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Abstract: Entropy is a concept that emerged in the 19th century. It used to be associated with heat
harnessed by a thermal machine to perform work during the Industrial Revolution. However, there
was an unprecedented scientific revolution in the 20th century due to one of its most essential
innovations, i.e., the information theory, which also encompasses the concept of entropy. Therefore,
the following question is naturally raised: “what is the difference, if any, between concepts of entropy
in each field of knowledge?” There are misconceptions, as there have been multiple attempts to
conciliate the entropy of thermodynamics with that of information theory. Entropy is most commonly
defined as “disorder”, although it is not a good analogy since “order” is a subjective human concept,
and “disorder” cannot always be obtained from entropy. Therefore, this paper presents a historical
background on the evolution of the term “entropy”, and provides mathematical evidence and logical
arguments regarding its interconnection in various scientific areas, with the objective of providing a
theoretical review and reference material for a broad audience.

Keywords: entropy; thermodynamics; information theory

1. Introduction

Entropy is a measure largely used in science and engineering [1]. It was initially intro-
duced in thermodynamics by Clausius [2], developed by Boltzmann and Gibbs through the
19th century [3] and generalized by Shannon in the 20th century [4] to the point that it can
be applied in a broad range of areas. It has been applied to biology [5–9], economics [10–12],
engineering [13–15], linguistics [16–18] and cosmology, at the center of one of the greatest
open problems in science [10–12]. Given this general use in different fields of knowledge,
it is important to think about what the measure of entropy actually represents in each
different context and the possible equivalence between them.

A misunderstanding about the meaning of entropy is reported in several papers when
applied to areas other than physics and information theory [19–23]—sometimes even in
these areas—[24,25], and is also reported among students [26]. It is not uncommon to
signify entropy as “disorder” [27,28]; although we can often assume for didactic appeal,
moderation is necessary so that we do not use a subjective human concept. This is not a
rigorous statement since “disorder” is a subjective construction and cannot be measured
by entropy [29].

This work intends to contribute with a review of the historical evolution of the concept
of entropy, demonstrating the current level of understanding regarding the connection
between thermodynamics and information theory. Our target audience is mainly readers
outside the fields of physics and engineering, who will have no trouble following two
demonstrations about the equivalence between Boltzmann–Gibbs entropy and information
theory entropy.

This paper is structured as follows: Section 2 presents the historical evolution of the
concept of entropy in physics and information theory; Section 3 explores conceptual rela-
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tionships between apparitions in these two fields; and finally, we conclude by summarizing
the discussed points in Section 4.

2. Historical Background

The Industrial Revolution and the development of steam engines was a period of
reflection on the physical properties of matter, energy, heat, work and temperature. These
phenomena needed to be well understood in order to create efficient engines. It is in this
context that the empirical laws that describe the thermal behavior of macroscopic matter
were systematized in what it is know today as classical thermodynamics.

In 1825, Sadi Carnot, expanding on his father’s reflections, who had already inferred
that perpetual motion was impossible, noted the impossibility of an ideal thermodynamic
cycle—Carnot cycle—being reversible [30]. These were actually the first, perhaps rudimen-
tary, formulations of the second law of thermodynamics.

2.1. Clausius Entropy

A few decades later, Clausius developed the concept of an extensive quantity, which
cannot be measured directly, called entropy. This was associated with an asymmetry in
the flow of heat; in nature, heat always flows from a hotter body to a colder one, but the
reversal process does not happen spontaneously [31].

The concept of entropy (from the Greek word meaning “change”) was developed
to explain the tendency of heat, pressure and density to gradually disappear with time,
or similarly, the inevitable generation of heat when work is done on a system by changing
temperature. The definition of the state function S, in honor of Sadi, called entropy, is
as follows:

dS =
δQ
T

+ δSgen (1)

with unit J/K. δQ is conventionally used to indicate an inexact differential [32] in which
integration depends not only on the starting and ending states, but on the process path
in between. On the other hand, entropy is a thermodynamic property; therefore, dS is
an exact differential, and integration does not depend on the process path between the
starting and ending states. The amount of entropy generation, δSgen, is null in reversible
processes and greater than zero when an irreversible phenomena occurs within the system.
However, there is a modification in the system’s entropy due to a change in state, dS, which
can be either positive or negative depending on the direction of heat transfer (to or from
the system).

For an adiabatic process, δQ = 0, and when the entropy differential, dS, is not
null, its value is δSgen and is always associated with irreversible paths. Contrary to energy,
the entropy of an isolated system increases when the process occurs irreversibly, and thus, is
not conserved. A reversible process is ideal, but it never really occurs in nature. Therefore,
an amount of irreversibility is always present in the system, i.e., the isolated system’s
entropy keeps increasing and never reduces.

This concept refers to the increase in entropy principle [33]: the entropy variation of an
isolated system (a) never decreases and (b) tends to increase, due to the process’ irreversibility.

2.2. Boltzmann–Gibbs Entropy

In the late 1800s, cutting-edge physics was trying to model the ideal gas problem.
In this context, Maxwell—and shortly afterwards, Boltzmann—developed the Boltzmann
equation as a new model for some problems in classical mechanics, such as that of ideal gas.

The entropy, S, of an ideal gas is a state function of a possible number of microstates, W,
for molecules in a macrostate (defined by temperature, volume and pressure). Considering
a system comprising an ideal gas and dividing it into two parts, it is hypothesized according
to [3] that S = S1 + S2 and W = W1 ×W2, given the Boltzmann equation, S = k log W + c,
as shown in Figure 1. Hoffmann [34] considered that an ideal gas at 0 K has null entropy
and only one microstate, k log 1+ c = 0→ c = 0, and S = k log W is the entropy of an ideal
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gas, where k is the Boltzmann constant. Gibbs [35] enhanced the concept of Boltzmann
entropy in cases where microstates are not evenly likely:

S = −k
n

∑
i=1

pi log pi (2)

where pi is the probability of the i-nth microstate, given that all W microstates are evenly
likely, and pi = (1, 2, 3, . . ., n) = 1/n and Equation (2) are the same Boltzmann equation.
This model led to the notion of entropy with statistical meaning and the conciliation of
microscopic reversibility with macroscopic irreversibility.

S(W1) + S(W2) = S(W1W2)

Deriving both sides with respect to W1 and keeping W2 constant results in the
following:

S′(W1) = W2S′(W1W2)

Deriving in W2 by keeping W1 constant and applying the chain rule, we obtain the
following:

S′(W1W2) + W1W2S′′(W1W2) = 0

S′(W) + WS′′(W) = 0

Replacing S′(W) = f (W), we obtain the following:

f (W) + W
d f (W)

dW
= 0

f (W)dW + Wd f (W) = 0

( f W)′ = 0

By integrating both sides, it returns to the following:

f W = k

which is the same as the following:

W
dS
dW

= k

∫
dS = k

∫ dW
W

S = k log W + c

Figure 1. Boltzmann’s entropy formula derivation: since it is known that total entropy S is the sum
of its parts and the total number of microstates W is the product of its parts, the only function S(W)

relating these variables is a logarithm.

2.3. Shannon Entropy

In 1948, Shannon [4] published the foundational concept of information theory with
the concept of entropy of the information of a discrete probability distribution related to
the maximum possible data compression.
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Following an axiomatic approach, with one enunciate and two desirable properties, it
is possible to define the Shannon entropy. Considering an event with p probability, and the
corresponding function I(p), the two desirable properties are as follows: (i) I(p) >= 0 is a
decreasing function of p; (ii) for any two independent events with probabilities p1 and p2,
I(p1 p2) = I(p1)+ I(p2). The I(p) interpretation is a measure of “surprise” or “uncertainty”
depending on the occurrence of the event. From here, it is possible to determine that the
logarithmic function, − log p, satisfies the requested conditions for I(p). Now, let X be a
random variable. The random variable I(p(X)) = − log p(X) is called self-information or
information content of X [36].

In the case of a discrete random variable X with probability distribution p(x), the av-
erage information content about X is given by the expected value or Shannon entropy:

H(X) = −
n

∑
i=1

pi(x) log pi(x) (3)

The above entropy is dimensionless, although it is common to use the base 2 logarithm
and measuring the entropy itself in bits. Apparently, Shannon obtained the name “entropy”
from von Neumann himself, as he related [37]:

“My greatest concern was what to call it. I thought of calling it ‘information’, but the
word was overly used, so I decided to call it ‘uncertainty’. When I discussed it with John
von Neumann, he had a better idea. Von Neumann told me, ‘You should call it entropy,
for two reasons. In the first place your uncertainty function has been used in statistical
mechanics under that name, so it already has a name. In the second place, and more
important, no one really knows what entropy really is, so in a debate you will always
have the advantage".

Shannon’s original motivation was to create a measure useful in quantifying the
channel capacity needed to send a binary message (encoded in a given electrical signal)
through telephones lines. One of the uses for the entropy in information theory lies in the
measurement of ultimate data compression. For example [1], let us suppose that eight
letters, whose frequencies are 1/2, 1/4, 1/8, 1/16, 1/64, 1/64, 1/64 and 1/64, respectively,
must be sent. By initially using binary coding, one could assume that 3 bits are needed
(000, 001, 010, 011, 100, 101, 110, 111). However, since their frequencies are different, it is
possible to encode them as 0, 10, 110, 1110, 111100, 111101, 111110 and 111111, making
the average number of bits 2. A fundamental extension of this concept is the derivation of
the mutual information between variables X and Y, given by I(X; Y) = H(X)− H(X|Y),
which measures, on average, how much knowing Y decreases the uncertainty over X.

It is important to emphasize that Shannon entropy by itself does not provide any
means to estimate the probability distribution; therefore, it relies on statistics or the ob-
server’s knowledge. In information theory, it is not uncommon to assume uniform dis-
tribution, which makes entropy become a trivial function measuring the multiplicity of
the different symbols, just like its counterpart measure of Boltzmann–Gibbs entropy that
counts the number of possible micro-states of particles in a given volume of space.

2.4. Partial Information Decomposition

Recent advances in information theory resulted in the methodology called partial
information decomposition [38]. Given a set of variables R1, R2, . . . , Rn defined as inputs
of a system, and an output Y, the objective of this method is to decompose the information
on R (be it on the independent R components or joint distributions of these elements). This
proposal has the objective of providing information theory with the necessary tools for
characterizing the structure of multivariate interactions. Let A1, A2, . . . , Ak be nonempty
and overlapping sets of R called sources. Since the mutual information for each I(S; Ai)
is an average value over the distributions as mentioned before, two sources might pro-
vide the same average amount of information, while also providing information about
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different outcomes of S [38]. Formally, the information about S provided by A is given by
the following:

I(S; A) = ∑
s

p(s)I(S = s; A) (4)

in which the specific information I(S = s; A) is given by the following:

I(S = s; A) = ∑
a

p(a|s)
(

log
1

p(s)
− log

1
p(s|a)

)
(5)

and defining,
Imin(S; A1, A2, . . . , Ak) = ∑

s
p(s)min

Ai
I(S = s; Ai) (6)

the partition information function PI can be defined as follows:

Imin(S; α) = ∑
β�α

PI(S; β) (7)

In Equation (7), α belongs to the set of all nonempty subsets of R, and the ordering
relationship is given by α � β ⇐⇒ ∀B ∈ β, ∃A ∈ α, A ⊆ B. The partial information
function quantifies the (redundant) information coming from α that does not come from
any simpler collection β � α.

2.5. Algorithmic Information Theory

Algorithmic information theory is the application of elements of Shannon’s theory to
algorithms. The most famous of these applications is the Kolmogorov complexity (KC) in a
universal Turing machine (a finite state machine that has an input of symbols of a finite
alphabet and processes them, returning a new set of symbols) [39]. The KC K(s) of the
string s is the number of units of information (bits, for example) of the smallest algorithm
in a language that can reproduce the object. This measure of complexity has, in its core,
an interrogation about randomness. If a string is deterministic, then its KC is low since
the code that generates it is simple. For example, the string “001001001001001” and the
string “011001101111011” both have 15 bits, but the first one can be coded as “repeat (001)
5 times”, and the second one seems to be random, so the code to generate it will have to
contain the entire string.

Shannon’s entropy and KC hold a remarkable relationship. Using the Kraft inequality,
it can be shown that the following holds [1]:

E
[

1
n

K(Xn|n)
]
→ H(X) (8)

and therefore, the compressibility of KC in the universal computer goes to the entropy limit.
Moreover, [40] showed that, even though Kolmogorov complexity and Shannon entropy
are conceptually different measures, their values are equivalent when dealing with both
recursive probability distributions (those which are computable by a Turing machine) or in
the case of a time-bounded relationship; this is not always the case in such generalizations
as Tsalis and Rényi entropies. However, it is important to notice that these theoretical
equivalences suppose that there is perfect knowledge about the distributions originating
the data, which is hardly the case [41]; since the KC is distribution independent, which is
not the case of the statistical approaches from Shannon’s entropy, one can almost certainly
expect a different measurement from these two tools.

New developments in this area resulted in the so-called algorithmic thermodynamics,
in which an analogue to the fundamental thermodynamic equation dE = TdS− PdV +
µdN and the partition function Z are defined in order to study cycles on algorithms
analogous to those in heat engines [42], or how problems such as recursion and networks
can be dealt with, using information theory tools [43,44].
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2.6. Algorithmic Information Dynamics

This is a new field focused on the connections between information theory and
causality [45]. Algorithmic information dynamics (AID) deals with dynamic systems
such as its mathematical model, and is computable, combining perturbation theory and
algorithmic information theory, using Bayes’ theorem.

One of the tools used by AID is the coding theorem method (CTM), which deals
with compressing without relying on statistical frameworks [43]. It is based on a funda-
mental identity, given a fundamental prior probability m(s) describing a string and the
Kolmogorov complexity K(s): m(s) = 2−K(s) + c.

Another tool introduced by AID is the block decomposition method (BDM). One of the
motivations justifying both of these methods is the Champernowne constant
(x = 0.1234567891011 . . . ) information content since the sequence generating its digi-
tal expansion has no statistical pattern; therefore, it would have maximum entropy on
statistical approaches, such as Shannon’s entropy [45].

BDM therefore extends the power of CTM in the field of algorithmic randomness and
should be useful in understanding the computation aspects of cognitive processes in the
brain [45–47].

3. Equivalence of Entropy in Thermodynamics and Information Theory
3.1. Unity Analysis

The Boltzmann constant linking the thermodynamic macroscopic quantity S and the
microscopic sum over all the possible micro-states of a system—a dimensionless quantity—
clearly has the dimensions of energy divided by temperature (J/K). Since Shannon lacks
any proportionality constant, such as the Boltzmann constant, it has no dimension.

Considering purely dimensional units, Shannon’s formulation of entropy seems to
have no connection with the formulation of Clausius or Boltzmann–Gibbs entropies. Al-
though being a concept that is purely probabilistic, it shares its randomness nature with the
latter. It was demonstrated that the unit is historically associated with the definition of the
Kelvin temperature system: the Lagrangian temperature has units of energy in statistical
mechanics [48]. In plasma physics, it is common to express temperature in eV [49,50]. In a
more generic approach, thermodynamical entropy is dimensionless, and the difference
between Shannon and Gibbs’s entropies lies in Boltzmann’s constant.

3.2. Underlying Probability

In statistical thermodynamics, the probability of a particular microstate as a function
of its energy is given by the so-called Boltzmann distribution, pi ∝ e−Ei/kT , a sufficient
and necessary condition for the compatibility of statistical mechanics (with microscopic
reversibility) and thermodynamics (with macroscopic irreversibility) formulations and,
therefore, the equivalence between the Clausius entropy and Boltzmann–Gibbs entropy.

As we saw earlier, however, in information theory, it is not possible to derive any
underlying probability distribution, which makes Shannon’s entropy a mere combinatorial
measure of diversity. This limitation, so to speak, of Shannon entropy is one of the main
attractions of the formulation since it can only quantify meaning when one knows the
type of information being treated. Thus, it can be used for a large range of problems
involving information.

3.3. Shannon Entropy and Thermodynamics

Years before Shannon’s information theory, a thought experiment known as Maxwell’s
demon (Figure 2) challenged the second law of thermodynamics. In his own words, it is
described as follows [51]:

“. . . if we conceive of a being whose faculties are so sharpened that he can follow every
molecule in its course, such a being, whose attributes are as essentially finite as our
own, would be able to do what is impossible to us. For we have seen that molecules
in a vessel full of air at uniform temperature are moving with velocities by no means
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uniform, though the mean velocity of any great number of them, arbitrarily selected,
is almost exactly uniform. Now let us suppose that such a vessel is divided into two
portions, A and B, by a division in which there is a small hole, and that a being, who can
see the individual molecules, opens and closes this hole, so as to allow only the swifter
molecules to pass from A to B, and only the slower molecules to pass from B to A. He
will thus, without expenditure of work, raise the temperature of B and lower that of A,
in contradiction to the second law of thermodynamics."

(a)Removing noise (b)Binary image

Figure 2. Maxwell’s demon: a being who knows the velocity of every particle in the box and can
select their passage, using a opening in the wall that divides it, which could separate those with
high energy from those with low energy without performing work, thus violating the second law of
thermodynamics. The demon has to forget the past states of the system but, according to Landauer’s
principle, this process generates heat (at least kT log 2 J per bit erased) and entropy.

The demon, capable of measuring the kinetic energy of the molecules, can separate
fast and slow particles. In this way, the overall entropy of the system will be decreased in a
clear violation of the second law of thermodynamics. In addition to that, even in Maxwell’s
time, there were already proposals for measurement apparatuses that clearly would not
introduce an increase in entropy capable of compensating for the overall decrease proposed
in the original setup.

The first important step to clarify the discussion was suggested in 1929 by Szilard [52],
introducing a variation of Maxwell setup known as a Szilard engine. The idea was to
focus on the measurement itself performed by the demon rather than the work he would
have done.

The new thought experiment consists of a single molecule of gas inside a box with
thermal walls (connected to a reservoir); the demon, in addition to measuring the kinetic
energy of the single particle, also inserts and removes a piston in order to divide the vessel
in two parts. After its introduction, the gas can isothermally expand to its equilibrium
position, doing work that is the equivalent of kT log 2 J (Figure 3). Considering that the
demon needs to acquire and store information, even if for a small fraction of time, about the
kinetic energy of the particles, it has to be part of the macrostate of the system. Therefore,
the information in the demon’s brain can be part of one of the possible configurations, so
the second law is not violated.
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Figure 3. The process of extracting work from a system, thought of by Szilard: in (a), there is a single
molecule of a fluid inside a box with energy Q. If one knows in which half of the box the molecule is
(i.e., a single bit of information about its position), a piston can be inserted by halving the box (b) and
from the fluid expansion, work ((c,d)) W = Q can be extracted from the system while it returns to its
initial state.

Although the Szilard engine was the first ever link relating information with thermo-
dynamics, it is still unable to explain the reverse cycle, where the demon forgets what he
knew, consequently decreasing the entropy of the system. In fact, the explanation of the
reverse cycle came only in 1982 with Bennett, using Landauer’s principle. The principle
states that to erase information (logical bit), at least an increment of kT log 2 J of heat is
needed [53]. Moreover, the principle can be used to solve the Maxwell’s demon paradox,
allowing the demon brain to be updated (forgetting some information to acquire and store
others), constituting an irreversible process that generates heat and increases entropy. Res-
cuing the second law of thermodynamics with the use of information theory also connects
Shannon entropy with the already connected entropies of Clausius and Boltzmann–Gibbs.
Moreover, the mutual information between the partitions is often null in thermodynamical
system since the subsystems are often uncorrelated, which makes the entropy additive in
conventional systems; however, in the case of Maxwell’s demon, there is a correlation be-
tween the demon and the system, and the solution proposed by Landauer is in accordance
with the fluctuation theorem [54].

3.4. Information Theoretical Proof that Boltzmann-Gibbs Entropy is the Same as Clausius’s

With the development of information theory in the twentieth century and the concept
of maximum entropy for statistical mechanics [55], which states that a system in global
and stable thermodynamic equilibrium has reached its maximum entropy by the second
law of thermodynamics (being, therefore, in the macrostate that has the most microstates,
corresponding to gas velocities), it is possible to derive Clausius’ entropy from Boltzmann–
Gibbs formulation of statistical mechanics.
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Using Equation (2), and the unitarity principle, ∑i pi = 1, in which i is the i-nth state,
we can write the ensemble average energy as follows:

〈E〉 = ∑
i

piEi = U (9)

Applying Lagrange multipliers, we have the following:

L = −k ∑
i

pi log pi − λ1

(
1−∑

i
pi

)
− λ2

(
U −∑

i
piEi

)
(10)

Differentiating and equaling zero, we have the following:

− k log pi − k + λ1 + λ2Ei = 0 (11)

Isolating pi, we have the following:

pi = exp
(
−k + λ1 + λ2Ei

k

)
(12)

Using unitarity with Equation (12), energy can be isolated as follows:

∑
i

pi = exp
(
−k + λ1

k

)
Z (13)

in which Z is called the partition function and therefore, the following holds:

Z = ∑
i

exp
(

λ2Ei
k

)
(14)

The partition function combines state functions, such as temperature and energy
for the microstates, and has a central role in statistical mechanics [56]. Therefore, using
unitarity once more, Equation (13) can be used to isolate λ1 as follows:

λ1 = k− k log Z (15)

Thus, Equation (12) can be expressed as the following:

pi =
1
Z

exp
(

λ2Ei
k

)
(16)

Using unitarity again, Equation (12) can be written as follows:

exp
(
−k + λ1

k

)
Z = 1 (17)

Therefore, the following holds:

log Z = 1− λ1

k
(18)

Rewriting Equation (2) in terms of Z results in the following:

S = −k ∑
i

pi

(
λ2

k
Ei − log Z

)
(19)

S = −λ2 ∑
i

piEi + k log Z ∑
i

pi

= −λ2U + k log Z
(20)
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Using the definition of thermodynamics temperature, we have the following [57]:

1
T

=
∂S
∂U

(21)

Since ∂S
∂U = −λ2, Equation (2) can be written as follows:

S =
U
T

+ k log Z (22)

Now, let us change the system energy by an inexact differential δQ. Each microstate
increases its energy by qi. A calculation of the change in entropy results in the following:

dS =
δU
T

+ kδ log Z (23)

Calculating the second term, we have the following:

δ log Z =
d log Z

dZ
δZ =

δZ
Z

(24)

Considering that Z = ∑i exp(−Ei/kT), the new partition function can be written as
follows:

Z = ∑
i

exp
(
−Ei + qi

kT

)
(25)

Applying Taylor expansion in e−qi/kT , since qi is infinitesimal, a good approximation
is the following:

exp
(
− qi

kT

)
= 1− qi

kT
(26)

Therefore, this new partition function can be written as follows:

Z = ∑
i

(
1− qi

kT

)
exp

(
− Ei

kT

)
= Z0 + δZ (27)

Therefore, the partition function variation is given by the following:

δZ = − 1
kT ∑

i
qi exp

(
− Ei

kT

)
(28)

According to the first law of thermodynamics, the change in U can be expressed as
follows:

δU = ∑
i

δEi pi + ∑
i

qi pi = δQ + δW (29)

Calculating δ log Z, replacing (28) in (24), we have the following:

δ log Z =
− 1

kT ∑i qi exp
(
− Ei

kT

)
Z

(30)

However, through Equations (16) and (21), it is known that the following holds:

pi =
1
Z

exp
(
− Ei

kT

)
(31)

and therefore, we have the following:

δ log Z = − 1
kT ∑

i
piqi (32)
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This value is exactly −δW/kT. By replacing this relation in Equation (23), we obtain
the following:

dS =
δQ
T

(33)

which is the Clausius first definition of entropy.

3.5. Using Kullback–Leibler Divergence to Obtain an Analogous of the Second Law
of Thermodynamics

Today, modern supervised machine learning techniques use extensively a measure
formulated using the Kullback–Leibler divergence as a cost function when training clas-
sifiers, the cross-entropy. It is important to show the connection between this important
measure of information theory with the second law of thermodynamics.

The relative entropy or Kullback–Leibler divergence between two probability distri-
butions over X, p(x) and q(x) is defined as follows:

D(p||q) = ∑
x∈X

p(x) log
p(x)
q(x)

(34)

It should be noticed that D(p||q) = 0 if p = q (considering 0 log 0/0 = 0) in
Equation (34). However, it is not a distance in a formal sense since D(p||q) 6= D(q||p).
Relative entropy measures how similar the two distributions are.

Let us assume that αn and α′n are distributions of states in the Markov chain state
space describing a physical thermal system. Once αn+1 and α′n+1 are their evolution in
time, and p and q are their corresponding joint distribution, and given that they are in the
Markov chain space, we can write the following:

p(xn, xn+1) = p(xn)π(xn+1|xn) (35)

q(xn, xn+1) = q(xn)π(xn+1|xn) (36)

in which r is the probability transition in the Markov chain. Two relations can be obtained
for these equations:

D(p(xn, xn+1)||q(xn, xn+1)) = D(p(xn)||q(xn)) + D(p(xn+1|xn)||q(xn+1|xn)) (37)

D(p(xn, xn+1)||q(xn, xn+1)) = D(p(xn+1)||q(xn+1)) + D(p(xn|xn+1)||q(xn|xn+1)) (38)

Due to the fact that both p and q come from the Markov chain, we have p(xn+1|xn) =
q(xn+1|xn) = π(xn+1|xn), D(p(xn+1|xn)||q(xn+1|xn)) = 0. Since relative entropy is always
non-negative, we have the following:

D(p(xn)||q(xn)) ≥ D(p(xn+1)||q(xn+1)) (39)

D(αn||α′n) = D(αn+1||α′n+1) (40)

This means that, as time passes, the probability distributions in the Markov chain (and
therefore, in the system being described) becomes increasingly similar. D(αn||µ) generates
a monotonically decreasing sequence and has a limit. Assuming that α′n = µ is a stationary
distribution over time, α′n+1 = µ. Hence, we have the following:

D(αn||µ) ≥ D(αn+1|µ), (41)

which means that each distribution becomes closer to stationary as time passes. In ther-
modynamics, a stationary distribution is considered uniform with W different states.
By applying Equation (34) in Equation (41), we have the following:

D(αn||µ) = log W − H(αn) = log W − H(Xn) (42)
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Since D(αn||µ) decreases, H(Xn) must increase as time passes.

4. Conclusions

The concept of entropy started as an abstract mathematical property in thermodynam-
ics at the center of the first Industrial Revolution. It developed with the advent of statistical
mechanics in an important measure with a mathematical formulation that later would
become ubiquitous. Further development came from information theory with Shannon
entropy, which is just a combinatorial diversity, being compatible with Boltzmann–Gibbs
entropy under certain conditions. Even more recent developments clarified that informa-
tion is not something amorphous; instead, a medium is needed in order to be acquired
and stored. Hence, the medium is the connection between temperature and the bit of
information—the connection between thermodynamics and information theory, at least on
a macroscopic scale, in which the thermodynamics entropy is additive since the correlation
between parts of a system is null; otherwise, a more precise description, involving the
fluctuation theorem is necessary. Finally, important concepts related to Shannon entropy
seem to be at the center of the fourth industrial revolution [41].

It is worth noting that in the context of Shannon entropy, which applies to any prob-
ability distribution, the Boltzmann distribution is only a special case. The possibility of
choosing different distributions makes this formulation applicable to several domains,
but it is imperative to keep the application context in mind in order to understand the
meaning of the measures.
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