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Adipose tissue is a major site of chronic inflammation associated with peritoneal dialysis (PD) frequently complicating peritonitis.
Adiposity-associated inflammation plays a significant contributory role in the development of chronic inflammation in patients
undergoing maintenance PD. However, the molecular and cellular mechanisms of this link remain uncertain. Adipose tissue
synthesizes different adipokines and cytokines that orchestrate and regulate inflammation, insulin action, and glucose metabolism
locally and systemically. In return, inflammation retards adipocyte differentiation and further exacerbates adipose dysfunction
and inflammation. An understanding of the inflammatory roles played by adipose tissue during PD and the healing mechanism of
injured mesothelium will help to devise new therapeutic approach to slow the progression of peritoneal damage during peritoneal
dialysis. This article reviews the roles of peritoneal adipose tissue in chronic peritoneal inflammation under PD and in serosal
repair during PD.

1. Introduction

Continuous ambulatory peritoneal dialysis (CAPD) has
emerged as a major treatment modality in renal replace-
ment program worldwide. It has distinct advantages over
hemodialysis with a lower cost and simplicity of the tech-
nique. The ability to maintain the functional integrity of the
peritoneal membrane allowing effective removal of fluid and
metabolic waste is essential for the success of the treatment.
Unfortunately, the peritoneal membrane frequently exhibits
structurally changes following long-term dialysis due to the
exposure of unphysiologic peritoneal dialysis fluid (PDF)
with low pH and high glucose [1]. PDF also contains toxic
substances including glucose degradation products (GDP)
generated during the sterilization process and advanced
glycation end products (AGE) produced from Amadori
reaction between sugar and protein during long-term peri-
toneal dialysis (PD) [2]. These compounds cause irreversible
damage to the peritoneal tissue leading to ultrafiltration
failure and decline in dialysis efficacy [3, 4]. Previous studies
have reported the detrimental effects of PDF on peritoneal
cells including human peritoneal mesothelial cells (HPMC)

[5–7] and endothelial cells [8, 9]. While adipose tissue is
ubiquitously present in peritoneal tissue, information for the
characteristics and pathophysiology of adipocytes following
long-term exposure to PDF in maintenance CAPD remains
scarce. Only until recently, adipocytes are considered as
passive tissue for the storage of energy in the form of fat.
However, there are now compelling evidences suggesting that
adipocytes exert important metabolic and proinflammatory
effects on peripheral tissue [10–12]. Furthermore, peritoneal
adipocytes affect HPMC through the release of adipokines
and, hence, alter the peritoneal physiology during PD
[13, 14].

2. Peritoneal Adipocytes

The parietal and visceral peritoneal surfaces are covered by
a monolayer of mesothelium composed of mesothelial cells.
Beneath the mesothelial cells are the basement membrane
and submesothelial layer that contains collagen, fibroblasts,
adipose tissue, blood vessels, and lymphatics [15]. Adipose
tissue is abundant in omental or mesenteric peritoneum but
less so in parietal, intestinal, and diaphragmatic peritoneum.
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Contrary to the prevailing view that adipose tissue functions
only as an energy storage depot, compelling evidence
reveals that adipocytes can mediate various physiological
processes through secretion of an array of mediators and
adipokines that include leptin, adiponectin, resistin, tumor
necrosis factor-α (TNF-α), interleukin (IL)-6, transforming
growth factor-β (TGF-β), vascular endothelial growth factor
(VEGF), hepatocyte growth factor (HGF), and other growth
factors [16]. Moreover, adipocytes express receptors for
leptin, insulin growth factor-1 (IGF-1), TNF-α, IL-6, TGF-
β and may form a network of local autocrine, paracrine,
and endocrine signals [17]. All of these adipokines exert
important endocrine functions in chronic kidney diseases
and may also contribute to systemic inflammation in these
patients. This is of special significance in patients undergoing
CAPD as the initiation of treatment is often associated
with an increase in fat mass that could be associated with
a polymorphism in uncoupling protein 2 which affects
the energy metabolism in addition to glucose absorption
from the PDF [18]. In contrast to findings in the general
population, a number of studies have suggested that a
higher body mass index (BMI) is associated with a better
outcome in patients with kidney diseases [19]. Critical
analysis reveals that the protective effect from a high BMI
only applies to patients with a normal or high muscle
mass [20]. A recent study indicates that an increased fat
mass in PD, like in other patient groups, may indeed have
adverse metabolic consequences with increased systemic
inflammation and worst survival [21]. Interestingly, there
is a difference in the release of growth factors between
visceral and subcutaneous adipose tissue [22]. The omental
adipose tissue, most affected by PD, releases IL-6 two to
three folds higher than the subcutaneous fat tissue [23].
The visceral (truncal) fat mass correlates significantly with
circulating IL-6 levels but not for nontruncal fat mass
[24].

Ultrastructural study reveals that a portion of omental
adipocytes protrude from the mesothelial surface, thus may
come into direct contact with dialysate [15]. In addition,
dialysate may also reach the parietal adipose tissue when
the mesothelial monolayer is damaged. It is therefore logical
to postulate that with repeated exposure to PDF and the
continuous change in peritoneal physiology during CAPD,
peritoneal adipocytes will inevitably be “activated”. Although
much work has focused on peritoneal mesothelial cells, scant
attention has been paid to the role of peritoneal adipocytes
during CAPD.

3. Stem Cells from Adipose Tissue

The stromal vascular fraction (SVF) is a heterogeneous
cell population derived from the adipose tissue including
omentum [25–27]. SVF is reported to be composed of
endothelial cells identified as CD34+/CD31+ cells, infiltrat-
ing/resident macrophages defined as CD14+/CD31+ cells,
and a population characterized as CD34+/CD31− cells.
The CD34+/CD31− subset is a unique cell fraction capable
of differentiating into adipocytes and is restricted to cells
that do not express the mesenchymal stem cell marker

CD105 [28]. It has been suggested that the adipocyte
progenitor cells, that is, the preadipocytes, are included in
the CD34+/CD31− cell fraction. This unique population
is distinct from the multipotent adipose tissue-derived
mesenchymal stem cells, which can be differentiated in vitro
into other cell types including adipocytes [27], chondrocytes
[29], osteoblasts [30, 31], and cardiomyocytes [32, 33].
The cellular number of SVF varies among individuals and
so far there is no data studying whether PD alters the
number of SVF in different adipose depots. Apart from the
SVF, milky spots of the omentum also harbor stem cells
[34], which proliferate to form the resident macrophage
during peritoneal inflammation [35]. It remains unknown
whether stem cells from milky spots have the same identity
as stem cells in SVF with adipogenic potential. Milky spots
are very small omental tissues in contact with peritoneal
membrane, consisting of macrophages, lymphocytes, and
plasma cells supported by blood and lymphatic vessels. Milky
spots play a role in peritoneal infection and abdominal
tumors [36, 37]. PD also activates the milky spots resulting
in an increase in number and size during inflammatory
process and PD [37, 38]. Milky spots transform into a
lymph node-like structure where lymphocytes constitute the
main cellular component after an episode of peritonitis
[34].

4. Crosstalk between Peritoneal Cells and
Adipocytes with a Focus on Leptin

Adipose tissues express and secrete a variety of cytokines
and adipokines, which act locally as autocrine/paracrine
mediators or systemically as endocrine factors (Table 1).
Patients on PD have increased fat mass due to glucose
absorption from the PDF. Increase in adiposity has been
associated with sub-clinical inflammation with elevated
adipokines synthesis. Among these adipokines, leptin is of
particular interest as this peptide hormone is most abundant
adipokine produced by adipocytes and is cleared principally
by the kidney. The serum leptin concentration is increased
in patients with chronic renal failure or undergoing dialysis
[39, 40] and the serum leptin increases by 189% within a
month after the initiation of PD treatment [41]. Leptin is also
elevated during acute infection, in response to proinflamma-
tory cytokines including IL-1 and TNF-α [39]. In the kidney,
leptin stimulates cell proliferation and synthesis of collagen
IV and TGF-β in glomerular endothelial cells. In glomerular
mesangial cells, leptin increases the glucose transport, up-
regulates the expression of the TGF-β type II receptor and
the synthesis of collagen I through phosphatidylinositol-3-
kinase related pathway [39]. Available data suggests that
leptin triggers a paracrine interaction between glomerular
endothelial and mesangial cells through the increased syn-
thesis of TGF-β in glomerular endothelial cells and up-
regulated TGF-β receptor expression in mesangial cells. It
remains unclear whether such paracrine interaction operates
between peritoneal adipocytes and HPMC. To the best of our
knowledge, there is only one previous study on the effect
of PDF on adipocytes that demonstrates increased leptin
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Table 1: Major adipokines and cytokines released from adipose tissue.

Adipokine/cytokine
Cellular source
in adipose tissue

Inflammatory effect Relevance to PD References

Leptin Adipocytes Pro-inflammatory Serum and dialysate leptin increased after PD [14, 59–61]

Leptin augmented myofibroblastic conversion of HPMC

Adiponectin Adipocytes Antiinflammatory Glucose-based PDF increased plasma leptin/adiponectin [62–64]

Level in PD patients may indicate of cardiovascular disease
risk

Resistin Macrophages Pro-inflammatory Level correlates with fat mass and triglycerides in PD patients [64–66]

Adipocytes

Visfatin Macrophages Pro-inflammatory Serum visfatin levels were higher in the PD patients [67]

Adipocytes

RBP-4 Adipocytes Pro-inflammatory RBP-4 is significantly increased in end-stage renal disease [68, 69]

NGAL Mesothelial cells Pro-inflammatory Prolonged release of NGAL in dialysate following peritonitis [52, 53]

Adipocytes
NGAL was proposed as a novel early marker for acute renal
failure

TNF-α Adipocytes Pro-inflammatory TNF-α production by macrophage was reduced by low pH
and lactate in PDF

[60, 70, 71]

Macrophages Adipose-derived TNF-α inhibited leptin production

Mesothelial cells

Endothelial cells

IL-6 Macrophages Pro-inflammatory Plasma and dialysate IL-6 were associated with high
peritoneal solute transport rate

[72–74]

Adipocytes
Mesothelial cells released IL-6 upon exposure to the spent
dialysate or IL-1β

Mesothelial cells

Endothelial cells

Apelin Adipocytes Pro-inflammatory TNF up-regulated apelin expression in adipose tissue [71, 75]

MCP-1 Macrophages Pro-inflammatory MCP-1 was up-regulated by TNF-α and regulated the
differentiation of adipocytes

[76–78]

Adipocytes

Preadipocytes

synthesis in a murine adipocyte cell line (3T3-L1) by glucose-
containing PDF [42]. It is likely that pro-inflammatory
mediators released by HPMC upon exposure to PDF could
induce functional alteration of adjacent adipocytes. The
likely candidates are IL-1 and TNF-α, TGF-β, VEGF, and
IL-6. Indeed, a recent in vitro study has shown that IL-6
modulates leptin production and lipid metabolism in human
adipose tissue [43]. Using cultured HPMC and SVF, we have
shown that high glucose content in dialysate fluid is one
of the major culprits that causes structural and functional
abnormalities in peritoneal cells during CAPD [13, 44, 45].
Glucose significantly increases the protein synthesis of leptin
by adipocytes in a dose-dependent manner and up-regulates
the expression of leptin receptor, Ob-Rb, in HPMC [13].
The increased leptin production by adipocytes and enhanced
Ob-Rb expression in HPMC following exposure to glucose
suggest the existence of a cross-talk mechanism between
adipocytes and mesothelial cells that may be relevant in peri-
toneal membrane dysfunction developed during peritoneal
dialysis. HPMC cultured with conventional PDF induce

higher expression of VEGF than that experiments with low-
GDP-content PDF. In parallel, GDPs increase the gene and/or
protein expression of VEGF in HPMC [46]. GDPs also
decrease the expression of proteins associated with the tight
junction, zonula occludens protein 1 (ZO-1), in HPMC [44].
Exogenous VEGF down-regulates the expression of ZO-1
while neutralizing anti-VEGF antibody reverses the effect of
GDPs on ZO-1 expression in HPMC. These findings suggest
that the action of GDPs on ZO-1 expression is mediated
through VEGF.

A longitudinal study conducted in patients treated for
PD-related peritonitis revealed elevation of serum leptin
levels during acute peritonitis. The rise was contributed
to anorexia in the earlier stage. In contrast, the serum
adiponectin levels fell showing an inverse correlation
between these two adipokines during acute peritonitis.
Furthermore, the protracted course of inflammation even
after bacterial cure of peritonitis was likely to cause
the loss of lean body mass and to increase mortality
[47].
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5. Persistent Release of Pro-Inflammatory
Mediators in Patients under Maintenance PD
or after an Episode of Peritonitis

Patients on maintenance PD have increased intraperitoneal
levels of hyaluronan and cytokines including IL-1β, IL-6,
and TGF-β [48, 49]. Chronic inflammation remains an
important cause of morbidity in patients with end-stage
renal failure. The main causes for inflammation in CAPD are
PD-related peritonitis and exit site infection [50]. Patients on
PD with peritonitis may experience prolonged inflammation
even when clinical evaluation suggests resolution of PD-
related peritonitis [51]. The highly sensitive C-reactive pro-
tein (hs-CRP) remains significantly higher than baseline even
by day 42 after an episode of peritonitis [47]. There was per-
sistent release of Neutrophil Gelatinase-Associated Lipocalin
(NGAL) in the peritoneal dialysate effluent (PDE) collected
following an acute episode of CAPD-related peritonitis.
NGAL synthesis is specifically induced in HPMC by IL-1β
during peritonitis [52]. Interestingly, NGAL is also produced
by adipocytes [53]. NGAL markedly affects the secretion of
leptin and adiponectin by adipocytes, and acts as a nega-
tive regulator of inflammatory activity and inflammation-
mediated adipocyte dysfunction. Incubation of HPMC
with recombinant NGAL reverses the up-regulation of
Snail and vimentin induced by TGF-β. Our data suggest
that NGAL exerts a protective effect by modulating the
epithelial-to-mesenchymal transition activated by peritonitis
[52].

6. Role of Stem Cells from Adipose Tissue in
Serosal Repair during CAPD

It has been shown that daily instillation of PDF for 5
weeks in rats leads to an increased number of omental mast
cells and milky spots as well as damage to the mesothelial
cell layer covering the peritoneum membrane [54]. Most
interestingly, electron microscopy reveals that the severely
damaged mesothelial cells are able to regenerate a good
monolayer upon three months’ rest of the peritoneum. The
exact mechanism regulating this reversibility is not com-
pletely understood. Adipose tissues-derived SVF contains
pluripotent mesenchymal stem cells that can regenerate
damaged tissue [55]. An abundance of progenitor cells is
also found in omentum [56]. Introduction of a foreign
body into the peritoneal cavity further enhances the healing
capability of the omentum by causing it to expand, surround
the foreign body, and transform itself from mostly fatty
tissue [56]. This transformed tissue (the activated omentum)
contains abundant progenitor cells positive for CXCR-4 or
Wilm’s tumor-1 (WT-1), and is also rich in growth and
angiogenic factors [56]. Activated omentum also facilitates
liver regeneration following traumatic injury [57]. SVF
cultured from omentum expresses pluripotent markers,
produces high amounts of VEGF, and engrafts to injured sites
[58]. These observations support a regenerative potential of
mesothelium although the underlying mechanism remains
undefined. The relative contribution of mesothelial cells,
SVF or adipocytes in the adipose tissue and the relevant

mechanism involved in the healing process of mesothelium
after CAPD have not been well characterized.

During peritoneal dialysis, the undesirable microenvi-
ronment, chronic inflammation, and previous peritonitis
all impose stress, causing damage to the peritoneal mem-
brane. Remesothelialization or healing is possible if the
peritoneum is allowed to rest [54]. Regeneration or healing
of the mesothelium does not occur solely by centripetal
migration of cells from the wound edge. It has been
proposed that pluripotent cells beneath the mesothelium
migrate towards the surface and differentiate into mature
mesothelial cells [79–81]. Others suggest that the new
mesothelium originates from a free-floating mesothelial cell
or progenitors in the serosal fluid [82]. Different origins of
cells in the regenerating mesothelium have been proposed
and these include subserosal mesenchymal precursors, bone
marrow-derived precursors, free-floating macrophages, and
free-floating mesothelial cells. The exact identity of this
cell population responsible for mesothelial repair remains
uncertain.

Normal stem cells, mobilized from the bone marrow
or resident in damaged tissue, play a pivotal role in tissue
regeneration or healing after injury [83]. The α-chemokine
stromal-derived factor-1 (SDF-1) and its unique G-protein-
coupled chemokine receptor (CXCR4) constitute the SDF-
1/CXCR4 axis that regulates the trafficking of stem cells
during the repair of damaged tissues. SDF-1 is involved in
the regulation of CXCR4+ progenitor cell trafficking [84–
86]. Proper functioning of the SDF-1/CXCR4 axis plays
a pivotal role in the healing and regenerative processes
of damaged tissue [87], and this may be relevant to the
repair of peritoneal membrane after CAPD. Accumulation
of these progenitor cells in peritoneal tissues is affected by
a cascade of inflammatory mediators produced by peritoneal
cells (including macrophages, mesothelial cells, endothelial
cells, and adipocytes) following long-term exposure to
PDF during peritoneal dialysis. Unpublished data from our
laboratory and from the literature [88, 89] demonstrate that
SDF-1, CXCR4, as well as the endogenous aminopeptidase
dipeptidyl peptidase IV (DPPIV or CD26 that controls
the degradative pathway of the SDF-1) are expressed by
HPMC (Figures 1(a) to 1(d), unpublished data). Notably,
peritoneal permeability in CAPD patients with frequent
peritonitis deteriorates with parallel increased expression
of TGF-β in dialysate [90]. The SDF-1 expression is up-
regulated in damaged tissue following TGF-β treatment
leading to an increased migratory potential of CXCR4
bearing cells (including HPMC and progenitor cells from the
bone marrow or adipose tissue) to the SDF-1-positive niche
[89]. Other cytokines including HGF and VEGF may also
participate in the up-regulation of SDF-1 synthesis in injured
tissue. Up-regulation of the SDF-1 expression implicates the
reepithelialization of denuded basement membrane at the
site of peritoneal injury. This hypothesis is supported by
the observation of a time- and dose-dependent reduction of
DPPIV and E-cadherin expression in HPMC following TGF-
β-induced morphological change. Following the inhibition
of DPPIV, degradation of CXCR4 is retarded and hence
significantly enhances the migratory potential of CXCR4
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Figure 1: Constitutive expression of mRNA (expressed as amplicon ratio after normalized to GAPDH, measured by quantitative PCR),
protein for G-protein-coupled chemokine receptor (CXCR4; expressed as ratio of densitometry data after normalized to GAPDH, measured
by immunoblotting), and stromal derived factor-1 (SDF-1; measured by ELISA) in cultured human peritoneal mesothelial cells (HPMC),
stromal vascular fraction (SVF), and adipocytes from human omental tissue (a to d). The CXCR4 expression in HPMC was up-regulated in
a dose-dependent manner with hepatocyte growth factor (HGF) after 4 hours culture (e and f). Overnight PD effluent fluid (n = 15) was
collected from CAPD patients on day 28 after the onset of peritonitis. Control PD effluent fluid (n = 15) was obtained in CAPD patients
without previous history of peritonitis. The concentration of the HGF in PD effluent fluid was measured by ELISA. Persistent release of HGF
in PD effluent was observed at day 28 after peritonitis in CAPD patients (g). These data are from our unpublished studies.
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Figure 2: Schematic model illustrates the roles of adipokines or cytokines from adipose tissue on the repair of mesothelium under the context
of CAPD. DPPIV indicates aminopeptidase dipeptidyl peptidase IV; CXCR4, G-protein-coupled chemokine receptor; SDF-1, stromal derived
factor-1; SVF, stromal vascular fraction; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α; VEGF, vascular endothelial
growth factor.

positive HPMC towards the SDF-1 gradient in the injured
tissue. Apart from TGF-β, HGF also affects the SDF-
1/CXCR4 axis. HGF increases the CXCR4 expression and
SDF-1 production in glioma and facilitates their invasion
[91, 92]. HGF released during peritonitis also alters mesothe-
lial cell phenotype and function [93]. We observe a dose-
dependent up-regulation of CXCR4 expression in HPMC
by HGF (Figures 1(e) and 1(f), unpublished data). The
dialysate level of HGF remains persistently elevated even
28 days after an episode of peritonitis (Figure 1(g)). The
pleiotropic HGF may initially affect the mesothelial healing
by promoting mesothelial cell growth, but can also con-
tribute to peritoneal fibrosis by stimulating cell detachment
with mesothelial denudation and collagen synthesis [93, 94].
The pathophysiological impact of prolonged release of these
pro-inflammatory mediators on the SDF-1/CXCR4 axis and
the mesothelial healing remains to be examined. Figure 2
is a schematic outlining the potential role of peritoneal
adipokines and their interplay with the SDF-1/CXCR4 axis
in regulating the regeneration process of the mesothelium in
CAPD.

7. Conclusion

Long-term peritoneal dialysis is often associated with struc-
tural alterations of the peritoneal membrane that are closely

related to chronic local as well as systemic inflammatory
responses. It is evident that peritoneal mesothelial cells,
fibroblasts, and macrophages exert their effects on peri-
toneal membrane during PD. Increasing evidences reveal
that peritoneal adipose tissue also plays an important role
in the structural and functional alterations during PD.
In particular, adipocytes release secretory adipokines and
cytokines that play modulating roles in the inflammatory
cascade and healing response of the mesothelium in PD.
In the present review, we summarized the relevance of
adipose tissue associated adipokines and cytokines in PD,
with focuses on recent data related to the leptin synthesis
by peritoneal adipocytes and the associated cellular crosstalk
with mesothelial cells. The possible involvement of the SDF-
1/CXCR4 axis and adipose tissue-derived mediators in the
regeneration process of the injured mesothelium after PD
was also discussed. In order to better preserve the integrity of
the peritoneal membrane, which facilitates long-term CAPD,
novel studies designed to elucidate the detailed interaction
between different peritoneal cellular components with the
adipocytes in the context of PD should be undertaken.
Further studies on the identity of peritoneal progenitor cells
and the precise role of the SDF-1/CXCR4 axis in maintaining
the peritoneal membrane function for peritoneal dialysis are
warranted.
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Abbreviations

AGE: Advanced glycation end products
DPPIV or CD26: Aminopeptidase dipeptidyl peptidase

IV
BMI: Body mass index
CAPD: Continuous ambulatory peritoneal

dialysis
GDP: Glucose degradation products
CXCR4: G-protein-coupled chemokine receptor
HGF: Hepatocyte growth factor
hs-CRP: Highly sensitive C-reactive protein
HPMC: Human peritoneal mesothelial cells
IGF-1: Insulin growth factor-1
IL: Interleukin
NGAL: Neutrophil Gelatinase-Associated

Lipocalin
PDE: Peritoneal dialysate effluent
PD: Peritoneal dialysis
PDF Peritoneal dialysis fluid
SDF-1: Stromal derived factor-1
SVF: Stromal vascular fraction
TGF-β: Transforming growth factor-β
TNF-α: Tumor necrosis factor-α
VEGF: Vascular endothelial growth factor
WT-1: Wilm’s tumor-1
ZO-1: Zonula occludens protein 1.
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[28] C. Sengenès, K. Lolmède, A. Zakaroff-Girard, R. Busse, and
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