells has been described
in the past in great detail. As examples, the STAT3 pathway has been characterized as a
regulator of beta cell mass; it is implicated in the induction of endocrine cell differentiation
from pancreatic ductal cells [32], and represents a modulator of beta cell cycling under
specific conditions, such as pancreatic injury [33]. STATs have also been implicated as
important players in the signaling of cytokines, such as IFN-γ [10] and IFNα [62], in
pancreatic beta cells, and in the regulation of cytokines-induced apoptosis [34]. It was
also found that IL6 signals through STATs in pancreatic beta cells [63]. Interestingly, our
data indicate that CM from omental stromal cells induced STAT1 and STAT3, at both the
mRNA and protein levels. CM also induced the phosphorylation of both STAT1 and STAT3.
However, our time course experiments have indicated that while STAT1 phosphorylation
was transient, peaking after 1 h of treatment, STAT3 phosphorylation was stable for up to
72 h. This temporal expression pattern is different from what has been observed in other
contexts. As examples, the treatment of the rat insulinoma cell line INS1E with IL6 gives
rise to the extremely transient phosphorylation of STAT3 [63], and while the treatment
of EndoC-βH1 cells with IFNα induced both STAT1 and STAT3 phosphorylation, STAT3
phosphorylation is more transient than STAT1 phosphorylation [62]. We thus speculate
that in our settings, STATs activation might not be due to a single factor derived from CM,
but to a combination of signals.

Our data indicate that CM from human omental stromal cells has a major effect
on beta cell genes identity. We observed the decreased expression of beta cell-specific
transcription factors such as MAFA, NKX6.1 and PDX1, and this was also the the case
for their target genes INS and IAPP [36]. We observed a parallel increase in genes that
are normally lowly expressed in, or absent from, mature beta cells such as HES1, MYC or
SOX9. Altogether, this might suggest a process of dedifferentiation. In fact, beta cells are
long-living factories that produce, store and secrete impressive amounts of insulin [64,65].
It has been observed that in a number of models that mimic type 2 diabetes, beta cells lose
their mature phenotype and shift to an immature state named dedifferentiation [11,12].
This process of dedifferentiation was observed in many conditions, such as in chronic
hyperglycemia [11], and also in mouse models of type 1 and type 2 diabetes [12,66]. We
previously validated EndoC-βH1 cells as a model of human beta cell dedifferentiation
following virus infection [21], growth factor stimulation [20], and lipotoxic stress [61].
Here, we have added CM from omental stromal cells to the list of conditions that induce
human beta cell dedifferentiation. Intriguingly, this negative effect on beta cell identity was
specific for omental CM, and was not replicated with CM from subcutaneous stromal cells.
This major difference is not understood at this stage. However, it is important to keep in
mind that stromal cells isolated from omental or subcutaneous adipose tissues differ at
several levels. For example, subcutaneous stromal cells are more adipogenic, while visceral
stromal cells are more pro-inflammatory [67,68]. The fact that CM from subcutaneous and
omental cells differ in their capacity to induce the loss of beta cell identity might be used in
differential screening aiming at identifying specific factors, or lipids and pathways, that
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induce beta cell dedifferentiation. Indeed, at this stage, we do not know the identity of
such signals. Multiplex array and mass spectrometry will be used in the future to compare
the secretome of omental versus subcutaneous adipose stromal cells, with the objective of
identifying specific omental factors that modulate beta cell identity. Note that in the present
study, we used stromal cells isolated from obese patients. As similar samples from lean
controls were not available, we did not study their effects, which represents a limitation in
our current study.

In the present study, we have employed a loss-of-function-based approach wherein
we knocked-down specific genes. This siRNA-based approach is highly efficient, as demon-
strated in this study and in previous ones [61]. However, none of the siRNA-mediated
losses of function (STAT1, STAT3, IL6ST, SMAD2, SMAD3, RELA) reversed the decreased
expression of beta cell-specific transcription factors observed upon treatment with CM from
omental cells. However, we learned from such experiments that IL6 is not the factor in
CM that induces beta cell dedifferentiation. Indeed, our data indicate that IL6 is efficiently
expressed by omental in comparison to subcutaneous stromal cells and IL6 signals in
EndoC-βH1 cells. However, by efficiently blocking the IL6 pathway using siRNA against
IL6ST, we did not reverse dedifferentiation. We also learned that blocking one specific
pathway was not sufficient to reverse the loss of identity induced by CM from omental
stromal cells, which might suggest that the induction of more than one pathway is neces-
sary to observe this loss of identity phenotype. Of note, the knock-down of either STAT3
or IL6ST reversed the induction of HES1 observed upon CM treatment, while silencing
RELA reduced the induction of SOX9. This suggests that reversal might be possible. In
this context, it is interesting to keep in mind that different screens are currently being
performed to discover ways to protect against dedifferentiation. In this context, it was
found that treatments with inhibitors of the TGFβ pathway [69] or with mu-opioid receptor
agonists [70] reverse beta cell dedifferentiation. Whether such types of molecules reverse
dedifferentiation induced by CM from omental stromal cells remains to be tested.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells11060924/s1, Table S1: Clinical characteristics of human donors, Table S2: List of primers,
Figure S1: CM from omental-derived cells activates STAT and SMAD signaling in EndoC-βH1 cells,
Figure S2: Recombinant TNF-α does not modulate MAFA and HES1 expression in EndoC-βH1
cells, Figure S3: Conditioned media do not modulate beta cell survival or glucose-stimulated insulin
secretion, Figure S4: Efficient STAT 1, STAT3 or IL6ST knock-down does not revert the effect of CM
on beta cell identity, Figure S5: Efficient SMAD2/3 or RELA knock-down does not revert the effect of
CM on beta cell identity.
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