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Abstract: Background: The follicle-stimulating hormone (FSH)-receptor (FSHR) has been
reported to be an attractive target for antibody therapy in human cancer. However, divergent
immunohistochemical (IHC) findings have been reported for FSHR expression in tumor tissues, which
could be due to the specificity of the antibodies used. Methods: Three frequently used antibodies
(sc-7798, sc-13935, and FSHR323) were validated for their suitability in an immunohistochemical study
for FSHR expression in different tissues. As quality control, two potential therapeutic anti-hFSHR
Ylanthia® antibodies (Y010913, Y010916) were used. The specificity criteria for selection of antibodies
were binding to native hFSHR of different sources, and no binding to non-related proteins. The ability
of antibodies to stain the paraffin-embedded Flp-In Chinese hamster ovary (CHO)/FSHR cells
was tested after application of different epitope retrieval methods. Results: From the five tested
anti-hFSHR antibodies, only Y010913, Y010916, and FSHR323 showed specific binding to native,
cell-presented hFSHR. Since Ylanthia® antibodies were selected to specifically recognize native FSHR,
as required for a potential therapeutic antibody candidate, FSHR323 was the only antibody to detect
the receptor in IHC/histochemical settings on transfected cells, and at markedly lower, physiological
concentrations (ex., in Sertoli cells of human testes). The pattern of FSH323 staining noticed for
ovarian, prostatic, and renal adenocarcinomas indicated that FSHR was expressed mainly in the
peripheral tumor blood vessels. Conclusion: Of all published IHC antibodies tested, only antibody
FSHR323 proved suitable for target validation of hFSHR in an IHC setting for cancer. Our studies
could not confirm the previously reported FSHR overexpression in ovarian and prostate cancer cells.
Instead, specific overexpression in peripheral tumor blood vessels could be confirmed after thorough
validation of the antibodies used.
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1. Introduction

Follicle-stimulating hormone (FSH) is an important hormone responsible for growth, maturation
and function of human reproductive system. In females, FSH in the ovaries is involved in
folliculogenesis; it induces maturation of ovarian follicles and production of estrogen [1]. In males,
FSH in the testes stimulates Sertoli cell proliferation, and supports spermatogenesis [2]. FSH is a
glycoprotein heterodimer that binds and acts through the FSH-receptor (FSHR), a G-protein coupled
receptor. FSHR possesses the distinctive pattern of seven transmembrane spanning domains. Its large
extracellular domain (ECD) places it in a specific subgroup together with luteinizing hormone receptor
(LHR) and thyroid stimulating hormone receptor (TSHR). This receptor domain is responsible for the
high-affinity binding of hormones [3–5]. In adult humans, FSHR is expressed mainly in the granulosa
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cells of the ovary and the Sertoli cells of the testis [3]. It is minimally expressed by the endothelial cells
of gonadal blood vessels [6,7]. Reverse transcriptase-polymerase chain reaction (RT-PCR) analyses
have shown, unequivocally, that FSHR is transcribed in extra gonadal tissues as well, particularly
in the human female reproductive tract and the placenta [8], in benign prostatic hyperplasia [9–11],
prostate cancer [9–11], and ovarian cancer [12–14].

The focus of this study was to evaluate FSHR as a therapeutic target for ovarian, prostate,
and renal cancer. A number of studies indicated FSHR as an attractive target, because
of its lack of expression in healthy tissue (despite the above-mentioned expression in the
reproductive tracts) and overexpression in malignant ovarian and prostate cancerous tissues [15–18].
However, divergent immunohistochemical findings have been reported for the FSHR protein
expression and localization [10,12,15,19–22]. Unfortunately, in a number of the expression studies
published, the immunohistochemistry (IHC) antibodies used were not indicated, or are no
longer available.

Three different antibodies have been frequently used to study, immunohistochemically,
the expression of FSHR in human tumors: sc-13935 [23–27], sc-7798 [27,28], and FSHR323 [15,20–22,29,30],
and are claimed to be suitable tools for immunohistochemical analysis of cancer tissues. These antibodies
were commercially obtained and validated for their suitability to detect FSHR expression in different
tissues. Furthermore, since it is challenging to identify monoclonal antibodies that can be used as
tools for validation of recombinant protein antigens or cell lines, we used anti-human FSHR Ylanthia®

antibodies raised against two different peptides of the hFSHR ECD (aa295-332). Material generated
for specificity testing of the antibodies included: FSHR extracellular domain presented in virus-like
particles (VLPs), as well as cells stably expressing hFSHR, which were validated for their surface
expression of functional hFSHR. In addition, different cancer cell lines reported to endogenously
express hFSHR have been tested. These included the ovarian cancer cell lines OVCAR-3 [31],
and Caov-3 [32], as well as prostate cancer cell lines PC-3 [10,11,16] and DU145 [10].

2. Results

2.1. Generation of Cell Lines and VLPs for Antibody and FSHR Target Validation

To ensure a reliable system for antibody validation, we aimed at setting up an
antibody-independent measure for cell surface expression of functional FSHR protein.
Biologically active FSHR ligand, human FSH, is commercially available because it is pharmaceutically
produced for clinical fertility assistance. Cell surface expression of functional hFSHR was confirmed by
induction of cyclic adenosine monophosphate (cAMP) signaling via human FSH in a cAMP-dependent
reporter assay. As a positive control for the test system, we have used forskolin, which efficiently
activates the cAMP reporter. In this set-up, all recombinant cell lines showed a strong dose-dependent
response to human FSH (Figure 1).

Specificity of the assay was controlled by parental cell lines, which showed forskolin-induced
reporter activity, but lacked a response to human FSH. Unexpectedly, none of the tested cancer cell lines
showed a response to human FSH in the cAMP assay, although reporter activity could be activated
by forskolin. Representative results obtained with ovarian cancer cell lines OVCAR-3 and Caov-3 are
shown in Figure 1. Overall, these data indicate that only the generated recombinant cells, and not the
tested cancer cell lines, expressed functional hFSHR protein on their surface.

In addition, virus-like particles (VLPs) were generated, as described in Material and Methods,
which contain FSHR and the homologues receptors TSHR or LHR, in order to obtain a further layer of
specificity analysis.



Antibodies 2017, 6, 15 3 of 17Antibiotics 2017, 6, 15    3 of 17 

 

Figure 1. Detection of functional follicle‐stimulating hormone (FSH)‐receptor (FSHR) on the surface 

of different  cell  lines: Cyclic AMP  signaling  in  response  to FSH. Flp‐In CHO  cells expressing  the 

hFSHR, OVCAR‐3, and Caov‐3 were  treated with controls or different concentrations of FSH. The 

cAMP was measured  by  cAMP  reporter  gene  assay  (see  Section  4). Controls: medium, dimethyl 

sulfoxide (DMSO) as negative controls; forskolin as assay positive control. 

2.2. Validation of Anti‐FSHR Antibodies 

2.2.1. Cell Binding Experiments 

Antibodies used in this study are summarized in Table 1. As a first measure to analyze specificity 

to hFSHR,  the Ylanthia®  antibodies Y010913  and Y010916,  as well  as  the  commercially  available 

antibodies FSHR323 (INSERM), sc‐7798, and sc‐13935 (Santa Cruz), were characterized for binding 

to the previously validated cell lines by using flow cytometry. As shown in Figure 2A, both Ylanthia® 

antibodies, as well as the tool antibody FSHR323, showed efficient and specific binding to CHO cells 

overexpressing hFSHR only. 

 

(A)

Figure 1. Detection of functional follicle-stimulating hormone (FSH)-receptor (FSHR) on the surface of
different cell lines: Cyclic AMP signaling in response to FSH. Flp-In CHO cells expressing the hFSHR,
OVCAR-3, and Caov-3 were treated with controls or different concentrations of FSH. The cAMP was
measured by cAMP reporter gene assay (see Section 4). Controls: medium, dimethyl sulfoxide (DMSO)
as negative controls; forskolin as assay positive control.

2.2. Validation of Anti-FSHR Antibodies

2.2.1. Cell Binding Experiments

Antibodies used in this study are summarized in Table 1. As a first measure to analyze specificity
to hFSHR, the Ylanthia® antibodies Y010913 and Y010916, as well as the commercially available
antibodies FSHR323 (INSERM), sc-7798, and sc-13935 (Santa Cruz), were characterized for binding to
the previously validated cell lines by using flow cytometry. As shown in Figure 2A, both Ylanthia®

antibodies, as well as the tool antibody FSHR323, showed efficient and specific binding to CHO cells
overexpressing hFSHR only.
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Figure 2. Binding of tool antibodies to cells expressing the recombinant human FSHR.
Fluorescence-activated cell sorting (FACS) analysis using Flp-In CHO/hFSHR in comparison to the
parental Flp-In CHO cells as specificity control. Different antibodies were tested for binding to cells
overexpressing human FSHR versus parental cells not expressing human FSHR. Three antibody
concentrations were tested (A); Antibody binding to cells was tested after fixation (formaldehyde
treatment over-night) (B).

In contrast, (i) no binding to cell-presented hFSHR was observed for sc-7798 in the flow cytometry
analyses using unfixed (Figure 2A) or formaldehyde-fixed cells (Figure 2B); and (ii) strong unspecific
binding of sc-13935 antibody to CHO cells not expressing hFSHR was noticed both before and after
fixation with formaldehyde (Figure 2A,B, respectively). Therefore, the polyclonal antibodies sc-7798
and sc-13935 were ruled out as tool antibodies for human FSHR.

2.2.2. Thorough Specificity Assessment

Three anti-FSHR antibodies previously used in expression analyses of cancerous tissues could
be identified: sc-7798, sc-13935, and FSHR323. Santa Cruz antibodies sc-7798 and sc-13935 have
already failed in our first lines of quality control (QC) analyses. For the remaining FSHR323 antibody,
a thorough and in-depth characterization for specificity and suitability for immunohistochemistry
was undertaken.

The antibodies Y010913, Y010916, and FSHR323 were subjected to protein panel profiling (3P),
where unspecific binding to a panel of approximately 30 carefully selected, but non-target related
proteins was assessed, as previously described by Frese and coworkers [33]. FSHR323, and the
antibodies Y010913 and Y010916, passed the specificity quality control in this assay by binding to
hFSHR ECD, but not to all of the other tested proteins (Figure S1A,B) One important measure for
reliability of the antibody preparations is the protein quality, i.e., protein purity, aggregation, monomer
content. This was assessed by reducing and non-reducing sodium dodecyl sulfate gel capillary
electrophoresis (CE-SDS), as well as size exclusion chromatography. Our acceptance criteria for
antibody quality were purity under reduced condition >95%, purity under non-reduced condition
>80%, and monomer content in high-performance size-exclusion chromatography (HP-SEC) >90%.
All three assessed antibodies passed these criteria (data not shown).

The partly homologous glycoprotein hormone (GPH) receptors luteinizing hormone receptor
(LHR) and thyroid stimulating hormone receptor (TSHR) were also published to be overexpressed in
different cancers [34–36]. Therefore, it was critical to additionally ensure, that the selected antibodies
did not bind to these other human GPH receptor proteins. Human FSHR, TSHR, and LHR were
expressed as Virus-like particles (VLPs), and used in ELISA studies with the antibodies to be validated.
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As illustrated in Figure 3A, the Ylanthia® antibodies Y010913 and Y010916, as well as FSHR323,
bound in a dose-dependent manner to hFSHR (EC50 (nM): 0.8796, 0.6923, and 0.1754, respectively),
and did not cross-react with any of the two other glycoprotein hormone receptors, hTSHR (Figure 3B)
and hLHR.
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Figure 3. Specificity assessment of anti-FSHR antibodies using Virus-like particles containing FSHR
in ELISA. VLPs containing the FSHR protein (A) or TSHR protein (B) used as control were coated on
Maxisorp plates. FSHR was detected with different concentrations of Y010913, Y010916, and FSHR323.
The mouse monoclonal anti-hTSHR antibody 6534 (R&D Systems) was used to detect VLPs containing
hTSHR protein. The mouse monoclonal anti-His tag antibody was used as an irrelevant antibody.

2.2.3. Competition of Antibodies with FSH for Binding to the FSHR

In order to further clarify the specificity of the FSHR323, we tested the antibody in an in vitro
functional assay. We compared the effect of pre-incubation of FSHR-expressing cells with the antibody
on FSH-induced signaling in the cAMP assay. It turned out that FSHR323 reduced the FSH-induced
signaling by ~70%, indicating a competition with FSH for the binding to the receptor (Figure 4).
This result was in agreement with the ability of FSHR323 to inhibit FSH activation of the receptor [6].

2.2.4. IHC Pre-Experiments Analyzing Antibody Binding to Cells after Fixation

A potential prediction for IHC suitability of antibodies is the comparison of binding to
cell-presented receptor protein before and after fixation conditions best corresponding to those applied
for the tissues of interest. In this case, cells were either used without (unfixed) or with overnight
treatment with 4% formaldehyde (fixed). Fixation of the cells led to masking of the binding epitope
for Y010913 and Y010916. In contrast, the binding epitope of FSHR323 was sufficiently retained for
efficient antibody binding (Figure 2B).

It is well documented that the FSH levels are elevated in ovarian cancer [37,38]. Because the
binding of FSHR323 to cancer tissue may be impaired by the presence of FSH during tissue fixation,
it was necessary to perform a pre-experiment addressing this scenario. FSH was added in excess to
the FSHR expressing cells, followed by a fixation with PBS-buffered paraformaldehyde for 20 min
or overnight. Non-fixed cells were used as a positive control. A non-related mouse IgG2a antibody
served as negative control. As shown in Figure 5, the presence of FSH did not result in reduced binding
of FSHR323, or Y010913 and Y010916, respectively to non-fixed cells.
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Figure 4. Cyclic AMP signaling in response to FSH after pre-incubation with isotype control
IgG and FSHR323 antibody. Flp-In CHO/FSHR cells expressing the recombinant hFSHR were
plated and incubated with various concentrations of monoclonal antibodies in DMEM and 0.5 mM
3-Isobutyl-1-methylxanthin (IBMX). FSH (1.65 nM) was added. Cyclic AMP was measured by cAMP
reporter gene assay (see Section 4). FSHR323 inhibited cAMP-dependent signaling in response to FSH.Antibiotics 2017, 6, 15    7 of 17 
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Figure 5. Effect of FSH on binding of FSHR323, Y010913, and Y010916 to fixed cells expressing
FSHR. FSH was added in excess to the FSHR expressing cells, followed by fixation with PBS-buffered
paraformaldehyde for 20 min or overnight. Non-fixed cells were used as a positive control.
A non-related mouse IgG2a antibody served as negative control.

However, the cell binding of all three antibodies was reduced after fixation, and the reduction
was fixation time-dependent. Indeed, FSHR323 showed reduced binding capacity after overnight
fixation of the cells (17% remaining), although not to the extent of Y010913 and Y010916 (3.6% and 3%
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remaining, respectively). This indicated that the epitopes of FSHR323, Y010913, and Y010916 were
masked in the process of fixation.

After application of different epitope retrieval methods (i.e., heat induced epitope retrieval
in 10 mM citrate buffer, pH = 6 or 10 mM Tris, pH = 9, containing 1 mM EDTA, or protease
treatment), the ability of antibodies to stain the paraffin-embedded Flp-In CHO/FSHR cells was
tested. The monoclonal chimeric (human/mouse) anti-FSHR antibody clones Y010913 and Y010916
exhibited no reactivity with FSHR in the stable transfected Flp-In CHO/FSHR cell line (data not shown).
In contrast, the FSHR323 antibody showed specific staining of membranes of Flp-In CHO/FSHR cells
embedded in paraffin blocks (Figure 6A). The isotype control (mouse IgG2a) antibody was completely
negative (Figure 6B). Also, no staining was seen in parental Flp-In CHO cells (Figure 6C).
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Figure 6. Immunocytochemical and immunohistochemical detection of FSHR on paraffin embedded
cells and tissues. (A–C): Binding of FSHR323 to cell-presented hFSHR. Immunocytochemical analysis
was performed on paraffin-embedded sections of Flp-In CHO/FSHR using FSHR323 antibody, followed
by a secondary peroxidase-coupled antibody visualized by the brown peroxidase-reaction product
of diaminobenzidine (DAB). (A): Strong membranous anti-FSHR staining of Flp-In CHO/FSHR
(arrow); (B): The isotype control (mouse IgG2a) was completely negative; (C): No staining was seen
in parental Flp-In CHO. D-F: FSHR expression in human testis tissue; (D): The receptor was detected
by immunohistochemistry using the mouse FSHR323 monoclonal antibody followed by a secondary
peroxidase-coupled antibody visualized by the red peroxidase-reaction product of aminoethyl carbazole
(AEC). This method indicated that, in seminiferous tubules, only Sertoli cells (SC) express FSHR.
Testicular blood vessels (BV) were also positive. Spermatogonia (arrowheads), pachytene spermatocytes
(arrows), and Leydig cells (LC) were FSHR-negative. No FSHR-signal was visible in human testis with
sc-7798 (E) and sc-13935 (F) antibodies. The scale bar represents 20 µm in panels A, B, and C, 25 µm in
panel D, and 50 µm in panels E and F.

2.2.5. Immunohistochemical Detection of FSHR in Human Testis

Since the Flp-In CHO/FSHR cells may express non-physiologically high levels of receptor protein,
it was necessary to verify that FSHR323 antibody was also able to detect hFSHR under physiological
conditions. As illustrated in Figure 6D, all Sertoli cells (the FSH-target cells) of the human seminiferous
epithelium were strongly immunostained using FSHR323. Spermatogonia, pachytene spermatocytes,
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and Leydig cells were FSHR-negative. Endothelial cells of testicular blood microvessels were also
stained. This staining was not observed when FSHR323 antibody was replaced by the Santa Cruz
antibodies sc-7798 (Figure 6E) and sc-13935 (Figure 6F).

Taking all quality controls into account, the antibody FSHR323 turned out to be highly
specific and suitable for validation of hFSHR as a potential cancer target by immunohistochemistry.
Therefore, this antibody was used to validate the FSHR expression in ovarian cancer, prostate cancer,
and renal cancer tissues.

2.3. Characterization of FSHR as a Target for Human Cancer

All 32 samples of ovarian cancer showed positive staining of small vessels with staining intensities
ranging from weak to strong. Interestingly, compared to tumor stroma, the FSHR signal was stronger
in vessels of peripheral stroma (Figure 7A). If present in the analyzed sample, normal ovarian cortical
stroma was FSHR-negative. Staining of tumor cells was only observed in 7 out of 32 samples (22%) (2 of
weak intensity score (IS), 2 moderate IS, and 3 strong IS) (Figure 7B). The observed staining pattern
was mainly heterogeneous. In terms of subcellular localization, the observed FSHR staining was
pre-dominantly cytoplasmic, whereas the plasma membrane was only stained in single tumor cells.

The evaluation of 30 prostate cancer samples showed positive staining of small vessels.
No difference between small vessels in the tumor stroma and the stroma of the tumor-adjacent
normal tissue was observed. None of the 30 prostate cancer samples showed FSHR staining of the
tumor cells. However, in four prostate cancer samples, the epithelium of tumor-adjacent normal or
hyperplastic prostate glands (all samples included areas of adjacent normal prostate tissue) focally
exhibited a strong cytoplasmic anti-FSHR staining. Representative pictures of these FSHR staining
patterns for prostate cancer are illustrated in Figure 7C,D. In the case of kidney cancer, 29/31 samples
(93.5%) showed positive staining for FSHR in small vessels (Figure 7E), and in 3/31 (10%) samples,
a positive FSHR signal was detected in cancer cells (1 weak IS, 1 moderate IS (Figure 7F), and 1 strong
IS). The tumor core vessels were negative or weakly positive. A moderate to strong FSHR323 staining
was detected on blood vessels associated with the peritumoral benign tissue. The isotype controls
were mainly negative, but in a few cases, non-specific staining of single tumor cells, macrophages or
lymphoid cells was observed.

These results were in agreement with the ability of FSHR323 to detect specifically FSHR in cancer
tissues as previously described [15,20–22,29,30]. However, overexpression of FSHR protein in tumor
cells of ovarian or prostate cancer tissues, as previously described in several studies [10–12,19], could
not be confirmed here.
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Figure 7. FSHR expression in human cancer detected with FSHR323 antibody. (A) and (B): Human ovarian
cancer tissue. (A): No anti-FSHR staining of tumor cells (asterisk) was observed in 78% of patients. A weak
to moderate cytoplasmic staining of small blood vessels was detected (arrows). (B): Sample exhibiting a
strong cytoplasmic anti-FSHR staining of tumor cells (arrows). (C) and (D): Human prostate cancer
tissue of Gleason grade of 3. (C): Sample exhibiting no anti-FSHR staining in tumor cells (arrowheads),
but a weak cytoplasmic staining of small vessels in the tumor stroma (arrows). (D): No anti-FSHR
staining of tumor cells was observed (arrowheads). A weak to moderate cytoplasmic staining of small
vessels in the tumor and the peripheral stroma was noticed (arrows). Some of the tumor-adjacent
hyperplastic prostate gland epithelial cells showed a strong cytoplasmic anti-FSHR staining (open
arrowheads). (E) and (F): Human kidney cancer tissue. Arrows point to FSHR-positive blood vessels.
Arrowheads indicate a moderate membrane staining of renal cancer cells.

3. Discussion

Since divergent immunohistochemical findings have been reported for the FSHR protein
expression and localization in ovarian cancer and prostate cancer [10–19], our goal was to validate
FSHR as a drug target in human cancers. The target validation for FSHR proved challenging for
three reasons: (i) numerous publications about cancer cell lines or tissues expressing hFSHR did
not specify the exact antibody used for analyses; (ii) a number of purchased antibodies could either
only be used for certain applications (e.g., ELISA), did not recognize cell-presented hFSHR, or were
unspecific [26]; and (iii) the antibodies used in two studies [10,11] for IHC detection of FSHR in the
tumor cells of prostate adenocarcinomas are no longer available. We therefore decided to produce
our own tools for the validation of antibodies that have been used in previous publications for FSHR
immunohistochemistry with cancerous tissues. To avoid false-positive results due to non-specific
binding to tissue/cell components or recognition of epitopes shared by several molecules [39], these
antibodies needed to be tested in various control experiments. The specificity criteria for selection of
antibodies were (i) binding to hFSHR overexpressing CHO-cell lines; (ii) recombinant hFSHR purified
in virus-like particles, hFSHR ECD (purified from Escherichia coli), no binding to parental cells and
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a set of recombinant proteins in protein panel profiling (3P); and (iv) quality control of the protein
preparation (protein purity, aggregation, monomer content). As quality control for specific antibody
binding, we used two potential therapeutic anti-hFSHR Ylanthia® antibodies (Y010913, Y010916).
From the five tested anti-FSHR antibodies, only Y010913, Y010916, and FSHR323 showed specific
binding to cell-presented hFSHR.

The ability of Y010913, Y010916, and FSHR323 antibodies to stain the paraffin-embedded
Flp-In CHO/FSHR cells and human cancer tissues was tested at Indivumed, a German integrated
oncology company leveraging its leading oncology biorepository expertise with its pre-clinical,
clinical, and diagnostic laboratory expertise. FSHR323 was the only antibody able to stain hFSHR
immunocytochemically in transfected cells, and to detect it immunohistochemically at the markedly
lower physiological concentrations (e.g., FSHR in Sertoli cells of human testes).

Concerning the validation of tumor-related FSHR expression, the present data indicated that only
a minority of tissue samples derived from patients suffering from ovarian, prostate or kidney cancer
showed FSHR-positive staining in tumor cells. If tumors were positive, in most cases, only a minor
portion of the cancer cells showed FSHR expression, mainly in the cytoplasm and rarely on the plasma
membrane. Thus, the favorable tumor cell expression profile of FSHR previously described for ovarian
cancer [10–12,19] could not be confirmed. In contrast, the expression of FSHR on blood vessels at the
periphery of different tumors [15,20,21,30] could be confirmed. The endothelial FSHR expression on
blood vessels of tumor stroma and peripheral tumor stroma might be involved in vascular remodeling
at tumor periphery [21,22], but the role of FSHR in this process is not clear.

The need for reliable antibodies, especially in the biomedical research, has been recently
emphasized by several researchers (summarized in [40,41]). This study serves as another example for
the confusion that data generation with antibodies that were either not named in publications, or not
sufficiently target-specific, can cause.

This study serves as another example of the confusion that can be caused by generation of
biomedical data with the use of antibodies that are either not listed by name and clone identifier in
publications, or not sufficiently assessed for target specificity and reproducibility.

The present study highlights, again, how insufficiently characterized and/or non-target specific
antibodies can cause confusion during data generation.

4. Material and Methods

4.1. Human Tissue Specimens

Paraffin sections for ovarian cancer (32 patients) and prostate cancer (30 patients) were obtained
from the Biorepository of Indivumed, Hamburg, Germany. Thirty-one kidney cancer tissues were from
the Biorepository of Asterand, Royston, Hertfordshire, UK. Paraffin sections for normal human testis
(3 donors) were from the Biorepository of Curie Hospital, Paris.

4.2. Cell Lines and Cell Culture

Human cancer cell lines used in this study were ovarian cancer cell lines OVCAR-3 (ATCC®

HTB-161™, LGC Standards GmbH, 46485 Wesel, Germany) and Caov-3 (ATCC® HTB-75™), as well as
prostate cancer cell lines DU 145 (ATCC® HTB-81™) and PC-3 (ATCC® CRL-1435™, LGC Standards
GmbH, 46485 Wesel, Germany). Mammalian host cell line used for receptor cell surface expression
was Flp-In™-CHO (Invitrogen # R75807, Thermo Fisher Scientific Inc., Waltham, MA USA 02451)
stably expressing the lacZ-Zeocin™ fusion gene from pFRT/lacZeo2. OVCAR-3 cells were cultured
and maintained in Roswell Park Memorial Institute medium (RPMI-1640, Gibco #21875-091, Thermo
Fisher Scientific Inc., Waltham, MA, USA 02451) supplemented with 10% fetal bovine serum (Sigma
#F7524-500 ML; heat inactivated 56 ◦C, 30 min). Caov-3 and DU145 cells were cultured and
maintained in Dulbecco’s Modified Eagle Medium (DMEM, Gibco #10938-025) supplemented with
10% fetal bovine serum (Sigma #F7524-500 ML; heat inactivated 56 ◦C, 30 min), 1× GlutaMAX (Gibco
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#35050-087) and 1× sodium pyruvate (Gibco #11360-039). PC-3 cells were cultured and maintained
in Ham’s F-12K (Kaighn’s) Medium (Gibco #21127-022, Thermo Fisher Scientific Inc., Waltham, MA
USA 02451) supplemented with 10% fetal bovine serum (Sigma #F7524-500 ML; heat inactivated
56 ◦C, 30 min). Flp-In™-CHO cells were cultured and maintained in Ham’s F12 Nutrient Mixture
Medium (Gibco #21765-037) supplemented with 10% fetal bovine serum (Sigma #F7524-500 ML; heat
inactivated 56 ◦C, 30 min) and 100 µg/mL Zeocin (Invivogen #ant-zn-5p). Flp-In™-CHO cells stably
expressing the receptor of interest were cultured and maintained in Ham’s F12 Nutrient Mixture
Medium (Gibco #21765-037) supplemented with 10% fetal bovine serum (Sigma #F7524-500 ML; heat
inactivated 56 ◦C, 30 min) and 600 µg/mL Hygromycin B (Invitrogen #10687-010). All cells were
incubated in a humidified incubator at 37 ◦C in the presence of 5% CO2.

4.3. Construction of Expression Vectors Encoding hFSHR

The cDNA encoding hFSHR (Gene ID: 2492) was synthesized in two different versions.
(1) A tagless variant comprising of a Kozak consensus sequence, adenine thymine guanine (ATG)
initiation codon, and the natural signal peptide leader sequence upstream of the receptor encoding
protein (including a stop codon), flanked by restriction enzymes recognition sites for cloning into
expression vector. (2) As additional control for membrane localization of recombinantly expressed
FSHR, a tagged variant containing a Kozak consensus sequence, ATG initiation codon, and the vkappa
leader sequence followed by a V5 tag, tag linker, and a His6 tag upstream the FSHR sequence
(including a stop codon), also flanked by restriction enzymes recognition sites for cloning into
expression vector was constructed. Those complementary DNA (cDNA) inserts were subcloned
into the pcDNA™5/FRT/TO expression vector (Invitrogen # V6520-20, Thermo Fisher Scientific
Inc., Waltham, MA, USA 02451) via HindIII and XhoI restriction enzymes. Experiments for cell line
characterization and specificity assessment of antibodies were performed with both resulting cell lines.

4.4. Generation of Potentially Therapeutic Antibodies against Human Follicle Stimulating Hormone Receptor

To identify a highly specific anti-hFSHR antibody, we isolated hFSHR-targeted Fabs using
MorphoSys’ Ylanthia® phage-display technology [42] against a number of synthetic, biotinylated
hFSHR peptides. In order to avoid competitive binding with FSH, the peptide sequences were
designed to represent an area outside the binding domain for FSH. Different peptides representing the
stretch of residues 295–330 [43] were used as antigens in three panning rounds. Enriched Fabs were
screened for specificity to the hFSHR peptides. From the confirmed hits, a subset of clones was cloned
into human IgG1 and chimeric human/mouse IgG2a format, and analyzed for binding to hFSHR
expressed on different cell types.

4.5. Generation of Cells Stably Expressing FSHR

Stable Flp-In™ CHO expression cell lines were generated by co-transfection of Flp-In™
expression construct (pcDNA™5/FRT/TO_FSHR) and the pOG44 plasmid (Invitrogen #V6005-20).
Co-transfection was done using lipid-mediated transfection (Lipofectamine; Invitrogen #11668, Thermo
Fisher Scientific Inc., Waltham, MA, USA 02451) according to supplier′s manual. Stable transfectants
were selected using 600 µg/mL hygromycin B (Invitrogen #10668). Cell surface expression of follicle
stimulating hormone receptor (FSHR) was validated using flow cytometry or cAMP assays (see below).

4.6. Generation of VLPs Containing Full-Length hFSHR, hTSHR, or hLHR

Viral-like particles (VLPs) of human FSHR, TSHR, or LHR were generated by expression of
human FSHR (aa16-695), human TSHR (aa21-764), or human LHR (aa27-699) coupled to GAG
(HV1B1) in HEK293 cells. Transfection of the respective target protein encoding plasmid DNA
was done using lipid-mediated transfection (Lipofectamine; Invitrogen #11668). Duration of the
transient expression was three days. Cell culture supernatants were pre-cleared by centrifugation,
and afterwards, filtered through a 0.45 µm filter unit (Corning® 1000 mL Vacuum Filter/Storage Bottle
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System, #430516, Corning Inc., Corning, NY, USA 14831). The VLP containing supernatant was purified
by Immobilized metal ion affinity chromatography (IMAC) affinity chromatography on an ÄKTA
Avant 150 (GE Healthcare) HPLC system with a self-packed POROS® MC column (Applied Biosystems
#1542802, Thermo Fisher Scientific Inc., Waltham, MA, USA 02451). After elution, the buffer was finally
exchanged to 1× PBS and size and purity of the preparations was checked by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and DLS (diffractive-light scattering).

4.7. Antibodies

Anti-hFSHR antibodies used in this study are summarized in Table 1.

Table 1. Anti-hFSHR antibodies used in this study for cancer target validation of FSHR.

Antibody Specificity Description Isotype Application (Acc.
to Supplier) Antigen Supplier

sc-7798 anti-hFSHR Goat polyclonal WB, ELISA,IF, IP
Peptide map-ping

near the N-terminus
of hFSHR

Santa Cruz

sc-13935 anti-hFSHR Rabbit
polyclonal WB, ELISA,IF, IP aa1-190 Santa Cruz

FSHR323 anti-hFSHR Mouse
monoclonal IgG2a WB, ELISA,IF, IP,

ICC, IHC
Obtained from

INSERM

Y010913 anti-hFSHR Human/mouse
monoclonal IgG2a Ylanthia®

antibody

Y010916 anti-hFSHR Human/mouse
monoclonal IgG2a Ylanthia®

antibody
Isotype
control

Irrelevant
antigen

Human/mouse
monoclonal IgG2a irrelevant

non-human protein
HuCAL®

antibody

WB: Western Blot, IF: Immunofluorescence, IP: Immunoprecipitation.

4.8. ELISA Assays

For detection of anti-hFSHR antibody binding, biotinylated peptides used for pannings were
coated on 384-well Neutravidin plates (Thermo Scientific #15402) (1 µg/mL in 1× PBS (Gibco #14190)
at 4 ◦C overnight, and subsequently blocked for two hours at room temperature with 5% bovine serum
albumin (BSA) (Sigma #A-7906) in 1× PBS. For binding studies of antibodies to VLPs containing
hFSHR, hTSHR, or hLHR, 384-well Maxisorp™ plates (Nunc #460518, Thermo Fisher Scientific Inc.,
Waltham, MA, USA 02451) were coated with the appropriate VLP preparation at 4 ◦C overnight,
and subsequently blocked for two hours at room temperature with 5% milk powder (Saliter) in 1× PBS.
Test antibodies were incubated for one hour at room temperature. Plates were washed and antibody
binding was detected using alkaline phosphatase linked goat anti-mouse (Jackson-Immuno-Research
#115-055-003) or goat anti-rabbit (Sigma #A3687) secondary antibodies followed by AttoPhosTM

fluorescence substrate (Roche #1484281).

4.9. Flow Cytometry

The binding of antibodies to hFSHR expressed on mammalian cells was assessed by flow
cytometry. Cells were cultured for 3 days, harvested with Versene (Gibco #15040) and diluted to
1 × 106 cells/mL in Superblock Blocking Buffer (ThermoScientific #37515). 1 × 105 cells were added
to wells of a 96U- well plate (Nunc #163320) and blocked on ice for one hour. After centrifugation
at 250× g for 3 min at 4 ◦C, supernatant was removed and primary antibodies were added to the
pelleted cells and incubated for 1 h on ice. The cells were washed and pelleted two times with
100 µL FACS buffer consisting of 3% fetal bovine serum (FBS)/0.02% sodium azide in 1× PBS
(Gibco# 14190). Mouse_IgG2a and human/mouse_IgG2a were detected using phycoerythrin (PE)
conjugated goat anti-mouse IgG (Jackson Immuno Research #115-116-071). After incubation of 30 min
on ice, two additional washing steps were performed, followed by a final centrifugation step at 250× g
for 3 min at 4 ◦C. Finally, cells were resuspended in 150 µL FACS buffer and fluorescence values were
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measured with a FACS Array (BD Biosciences). Cell surface bound anti-hFSHR antibody was assessed
by measuring the median intensity fluorescence.

4.10. Fixation

For fixation, cells were incubated with 4% formaldehyde (Roti®-Histofix, Roth #P087.5, Carl Roth
GmbH + Co. KG, 76185 Karlsruhe, Germany) overnight at room temperature, prior to flow cytometry
as described above.

Fixation in Presence of FSH

In IHC studies, FSHR expressing cells might be loaded with FSH. The ability of binding of
anti-FSHR antibodies to FSH pre-loaded cells was again assessed by flow cytometry. FSHR expressing
Flp-In CHO cells were harvested as described above (chapter “flow cytometry”) followed by a
pre-incubation step with FSH (Bravelle 75 IU, Ferring Arzneimittel, PZN-4482639) for one hour
on ice prior to a potential fixation (chapter “Effect of paraformaldehyde fixation on antibody binding to
hFSHR-positive cells”) of cells. Analysis of cell binding capacity was done as described above (chapter
“flow cytometry”).

4.11. FSH-Mediated Stimulation of Adenylate Cyclase

Mammalian cell lines used for adenylate cyclase reporter gene assay were Flp-In™-CHO cells
stably overexpressing hFSHR in tagged and tagless variants. Cell lines were transfected with
pGL4.29(luc2P/CRE/Hygro) Vector (Promega #9PIE847) containing a cyclic adenosine monophosphate
(cAMP) response element (CRE) that drives the transcription of the luciferase reporter gene
luc2P. Twenty-four hours prior to transfection, 2 × 104 cells per well (in antibiotic-free growth
medium) were seeded into a 96-well flat bottom assay plate (Costar #3903). Transfection was done
using lipid-mediated transfection (TransIT-LT1, Mirus #MIR2304) according to supplier’s manual.
Twenty-four hours after transfection, cells were stimulated with 0.33 IU/ml of FSH (Bravelle 75 IU,
Ferring Arzneimittel, PZN-4482639) and luciferase activity was measured using Bright-Glo Luciferase
Assay System (Promega #E2620). During the five hours of FSH-mediated cAMP induction, cells were
incubated in the presence of 5% CO2 in a humidified incubator at 37 ◦C.

To test if anti-hFSHR antibodies have any effect on FSH-mediated stimulation of adenylate cyclase,
antibodies were pre-incubated with cells for one hour or added directly with FSH to the pGL4.29
(luc2P/CRE/Hygro) transfected cells. Readout was performed as described above.

4.12. Immunocytochemistry and Immunohistochemistry

Immunocytochemistry and immunohistochemistry studies were performed at Indivumed,
Hamburg, Germany. Briefly, the formaldehyde fixed, paraffin embedded (FFPE) samples were sliced
into 3 µm sections and mounted on positively charged SuperFrost Ultra Plus glass slides (Roth).
IHC was implemented on the Discovery XT staining platform (Roche Diagnostics/Ventana Medical
Systems). FFPE slides were deparaffinized within the staining instrument and immunostained using
the ChromoMap DAB/AEC Detection Kit (Roche Diagnostics). The detailed staining procedure is
described in Table 2.



Antibodies 2017, 6, 15 14 of 17

Table 2. Anti-FSHR staining conditions by using automated IHC research slide staining system.

Staining Instrument Discovery XT

Fixation 4% Paraformaldehyde
Epitope retrieval CC1 Mild (Cell conditioning solution 1, EDTA buffer); 30 min, 100 ◦C

Blocking Normal goat serum diluted (Dispenser OPTION 4), 1:50, 8 min
Dilution buffer DCS antibody diluent

Primary antibody FSHR323, 2 µg/mL, 1 h, 37 ◦C
Secondary antibody OmniMap DAB /AEC Kit

Counterstain Hematoxylin II, 8 min; Bluing Reagent, 4 min

Afterwards, slides were manually washed using hot water supplemented with detergent, followed
by tap water only and dH2O in a final step. For dehydration, the slides were transferred to an ascending
ethanol series (2 times 80%, 2 times 96%, 2 times abs. EtOH; 3 min each). After dehydration, the slides
were transferred to xylene (3 times 2 min) and automatically embedded in Pertex.

4.13. Histopathological Evaluation

Tumor contents were estimated using H&E-stained sections. For the evaluation of anti-hFSHR
staining of tumor cells, an intensity score (IS) specifying negative (0), weak (1+), moderate (2+),
or strong (3+) staining was used. The evaluation further included the specification of the percentage
of positively stained tumor cells (PC), the predominant staining intensity, as well as the staining
pattern. Within the tumor area, a distinction was made between a homogeneous and a heterogeneous
staining pattern. A homogeneous staining pattern thereby implied a constant staining intensity
(weak, moderate, or strong) of tumor cells, whereas a heterogeneous staining pattern implied varying
staining intensities of tumor cells within the same tumor area. Furthermore, the predominantly stained
subcellular compartment (m: membrane, n: nucleus, c: cytoplasm) of tumor cells was determined.
In addition to the evaluation of anti-FSHR stained tumor cells, the intensity (weak, moderate or strong)
of anti-FSHR stained tumor vessels was determined. To evaluate non-specific staining, an intensity
score that specified negative (0), weak (1+), moderate (2+), or strong (3+) staining was applied to the
isotype controls. In case of positive staining, the stained cell type was determined.

4.14. Specificity Analysis Using Protein Panel Profiling Assay

Analysis of overall specificity of IgG molecules was basically performed as described by
Frese et al. [35]. However, the panel of the coated proteins had been slightly adapted. Recombinant FSHR
from MyBioSource (#MBS965616) was used as a positive binding control.

Briefly, binding of IgG molecules at concentrations of 10 nM and 100 nM to coated proteins
in Meso Scale Discovery (MSD) 384-well standard microtiter plates (#L21XA) was analyzed by
electrochemiluminescence (ECL)-based readout. ECL binding signals of sample IgG molecules (mouse
IgG2a, human/mouse IgG2a and human IgG1f formats) were compared to binding signals of a
well-characterized reference antibody (MOR3207 anti-lysozyme human IgG2a and human/mouse
IgG2a formats, respectively), and binding ratios were calculated. Overall specificity of sample IgG
molecules was assessed by total number of binding hits to coated non-target-related proteins, and sum
of cumulative binding ratios. For further details, refer to Frese et al.

5. Conclusions

Taking all quality controls into account, our results indicated that only antibody FSHR323 proved
suitable for target validation of FSHR in an immunohistochemical setting for cancer, inciting us to
think that only the IHC results from the previous studies using this particular antibody are to be
trusted. Indeed, our results suggest that, in accordance to previously published data [15], FSHR is not
a suitable target for monoclonal antibody therapy with direct targeting of ovarian, prostate, or renal
cancer cells. Instead, our data confirm the localization of FSHR in endothelial cells at the periphery of
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ovarian, prostate, and renal cancer. At this location, blood vessels are essential for tumor growth and
metastasis, because they make connections between the normal circulatory system of the patient and
tumor core vessels [21]. Therefore, occlusion/collapse of FSHR-positive peritumoral connecting vessels
may halt blood flow towards tumors, resulting in the death of tumor cells from lack of oxygen and
nutriments. Since FSHR is a common marker of peritumoral vessels [15,30], a single therapeutic agent
may, in principle, be applicable to a wide range of tumor entities. Combining FSHR-target therapy
with anti-proliferative anti-tumor therapies and/or angiogenesis inhibitors may lead to additive or
synergistic activity in malignant tumors.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4468/6/4/15/s1,
Figure S1: Analysis of overall specificity of IgG molecules using Protein Panel Profiling (3P).
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