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Abstract

Background: In high-grade serous ovarian cancer (HGSOC), intrinsic and/or acquired resistance against platinum-
containing chemotherapy is a major obstacle for successful treatment. A low frequency of somatic mutations but
frequent epigenetic alterations, including DNA methylation in HGSOC tumors, presents the cancer epigenome as a
relevant target for innovative therapy. Patient-derived xenografts (PDXs) supposedly are good preclinical models for
identifying novel drug targets. However, the representativeness of global methylation status of HGSOC PDXs
compared to their original tumors has not been evaluated so far. Aims of this study were to explore how
representative HGSOC PDXs are of their corresponding patient tumor methylome and to evaluate the effect of
epigenetic therapy and cisplatin on putative epigenetically regulated genes and their related pathways in PDXs.

Methods: Genome-wide analysis of the DNA methylome of HGSOC patients with their corresponding PDXs, from
different generations, was performed using Infinium 450 K methylation arrays. Furthermore, we analyzed global
methylome changes after treatment of HGSOC PDXs with the FDA approved demethylating agent decitabine and
cisplatin. Findings were validated by bisulfite pyrosequencing with subsequent pathway analysis. Publicly available
datasets comprising HGSOC patients were used to analyze the prognostic value of the identified genes.

Results: Only 0.6–1.0 % of all analyzed CpGs (388,696 CpGs) changed significantly (p < 0.01) during propagation,
showing that HGSOC PDXs were epigenetically stable. Treatment of F3 PDXs with decitabine caused a significant
reduction in methylation in 10.6 % of CpG sites in comparison to untreated PDXs (p < 0.01, false discovery rate
<10 %). Cisplatin treatment had a marginal effect on the PDX methylome. Pathway analysis of decitabine-treated
PDX tumors revealed several putative epigenetically regulated pathways (e.g., the Src family kinase pathway). In
particular, the C-terminal Src kinase (CSK) gene was successfully validated for epigenetic regulation in different PDX
models and ovarian cancer cell lines. Low CSK methylation and high CSK expression were both significantly
associated (p < 0.05) with improved progression-free survival and overall survival in HGSOC patients.

Conclusions: HGSOC PDXs resemble the global epigenome of patients over many generations and can be
modulated by epigenetic drugs. Novel epigenetically regulated genes such as CSK and related pathways were
identified in HGSOC. Our observations encourage future application of PDXs for cancer epigenome studies.
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Background
Ovarian cancer is the fifth most common cancer type in
women and is the most lethal gynecologic malignancy
[1]. The most abundant histological subtype of ovarian
cancer, high-grade serous ovarian cancer (HGSOC), is
characterized by mutations in a few genes, mainly TP53
and BRCA1/2 [2]. Therefore, changes in the epigenome,
like DNA methylation and histone modifications, may
play an important role in the biological behavior of the
disease. Aberrant DNA methylation patterns are univer-
sally observed in HGSOC and are known to frequently
affect gene regulation involved in cancer-related pro-
cesses [2–5]. Since epigenetic modifications, including
DNA methylation, are reversible in nature, these epigen-
etic alterations have emerged as attractive targets for
epigenetic therapy for cancer [6, 7].
Effective treatment of cancer relies on the identification

of key molecular targets of cancer growth and subsequent
development of therapeutic agents against these targets.
This in turn mainly depends on preclinical research and
predictive model systems. Recent genomic analyses have
shown that most commonly used HGSOC cell lines, like
SKOV3 and A2780, are less representative models of
HGSOC [8, 9]. Recently, patient-derived xenografts
(PDXs), i.e., patient tumor tissues transplanted directly into
immune-deficient mice, have appeared as better represen-
tative preclinical models [10]. They recapitulate the
histological type and maintain the genomic features and
reminiscent heterogeneity of corresponding patients’ pri-
mary tumors [11–13]. Furthermore, results from treatment
of ovarian cancer PDXs have a good predictive value for
standard platinum-based chemotherapy and novel thera-
peutic agents [14–16]. Although several comparative gene
expression and mutational studies have been performed
for HGSOC PDXs, comparable studies on the epigenome
are not available. Until now, only a few small studies in
other tumor types have compared genome-wide DNA
methylation of PDXs with their corresponding solid patient
tumors [17–19].
In the present study, we first compared genome-wide

DNA methylation patterns in different generations of
HGSOC PDX tumors and their corresponding primary
tumors using Infinium 450 K methylation arrays.
Furthermore, we analyzed global methylome changes
after treatment of HGSOC PDXs with decitabine (DAC),
a DNA demethylating agent, and cisplatin, as platinum-
containing chemotherapy is standard of care in first-line
treatment of HGSOC. The findings were validated and
pathway analysis was performed.

Methods
PDX establishment and treatment
PDXs were established as described previously [12]. Briefly,
after patients gave informed consent, HGSOC specimens

were obtained at primary debulking surgery (patient 36 and
-37) or at interval surgery (patient- 56). The clinicopatho-
logical features of each patient are provided in Additional
file 1: Figure S1a. Tumor fragments were cut into pieces of
3 × 3 × 3 mm3 and implanted in 6–12-week-old female
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (NSG mice,
internal breed, Central Animal Facility, University Medical
Center Groningen). Periodic two-dimensional tumor
measurement was carried out using a slide vernier caliper
and when the tumor size reached >1 cm3, tumors were
harvested and were either directly propagated into a further
generation or snap frozen in liquid nitrogen for storage
along with a piece for formalin fixation. To investigate
global DNA methylation changes related to establishment
of PDX models from primary HGSOC, we implanted
primary tumors of three different HGSOC patients
(patients 36, 37, and 56) into the flanks of NSG mice (PDX-
36, -37 and -56) and tumors were propagated for up to
three generations (F1, F2, and F3) (Additional file 1: Figure
S1b). The histology of primary tumors and PDX tumors
was analyzed by an experienced gynecologic pathologist.
Mice with F3 PDX tumors were used for treatment.

When tumor size reached up to 200 mm3 in size, they
were treated with either saline vehicle (n = 3), demethylat-
ing agent DAC (n = 3, 2.5 mg/kg three times/week), or cis-
platin (n = 3, 4 mg/kg/week) for up to 4 weeks (Additional
file 2: Figure S2a). During treatment, mice were regularly
checked for welfare and tumor growth (three times a
week). After completion of treatment, tumors were har-
vested and excised into two pieces, one of which was fixed
in formalin and the other snap frozen in liquid nitrogen.

Cell line culturing
The ovarian cancer cell lines CaOV3, SKOV3, OVCAR3,
PEA1, PEA2, PEO14, PEO23, A2780, C30, Cp70, and
IGROV1 were used for in vitro validation. The media used
and culture conditions of cell lines are described in
Additional file 3: Table S1. All cells were grown at 37 °C in
a humidified atmosphere with 5 % CO2 and were detached
with 0.05 % trypsin in phosphate-buffered saline (PBS;
0.14 mM NaCl, 2.7 mM KCl, 6.4 mM Na2HPO4, 1.5 mM
KH2PO4, pH = 7.4). The authenticity of all cell lines was
verified by DNA short tandem repeat analysis (Baseclear,
Leiden, The Netherlands). Cells at 40–50 % confluency
were treated with DAC (1 μM) for 72 h and the medium
was replenished with DAC every day. For cisplatin and
carboplatin, cells were treated for 72 h without any daily
media replenishment. After 72 h, cells were trypsinized
and processed for RNA and DNA isolation.

DNA extraction and bisulfite modification
For DNA isolation, representative frozen blocks of each
sample or cells were retrieved. Frozen sections of 10 μm
were cut with periodic 4 μm sections for hematoxylin
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and eosin staining to evaluate the vital tumor cell per-
centage. DNA of all samples was isolated using standard
salt-chloroform extraction and isopropanol precipitation.
Precipitated DNA was resuspended in Tris-EDTA buffer
(10 mM Tris, 1 mM EDTA, pH = 8.0). Genomic DNA was
amplified in a multiplex PCR according to the BIOMED-2
protocol to check the structural integrity of the DNA. DNA
concentrations at A260 were measured using the Nanodrop
ND-1000 Spectrophotometer (Thermo Scientific, Waltham,
MA, USA). A260/280 ratio of >1.8 was required for all
samples. Subsequently, bisulfite conversion of all samples
was done as described before [20] using an EZ DNA
methylation™ kit (Zymo Research, Orange, CA, USA) as
per the manufacturer’s protocol using 1 μg of DNA.

Genome-wide methylation Infinium 450 K array
To analyze the methylation status, the Infinium Human-
Methylation450K (HM450K) platform consisting of
485,512 CpG sites was used. The assay was carried out
as described [21]. In brief, 4 μl of bisulfite-converted
DNA (~150 ng) was used in the whole-genome amplifi-
cation reaction. After amplification, DNA was frag-
mented enzymatically, precipitated, and re-suspended in
hybridization buffer. All subsequent steps were performed
following the standard Infinium protocol (User Guide part
#15019519 A). Fragmented DNA was dispensed onto the
HumanMethylation450 BeadChips and hybridization was
performed in a hybridization oven for 20 h. After
hybridization, the array was processed through a primer
extension and an immunohistochemistry staining protocol
to allow detection of a single-base extension reaction.
Finally, BeadChips were coated and then imaged on an
Illumina iScan. Methylation levels were computed from
raw iDAT files using R (http://www.R-project.org) with dif-
ferent R packages, including MinFi [22] and ChAMP [23].

HM450K data processing
Raw iDAT files were imported using the Bioconductor
(http://www.bioconductor.org) suite for R. Methylation
levels, β, were represented according to the following
equation:

β ¼ M= M þ U þ 100ð Þ

where M represents the signal intensity of the methyl-
ated probe and U represents the signal intensity of the
unmethylated probe. Illumina recommends adding the
constant 100 to the denominator to regularize β values
with very low values for both M and U. Probe dye bias
was normalized using built-in control probes. Probes
with a detection p value <0.01 were omitted. Finally,
probes from X and Y chromosomes, single nucleotide
polymorphism probes and possible cross-hybridized
probes were excluded, leaving 468,665 unique probes.

Furthermore, host mouse DNA can potentially contam-
inate the signal from human PDX tumor if stromal and
endothelial cells of murine origin are extracted with the
tumor. To eliminate these confounders in our methylation
analysis, an additional mouse tail sample was processed
on the 450 K array and 47,240 probes were removed from
the downstream analysis after passing a detection p value
threshold of 0.01. After probe filtering and removal of
mouse specific probes, normalization was performed
using a beta-mixture quantile (BMIQ) normalization
method for correcting Infinium I/II probe type bias in
Illumina Infinium 450 K data [24]. Furthermore, we
analyzed and corrected for batch effects using the ComBat
function of the SVA package [25]. Subsequently, we
compared the β values of the remaining 392,317
autosomal CpG probes for further analysis (Additional
files 1 and 2: Figures S1c and S2b).
Besides PDX tumors, we also used SKOV3 cells treated

with a high dose of DAC (1 μM) for 72 h as described in
the “Cell line culturing” section. Since SKOV3 is one of the
most DAC-sensitive ovarian cancer cell lines, we used it as
a positive control for DAC-induced demethylation effects.
The ultimate goal was to use these data as a filter to screen
the DAC-mediated demethylation-sensitive genes for
further in vitro validation. Results of genome-wide methyla-
tion of SKOV3 were also processed in a similar way as for
PDX tumors. For annotation of probe region, we used
UCSC-based annotations in the context of genomic com-
partment and CpG islands. Further, an additional biologic-
ally relevant probe annotation was applied based on CpG
enrichment, known as “HIL” CpG classes, consisting of
high-density CpG island (HC), intermediate-density CpG
island (IC), and non-island (LC).

Bisulfite pyrosequencing
Bisulfite pyrosequencing was performed as described pre-
viously [26]. Briefly, bisulfite-treated DNA was amplified
using a PyroMark PCR kit (Qiagen, Hilden, Germany).
PCR and cycling conditions were according to the kit
manual. All pyrosequencing primers (PCR primers and
sequencing primers) were based on the selected candidate
450 K array CpG probe using PyroMark Assay Design
software (Qiagen). The amplification protocol was
performed according to Collela et al. [27] using a universal
primer approach. The biotinylated PCR products were
captured using 1.0 μl streptavidin-coated sepharose
high-performance beads (GE Healthcare, Little Chalfont,
UK). The immobilized products were washed with 70 %
alcohol, denatured with PyroMark denaturation solution
(Qiagen), and then washed with PyroMark wash buffer
(Qiagen). The purified PCR product was then added to
25 μl PyroMark annealing buffer (Qiagen) containing
0.3 μM sequencing primers for specific genes (all primers
and their sequences are available on request). Finally,
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pyrosequencing was performed using the Pyromark Q24
MD system (Qiagen) according to the manufacturer’s
instructions using the PyroGold Q24™ Reagent kit
(Qiagen). Data were analyzed and quantified with the
PyroMark Q24 software version 2.0.6 (Qiagen).

Total RNA isolation, cDNA synthesis and quantitative RT-PCR
Quantitative reverse transcriptase (qRT)-PCR was per-
formed as described previously [28]. Total RNA was
isolated from frozen tissue blocks and cell lines similarly
to as described for DNA extraction. RNA was isolated
using a RNeasy mini kit (Qiagen) according to the instruc-
tions of the manufacturer. RNA was analyzed quantita-
tively using a Nanodrop and integrity was checked using
electrophoresis on agarose gel. Total RNA (1 μg) was used
for cDNA synthesis by RNase H+ reverse transcriptase
using an iScript cDNA synthesis kit (BioRad, Hercules,
CA, USA) as per the manufacturer’s instructions. qRT-
PCR was performed in an ABI PRISM 7900HT Sequence
Detector (Applied Biosystems, Foster City, CA, USA) with
the iTaq SYBR Green Supermix with Rox dye (Biorad,
Hercules, CA, USA). Amplification was performed with
the following cycling conditions: 5 min at 95 °C, and 40
two-step cycles of 15 s at 95 °C and 25 s at 60 °C. The
reactions were analyzed by SDS software (version 2.4,
Applied Biosystems). The threshold cycles (Ct) were
calculated and relative gene expression was analyzed after
normalizing for GAPDH, a house-keeping gene. qRT-PCR
primer sequences are available on request.

Statistical analysis
After performing probe filtering, normalization and batch
effect correction, we identified the differentially methyl-
ated CpG sites using Linear Models for Microarray Data
(LIMMA) analysis [29]. Since for beta-distributed data like
DNA methylation β values the variance is associated with
the mean (heteroscedasticity) [30], we cannot apply linear
model-based methods without transforming the data
properly (logit transformed). Therefore, normalized 450 K
probe β values were converted to M values using the
beta2m function [30]. The unpaired statistical analysis was
performed using the eBayes function of the Limma
package [31]. The average DNA methylation of bisulfite
pyrosequencing and RNA expression levels were
presented as mean ± standard deviation (SD) using the
GraphPad Prism version 6.04 (GraphPad for Science, San
Diego, CA, USA). Statistical significance was calculated by
two-way Student’s t-test and multiple comparisons
between different groups were performed by one-way
ANOVA with Bonferroni post-test, unless otherwise men-
tioned in the respective figure legends. For selection of
differentially methylated CpG sites the cutoff was p < 0.01,
while other analyses are described in the respective figure
legends with appropriate symbolic representation. As a

positive control for DAC-induced genome-wide demethyl-
ation, SKOV3 cells showed a higher percentage (39.3 %)
of CpG sites being demethylated (Additional file 2: Figure
S2b, e) in comparison with DAC-treated PDX-36. These
DAC-sensitive CpG sites from SKOV3 cells were also
used for identification of epigenetically regulated genes
and pathways for in vitro validation.

Cluster analysis
Principal component analysis was performed on BMIQ
normalized data. Pre-processed, filtered, and normalized
autosomal CpG probes were used for unsupervised
clustering of Illumina 450 K data. Different clustering
algorithms and number of clusters were investigated
extensively, including k-means and hierarchical clustering
approaches using average linkage methodology. Further, su-
pervised clustering analysis was performed on significant
probes after LIMMA analysis on treatment groups using
hierarchical clustering with the average linkage method.

Gene ontology analysis
Functional gene ontology (GO) term enrichment analysis
was performed with the DAVID tool [32] using DAC-
sensitive genes (n = 822) on Homo sapiens as species
background. We restricted the analysis to the biological
process category and selected GO terms with enrichment
(p ≤ 0.01). Data visualization was carried out using
REVIGO (http://revigo.irb.hr/index.jsp) [33].

Web-based tools for networks and pathway analysis
WebGestalt (WEB-based GEne SeT AnaLysis Toolkit)
[34] was used as the web-based tool for prediction of
associated pathway and gene function using the list of
DAC-sensitive genes in PDX tumors (n = 822). Parameters
used for analysis were: organism, H. sapiens; ID type,
gene_symbol; reference set, Entrez gene; significance level,
0.001; statistics test, hypergeometric; multiple testing cor-
rections, Bonferroni Hedgehog test; minimum number of
genes for enrichment, 3. Pathway analyses were performed
using KEGG, Wiki pathways, and pathways from common
databases. Genes related to pathways found in at least two
of the databases were included for the final networks
using the Gene Multiple Association Network Integration
Algorithm (GeneMANIA; http://www.genemania.org/).
This analysis builds a gene integration network incorpor-
ating physical and predicted interactions, co-localization,
shared pathways, and shared protein domains.

Prognostic evaluation of CSK methylation and expression
on clinical data
Methylation data of the AOCS study group (http://www
.aocstudy.org) was downloaded from the NCBI GEO portal
using GEO accession GSE65820 (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc =GSE65820) as mentioned in
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Patch et al. [35]. The clinical data of patients was down-
loaded from the ICGC data portal (https://dcc.icgc.org/).
Data were normalized using a BMIQ normalization as
described previously [24]. The CSK methylation probe
(cg00516515) identified in the PDX methylation analysis
was used for further analysis. The methylation cutoff
between low and high methylation was set at 0.9 based on
the median β value (0.90, range 0.78–0.96). This resulted in
89 patients (31 high and 58 low methylation) for
progression-free survival (PFS) analysis (a proxy for sensitiv-
ity to platinum-containing chemotherapy) and 91 patients
(32 high and 59 low methylation) for overall survival (OS)
analysis using the Cox proportional hazard model.
Prognostic validation of CSK expression level was

performed on publicly available datasets obtained from an
online tool [36] for genome-wide validation that can be
accessed at http://kmplot.com/ovar. This online portal only
contains data from publications that comprise normalized
microarray gene expression data, clinical survival informa-
tion, and at least 20 patients. For our prognostic analysis,
data were derived from analysis using KM plotter [36] in
October 2015, in which we selected only advanced stage
(III and IV) HGSOC cancer patients who received platinum
therapy. This resulted in 633 patients for PFS analysis and
656 patients for OS analysis using a Cox proportional
hazard model with CSK probe (probe ID 202329_at). With
an expression range of CSK probe (74–2566), the auto
cutoff value of 567 for PFS analysis and 580 for OS analysis
was used, based on the computation of upper and lower
quartiles with default settings of the portal [36].

Results
Genome-wide DNA methylation comparison of HGSOC
primary and PDX tumors
Genome-wide DNA methylation of HGSOC primary
tumors (F0) and different PDX generations (F1, F2, and
F3) from three patient-derived PDX models (PDX-36, -37,
and -56) was studied. We analyzed up to generation F3
because this PDX generation is regarded as being stable
and can be used for testing therapeutic agents [10, 12, 37].
Marginal differences were found in mean genome-wide
DNA methylation (β value) from primary tumors (F0 =
0.481) to PDX.F3 tumors (F3 = 0.410). This difference can
be largely explained by the more abundant presence of
“highly methylated sites” (HMS; β values >0.7) and less
“partially methylated sites” (PMS; β values 0.2–0.7) in
primary tumors (F0) compared to PDX tumors (F1, F2,
and F3) (Fig. 1a; Additional file 1: Figure S1d). Further, we
comparatively analyzed all DNA methylation probes based
on genomic compartment (Fig. 1b), CpG context
(Fig. 1c), CpG island content (Fig. 1d), and HIL CpG
classes (high-density CpG island (HC), intermediate-
density CpG island (IC), and non-island (LC)) based
on CpG enrichment [38] (Additional file 1: Figure

S1e). Notably, no major methylation changes were found
for the mean methylation β value of the probes at different
regions of CpG islands among all samples. The largest
differences in methylation levels were found between
promoter regions of F0 primary tumors and F3 PDX
tumors and between intragenic regions of F0 primary
tumors and F1 PDX tumors (Fig. 1b). Other significant
mean methylation differences (p < 0.01) between F0 pri-
mary tumors and F1 PDX tumors were found either in
CpG island-containing probes (Fig. 1d) or probes from the
intermediate HIL CpG class (Additional file 1: Figure S1e)
but not in the high HIL CpG class, indicating some non-
random effect on methylation of CpG-containing probes.
Based on global DNA methylation patterns, all PDX tu-

mors were clustered together with their respective PDX
type (PDX-36, -37, and -56), irrespective of their propa-
gated generation (F1, F2, or F3) (Fig. 1e). Notably, un-
supervised clustering revealed that the methylation
patterns of primary tumors from patients 36 and 37 were
more similar to each other than their corresponding PDX
tumors as shown by the close hierarchical clustering be-
tween these two tumors (Fig. 1e). The reason for such
clustering could be the fact that primary patient tumors
include human stromal and endothelial cells as well.
After analyzing the number of differentially methylated

CpG sites among primary tumors and PDX tumors from
F1 to F3, we found only 2604 CpG sites in F1, 4349 sites in
F2, and 4606 sites in F3 that were significantly differentially
methylated (p < 0.01) in comparison with the F0 primary
tumors. These results indicate that only 0.66–1.17 % of the
392,317 CpG sites were differentially methylated in primary
versus PDX tumors (Fig. 1f). Moreover, a very low number
of CpG sites (0.001–0.002 % of total CpG sites analyzed)
was significantly differentially methylated (p < 0.01) among
different generations of PDX tumors (F1 versus F2 or F2
versus F3 tumors) (Fig. 1f). Finally, global methylation
patterns of all patient tumors and PDXs were verified by
bisulfite pyrosequencing of the global methylation marker
ALU-Yb8 (Additional file 1: Figure S1f), showing similar
genome-wide methylation patterns between F0 and F3. In
addition, the global methylation patterns of biological repli-
cates of PDX-36 tumors from generation F3 (n = 3) were
compared to each other and found to be highly correlated
to each other (r = 0.94–0.96, p < 0.001) (Additional file 1:
Figure S1g). In conclusion, these results indicate that
genome-wide methylation between PDX tumors and their
corresponding primary patient tumors were very similar,
with only some small changes found in F1 tumors in spe-
cific CpG- enriched regions.

Effect of treatment with demethylating agent DAC or
cisplatin on the global DNA methylome of PDX tumors
PDX-36 mice (n = 3) were treated with DAC and we
observed a profound significant demethylation effect in
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Fig. 1 Distribution of methylated CpG sites in HGSOC primary tumors and three generations of their corresponding PDX tumors. a β values are
grouped in 0.1 increments and the percentage of probes is represented for each sample type (from patients (F0) to third generation PDX tumors
(F3)). The mean β value for each sample type is shown between parentheses. Lowly, partially and highly methylated sites are indicated as LMS,
PMS, and HMS, respectively. b–d DNA methylation level of each sample type according to the genomic compartment (b), CpG context (c) and
CpG island (CGI) content (d). Each bar represents mean DNA methylation β value ± SD; *p < 0.01. e Unsupervised clustering dendrogram showing
the relationship of CpG probes between all the sample types. f The number of significant CpG sites in comparison with different sample types
and their percentage compared to total CpG sites analyzed
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genome-wide CpG probes (mean β value) of DAC-treated
PDX-36 tumors (DAC= 0.299) compared to vehicle-
treated tumors (control = 0.342) (Fig. 2a). Notably, DAC
treatment mainly affected highly methylated probes
(HMS, β > 0.7; Fig. 2a; Additional file 2: Figure S2b).
Demethylation effects of DAC were observed at all regions
of CpG probes, irrespective of genomic compartment,
CpG context, and HIL CpG class (Fig. 2b–d; Additional
file 2: Figure S2c). These results indicate that DAC
treatment causes global demethylation in PDX tumors.
Bisulfite pyrosequencing of global DNA methylation
surrogate marker ALU Yb8 and LINE-1 confirmed our
findings, revealing significant (p < 0.01) demethylation of
DAC-treated PDX tumor DNA compared to vehicle-
treated PDX tumor DNA (Additional file 2: Figure S2d).
No major demethylation effect in genome-wide CpG

probes (mean β value) of cisplatin-treated PDX 36 tu-
mors (cisplatin = 0.327) was observed compared to
vehicle-treated PDX 36 tumors (control = 0.342) (Fig. 2a;
Additional file 2: Figure S2b). Furthermore, there was no
significant difference in mean DNA methylation between
the probes of cisplatin-treated and vehicle-treated PDX
tumors at any genomic location irrespective of CpG
context and content (Fig. 2b–d; Additional file 2: Figure
S2c). Bisulfite pyrosequencing of global DNA methyla-
tion surrogate marker LINE-1 and ALU Yb8 in PDX
tumors confirmed our findings (Additional file 4: Figure
S3a, b). Furthermore, no significant differences were
observed for methylation of LINE-1 and ALU Yb8 in
ovarian cancer cell lines when treated with either cis-
platin or carboplatin compared to untreated controls
(Additional file 4: Figure S3c, d). Notably, unsupervised
cluster analysis of all CpG sites showed that PDX tumors
clustered together dependent on the treatment used
(Fig. 2e). This apparently indicates that DNA methyla-
tion patterns are similarly affected per specific therapy.
Methylation analysis at the single CpG probe level

revealed approximately 41,491 CpG sites (10.6 % of total
CpG sites analyzed) that were significantly differentially
methylated (p < 0.01) in DAC-treated PDX tumors
compared to control PDX tumors (Fig. 2f; Additional file 2:
Figure S2e). Supervised clustering analysis of the sig-
nificantly (p < 0.01) differentially methylated CpG sites (n =
41,491 sites) showed that the majority of sites (97.6 %) were
demethylated in DAC-treated compared to vehicle-treated
tumors (Fig. 2g). Interestingly, global DNA demethylation
of PDX tumors is comparable to the demethylation effect
of DAC as observed in tumor DNA from patients in a
recent clinical trial with DAC [39] (Additional file 2:
Figure S2f ). In stark contrast, only 0.53 % of total
analyzed CpG sites, comprising 2088 sites, were signifi-
cantly differentially methylated (p < 0.01) in cisplatin-
treated PDX tumors compared to vehicle-treated ones
(Fig. 2f ). Of 2088 CpG sites, 61 % of CpG sites showed

hypomethylation and 39 % showed hypermethylation in
cisplatin-treated tumors in comparison with vehicle-
treated ones (Additional file 2: Figure S2g). In conclu-
sion, these results show a marginal effect of cisplatin
but a strong demethylation effect of DAC in clinically
relevant PDX models.

Identification of novel epigenetically regulated genes and
pathways in PDX tumors
DAC-treated PDXs showed diminished growth com-
pared to control tumors (Additional file 5: Figure S4a),
indicating that we used an effective dose of DAC. This
observation allowed us to investigate changes in epige-
netically regulated genes and pathways that are related
to DAC-induced growth inhibition. To identify genes
that are putatively epigenetically regulated, i.e., DAC-
induced demethylation-sensitive genes, we selected those
CpG sites that were stable at the methylome level over
all generations (F1, F2, and F3) in all three PDX models
(in total 377,001 CpG sites) (Fig. 3a). Of those 377,001
CpG sites, we found 40,769 were demethylated in DAC-
treated PDX-36 tumors (Additional file 5: Figure S4b).
This comparison resulted in 40,769 CpG sites that were
stable over propagated generations and can be modu-
lated by DAC treatment. Since we would like to validate
the identified putative CpG sites functionally using
ovarian cancer cell lines, we compared these PDX
tumor-based 40,796 CpG sites with the DAC-sensitive
CpG sites of SKOV3 cells. This resulted in 1029 CpG
sites comprising 822 genes affected by DAC treatment
in vivo as well as in vitro (Fig. 3a; Additional file 5:
Figure S4c; Additional file 6: Table S2).
To identify the potential biological function of these 822

genes effectively demethylated by DAC treatment, we first
performed GO-based functional enrichment analysis using
DAVID [32]. The major biological process-related GO
terms were metabolic process, cellular transport, biosyn-
thetic process, mitotic cell cycle, cell locomotion, transfer-
ase activity, and post-translational modifications (Fig. 3b).
Subsequently, pathway enrichment analysis using KEGG,
Wiki pathways, and pathway common databases revealed
several enriched pathways, including mTOR pathway,
insulin signaling, cellular metabolic pathway, TGF-β
signaling, Wnt pathway, cell cycle, Src family kinases
signaling, DNA replication, and vesicular trafficking
pathways (Fig. 3c; Additional file 7: Table S3). We selected
seven genes from different pathways for further validation:
CSK (Src family kinase signaling), ADCY6 (metabolic
pathway), PRKCζ, AKT1, RAPTOR (insulin and mTOR
pathway), SKI (TGF-β signaling), and NFATC1 (T-cell
stimulation). Five out of these seven genes were
successfully validated by bisulfite pyrosequencing
comparing DNA from PDX-36 tumors treated with
DAC or vehicle (Fig. 3d).
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Validation of C-terminal Src kinase (CSK) as a candidate
gene for ovarian cancer treatment
Among these five successfully validated genes, we se-
lected the C-terminal Src kinase (CSK) gene for further
investigation, mainly because of the significantly highest
demethylation effect on CSK after DAC treatment in
PDX-36 tumors, the relevance of CSK biological func-
tion as a negative regulator of non-receptor Src family
kinases, and the involvement of CSK in many key signal-
ing pathways along with its anti-tumor activity [39, 40].
As expected, the methylation status of CSK among all
PDX generations was stable in all different models using
bisulfite pyrosequencing (Fig. 4a). Demethylation of CSK
by DAC treatment was confirmed in all three PDX
models, with the strongest effect in PDX-36 tumors
(Fig. 4b). In DAC-treated PDX-36 and -37 tumors, effi-
cient demethylation of CSK was accompanied by a clear
induction of CSK gene expression (Fig. 4c).
For further validation, a large panel of ovarian cancer

cell lines (n = 11) was treated with DAC for three days
and the methylation status of CSK was analyzed using
bisulfite pyrosequencing. All cell lines showed high CSK
methylation levels (72–99 %), which decreased signifi-
cantly (p < 0.01–0.0001) after DAC treatment (Fig. 4d).
Subsequently, we found significant upregulation of CSK
expression levels (p < 0.05) in SKOV3, OVCAR3, PEA1,
A2780, and IGROV1 cells (Fig. 4e). Moreover, an inverse
correlation (r = −0.612, p < 0.0021) between methylation
and gene expression of CSK was found in the ovarian
cancer cell lines (Fig. 4f ). In summary, these results
show that CSK is an epigenetically regulated gene with
demethylation leading to higher gene expression, both in
ovarian cancer PDX models as well as in cell lines.
Finally, to evaluate the possible clinical significance of

CSK methylation, we used a patient database of
advanced stage HGSOC patients (n = 91) who were
treated with platinum-based chemotherapy and whose
tumors were used to generate genome-wide methylation
profiles using 450 K Infinium methylation arrays. High
methylation of CSK (β value >0.9) was associated with a
presumably poor response to platinum-containing
chemotherapy of HGSOC patients as indicated by a
shorter PFS (hazard ratio = 1.58 (1.060–2.615), p = 0.040)
and with a worse OS (hazard ratio = 1.55 (1.033–2.567),

p = 0.007) (Fig. 5a, b). The high methylation levels
observed in these HGSOC patients were in agreement with
the methylation levels found in the PDX tumors as well as
in the ovarian cancer cell line panel. To determine the
prognostic value of CSK expression in HGSOC, we used
a large patient cohort of advanced stage HGSOC patients
(n = 651) who were treated with platinum-based che-
motherapy. High expression of CSK (probably resulting
from less DNA methylation) was associated with
presumably better response to platinum-containing
chemotherapy of HGSOC patients as indicated by a lon-
ger PFS (hazard ratio = 0.72 (0.570-0.806), p = 0.0009)
and with an improved OS (hazard ratio = 0.70 (0.539-
0.845), p = 0.0007) (Fig. 5c, d). This analysis indicates the
prognostic value of CSK methylation and expression in
advanced stage HGSOC patients.

Discussion
Our study for the first time shows that HGSOC PDX
tumors are epigenetically stable comparing primary
tumors with their subsequent PDX generations. Only
0.66–1.17 % of the total methylated CpG sites signifi-
cantly changed in HGSOC PDX tumors during propaga-
tion. While cisplatin treatment did not alter the DNA
methylation pattern, treating these PDX models with
DAC significantly reduced tumor growth and was ac-
companied by significant changes in methylation of CpG
sites. Further validation and subsequent pathway analysis
revealed enrichment of several biological pathways (e.g.,
the Src family kinase pathway) in HGSOC that were
affected by DAC treatment. Expression of CSK, a
negative regulator of non-receptor Src family kinases, is
epigenetically regulated and can be upregulated by DAC
treatment in several HGSOC PDXs and cell lines. More-
over, we show that CSK methylation and expression have
prognostic value in HGSOC patients.
There is growing evidence that HGSOC PDX models

not only recapitulate the histology of patients’ tumors but
also maintain the heterogeneity of them to some extent
[12, 13]. However, their utility in epigenomics studies has
not been assessed yet. In HGSOC, frequent aberrant
epigenomic alterations, including DNA methylation, with
less somatic mutations [2] present DNA methylation as a
suitable target for future epigenetic cancer therapy. Finding

(See figure on previous page.)
Fig. 2 Distribution of methylated CpG sites in HGSOC PDX tumors treated with decitabine (DAC) and cisplatin. a β-values are grouped in 0.1 increments
and the percentage of probes is represented for each treatment group. The mean β value for each treatment group is shown between parentheses. Lowly,
partially and highly methylated sites are indicated as LMS, PMS, and HMS, respectively. b–d DNA methylation level of each treatment group according to
the genomic compartment (b), CpG context (c), and CpG island (CGI) content (d). Each bar represents mean DNA methylation β value ± SD. A Student’s
t-test was performed compared to vehicle treated PDX tumors (F0); *p< 0.01. e Unsupervised clustering dendrogram showing the relationship of CpG
probes between all the treatment groups. f Significant CpG sites in comparison with different sample types and their percentage compared to total CpG
sites analyzed. g Supervised clustering analysis of significantly changed CpG sites (p< 0.01) in PDX-36 treated with DAC compared to vehicle-treated
controls (n = 3 mice in each group)
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novel and robust epigenetically regulated genes and
pathways warrants suitable preclinical models with better
prediction value for therapeutic targets and therapy
response. Cell lines and cell line-based xenografts are
known to be more homogenous models but with the lack

of representative prediction of drug responses [41]. More-
over, continuous propagation of cell lines induces many
epigenetic changes and HGSOC cell lines are, therefore,
epigenetically far from patient tumors [42]. Until now
global DNA methylome analysis has been performed on

Fig. 3 Identification of putative epigenetically regulated key genes and pathways related to ovarian cancer using PDX tumors. a Systematic
strategy to identify CpG sites of novel putative epigenetically regulated genes. b Gene ontology terms enriched for biological processes using the
candidate genes identified in the systematic strategy (n = 822). c Interactive functional association network based on predictive gene function
and pathways using the same candidate genes (n = 822) by GeneMania (http://www.genemania.org/). Blue lines indicate related pathway
connection; orange lines represent predicted interactions and red lines physical interactions. d Verification of seven DAC-affected genes using
bisulfite pyrosequencing. Mean methylation (%) ± SD of respective genes for different analyzed CpG sites; *p < 0.05, **p < 0.01
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PDX models of just a few cancer types, including head and
neck, small cell lung, and colon cancer and osteosarcoma
[17–19]. All previously reported studies were limited by
having low numbers of PDX samples and not including
propagation-related, trans-generational comparisons. So
far, only osteosarcoma and colon PDXs have been used to

compare global trans-generational methylation patterns up
to the second generation [19]. In line with our ob-
servations, the methylome of osteosarcoma and colon
cancer PDXs was very similar to the primary tumor with,
on average, only 2.7 % difference in the assayed CpG sites.
In this study, we used only subcutaneously implanted PDX

Fig. 4 Validation of CSK as a novel putative epigenetically regulated gene in HGSOC. a Mean methylation (%) ± SD of CSK in patient and F3 generation
tumors in three different PDXs. b Mean methylation (%) ± SD of CSK in three different F3 generation PDX tumors treated with DAC or vehicle (PDX-36, -37
and -56, n = 3 mice in each group); **p< 0.01, ****p< 0.0001. c CSK mRNA relative expression in three different F3 generation PDX tumors treated with
DAC or vehicle (PDX-36, -37 and -56, n = 3 mice in each group) using qRT-PCR; *p< 0.05. d Bisulfite pyrosequencing of CSK in a panel of ovarian cancer cell
lines (n = 11), untreated and treated with DAC (1 μM) for 72 h. Mean methylation (%) ± SD of CSK for three analyzed CpG sites; **p< 0.01, ***p< 0.001,
****p< 0.0001. e qRT-PCR for CSKmRNA expression in the same ovarian cancer cell line panel, untreated and treated with DAC (1 μM) for 72 h. Relative
fold induction ± SD of CSK for three independent experiments; *p< 0.05, **p< 0.01. f Correlation analysis of methylation and expression of ovarian cancer
cell lines (n = 11) treated or untreated with DAC, showing an inverse correlation between methylation and expression
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models, which do not have the advantages of orthotopic
implanted models that have the same anatomic mi-
croenvironment of patients’ tumors and resemble their
metastatic behavior [10]. However, the generation of
orthotropic xenografts is more labor-intensive and expen-
sive and complex surgery and imaging methods are re-
quired to monitor tumor growth [10]. Therefore, we used
subcutaneous implantation methodology, achieving not
only high take rates but also PDX tumors that histologi-
cally and genomically mimicked the patients’ tumors [12].
Nevertheless, it would be of interest to compare the global
methylome of subcutaneously implanted and orthotropic
implanted PDX models.
Current knowledge regarding the effect of epigenetic

drugs like demethylating agents on DNA methylation
patterns in PDX models is obscure. Our study presents
the first results of DAC treatment on the methylome of
HGSOC PDX tumors. We observed a global demethyla-
tion effect of DAC treatment at all CpG sites irrespective
of their genomic location, with 10.6 % significantly
demethylated CpG sites. We also verified these results
by a decrease in DNA methylation of the global methy-
lation markers LINE-1 and ALU Yb8. Similar global de-
methylation effects (e.g., LINE-1 and ALU Yb8 as well
as the total percentage of demethylated CpGs) were also
observed in peripheral blood mononuclear cells, ascites,
and tumor DNA in platinum-resistant ovarian cancer
patients treated with DAC in a phase II clinical trial
[43]. Many of the significantly demethylated genes in
DAC-treated PDXs in our study were related to cell–cell

adhesion, MAPK, mTOR, cytokine- and chemokine-
related pathways, cell–matrix adhesion, NFKB, and other
related pathways. Most of these pathways were also
found to be altered in DAC-treated ovarian cancer pa-
tients. However, less similarity was observed at the gene
level [43, 44]. Concisely, the effects of DAC on HGSOC
PDX models resemble the effects of this agent observed
in patients. Hence, HGSOC PDX models can be utilized
for analyzing the effects of novel epigenetic cancer
therapies.
Notably, we observed DAC-induced tumor growth

inhibition in all three HGSOC PDX models. Therefore, we
focused on finding putative genes and/or pathways whose
demethylation might be responsible for such tumor
growth inhibition. Consequently, our search for novel
epigenetically regulated key genes and pathways related to
DAC treatment in HGSOC PDXs led to the identification
of CSK. CSK is known for its role as a negative regulator
of non-receptor tyrosine Src family kinases, including c-
Src, c-Fgr, Lyn, c-Yes, and others [39]. CSK phosphorylates
these kinases, leading to an inactive conformation of
kinases and decreased downstream signaling [39, 45]. CSK
has been found highly expressed in normal organs, while
its reduced expression and concomitant increased c-Src
activity were reported in many cancer types, including
hepatocellular carcinoma and prostate cancer [46, 47]. We
found that high expression as well as low methylation of
CSK in advanced stage HGSOC patients was related to
better PFS and OS. Moreover, Src and other Src kinases
have been reported to be overexpressed in advanced stage

Fig. 5 Prognostic evaluation of CSK methylation and expression in HGSOC patients. a, b Kaplan–Meier plots showing PFS (a) and OS (b) for the
two patient groups defined based on CSK methylation using a Cox proportional hazard model in HGSOC cohorts (n = 89 and n = 91, respectively).
c, d Kaplan–Meier plots showing PFS (c) and OS (d) for the two patient clusters based on CSK expression using a Cox proportional hazard model
in HGSOC cohorts (n = 633 and n = 656, respectively)
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ovarian cancer [48, 49]. Emerging data are supporting the
key role of Src family kinases in many carcinogenic pro-
cesses, including tumor growth and metastasis in ovarian
and colon cancer [50, 51]. Hence, they are being consid-
ered as suitable targets for ovarian cancer treatment in
combination with standard chemotherapy [51, 52]. It has,
however, been reported that selective inhibition of Src in
ovarian cancer could lead to enhanced expression of other
Src family kinases and related pathways [53]. CSK overex-
pression actually causes inhibition of in vivo tumor growth
and metastasis in colon cancer cell lines [54]. Therefore, it
is tempting to speculate that reversion of epigenetically
silenced CSK or induction of CSK expression in ovarian
cancer might lead to an adequate suppression of Src
family kinases and consequently less tumor growth. Thus,
more in-depth functional validation of CSK is warranted
to study how this protein is involved in chemoresponses
and OS of ovarian cancer patients.

Conclusions
We show that genome-wide DNA methylation in HGSOC
PDX models is largely stable during propagation in mice.
The methylome of PDX tumors can be efficiently affected
with the demethylating agent DAC. Using this model, we
have identified novel epigenetically regulated genes, such as
CSK, and related pathways. Our results encourage the ap-
plication of PDXs for further cancer epigenomics studies.
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Additional file 1: Figure S1. a Clinicopathological features of
transplanted HGSOC tumors. b Representation of patients and their
corresponding PDX tumor samples used in this study. c All preprocessing
of 450 K data of each sample. d DNA methylation level of each sample type
according to HIL CpG classes [38] for PDX-36, -37, and -56 for all generation
tumors (F0, F1, F2, and F3), p < 0.01. e Global distribution of 450 K methyla-
tion probes of the raw data of PDX-36, -37, and -56 for all generation tumors
(F0, F1, F2, and F3). f Validation of global methylation using bisulfite pyrose-
quencing of ALU-Yb8 in PDX samples. Each bar represents average methyla-
tion (%) ± SD of five CpG sites for ALU-Yb8 in the indicated PDX samples. g
Correlation heat map of PDX-36 biological replicates (n = 3) of generation
F3 based on their genome-wide CpGs β values. Pearson correlation
coefficients are shown in each heatmap box. (PDF 620 kb)

Additional file 2: Figure S2. a Systematic representation of F3 PDXs and
their treatment schedule. b Global distribution of 450 K methylation probes of
the raw data of PDX-36, untreated or treated, tumor samples. c DNA methyla-
tion level of each sample type according to HIL CpG classes [38] for PDX-36,
untreated or treated tumor samples; *p< 0.01. d Validation of global methyla-
tion using bisulfite pyrosequencing of ALU-Yb8 and LINE-1 in PDX samples.
Each bar represents average methylation (%) ± SD of five CpG sites for
ALU-Yb8 and LINE-1 in the indicated PDX samples and SKOV3 cells; **p<
0.001, ****p< 0.00001. e Significantly changed CpG sites (p <0.01) in PDX-36
and altered CpG sites (Δβ value > 0.1) of SKOV3 cells after DAC treatment. f
Comparative analysis of significantly
differentially methylated CpG probes (percentages) in ovarian cancer
patients [43] and PDX tumors treated with DAC in comparison with untreated
control ones. g Supervised clustering analysis of significantly genome-wide
demethylated sites (p< 0.01) in PDX-36 treated with cisplatin compared to
vehicle-treated controls (n = 3 mice in each group). (PDF 567 kb)

Additional file 3: Table S1. All ovarian cancer cell lines and their
culture conditions. (XLSX 13 kb)

Additional file 4: Figure S3. a, b Validation of global methylation using
bisulfite pyrosequencing of LINE-1 (a) and ALU-Yb8 (b) in PDX samples treated
with either vehicle or cisplatin (4 mg/kg/week) for 4 weeks (n = 3 mice per
group). Each bar represents average methylation (%) ± SD of five CpG sites for
LINE-1 and ALU-Yb8 in the indicated PDX samples. c, d Effect of cisplatin and
carboplatin treatment on global methylation in various ovarian cancer cell
lines using bisulfite pyrosequencing LINE-1 (c) and ALU-Yb8 (d). Each bar
represents average methylation (%) ± SD of five CpG sites for LINE-1 and
ALU-Yb8 in the indicated cell lines. Each cell line was treated with either
cisplatin or carboplatin at the indicated dose for 72 h. (PDF 225 kb)

Additional file 5: Figure S4. a Change in tumor growth (percentages) of
PDX-36, -37, and -56 during treatment with DAC (2.5 mg/kg, thrice per
week) or vehicle for 4 weeks (n = 3 mice per group). b Comparative analysis
of significant differentially methylated CpG sites among DAC-treated PDX
tumors over samples from all generations. This analysis revealed 40,769 CpG
sites that remained stably methylated over all generations (F0, F1, F2, and
F3) and can be significantly demethylated by DAC treatment. c Comparative
analysis of significant differentially methylated CpG sites (p <0.01) among
DAC-treated PDX tumors over altered CpG sites (Δβ value > 0.3) of DAC-
treated SKOV3 cells. We used stringent criteria (Δβ value > 0.3) for altered
CpG sites for DAC-treated SKOV3 in order to select better candidate genes
for further analysis. (PDF 605 kb)

Additional file 6: Table S2. Final list of the top 1029 CpG probes and
their β values of DAC-treated ovarian cancer PDXs and control ones with
full annotation information of probes. (XLSX 438 kb)

Additional file 7: Table S3. Table for GO enrichment and pathway
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