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Abstract: Evaluation of statistical interaction in time-to-event analysis 
is usually limited to the study of multiplicative interaction, via inclu-
sion of a product term in a Cox proportional-hazard model. Measures 
of additive interaction are available but seldom used. All measures of 
interaction in survival analysis, whether additive or multiplicative, are 
in the metric of hazard, usually assuming that the interaction between 
two predictors of interest is constant during the follow-up period. We 
introduce a measure to evaluate additive interaction in survival analy-
sis in the metric of time. This measure can be calculated by evaluat-
ing survival percentiles, defined as the time points by which different 
subpopulations reach the same incidence proportion. Using this 
approach, the probability of the outcome is fixed and the time vari-
able is estimated. We also show that by using a regression model for 
the evaluation of conditional survival percentiles, including a product 
term between the two exposures in the model, interaction is evaluated 
as a deviation from additivity of the effects. In the simple case of two 
binary exposures, the product term is interpreted as excess/decrease 
in survival time (i.e., years, months, days) due to the presence of both 
exposures. This measure of interaction is dependent on the fraction of 
events being considered, thus allowing evaluation of how interaction 
changes during the observed follow-up. Evaluation of interaction in 
the context of survival percentiles allows deriving a measure of addi-
tive interaction without assuming a constant effect over time, over-
coming two main limitations of commonly used approaches.

(Epidemiology 2016;27: 360–364)

Statistical interaction is commonly evaluated by including 
a product-term between two exposures of interest in the 

model.1,2 Whether an additive or multiplicative interaction 
is evaluated depends on the scale of the chosen statistical 

model.3 In survival analysis, the usual choice is the Cox 
proportional-hazard regression and statistical interaction is 
generally assessed as a deviation from multiplicativity, often 
without any mention of the scale issue.4,5

Interaction on the additive scale, however, is a more intui-
tive concept with a particular public health meaning, and inves-
tigating and presenting statistical interaction according to both 
scales has been widely recommended.1,3,6,7 To evaluate additive 
interaction in survival analysis, measures derived from multi-
plicative models, such as the relative risk due to interaction, the 
synergy index, or the attributable proportion due to interaction 
have been proposed.8,9 As a possible alternative, Rod et al.4 sug-
gested the use of the additive hazard model.

All the available measures, whether additive or multipli-
cative, calculate interactions on the rate scale, estimating prob-
abilities or hazards of the event within a fixed follow-up time. 
Another possible approach for the analysis of time-to-event 
data is the evaluation of survival percentiles, defined as the time 
by which a certain fraction of the population has experienced 
the event of interest.10 When focusing on survival percentiles, 
a specific probability of the event is fixed and is the time point 
to be estimated. While common scales for the evaluation of 
interaction, such as the risk differences scale, the risk ratios 
scale, and the odds ratio scale, have been studied extensively, 
measures of interaction on the survival time scale have never 
been investigated. This approach can be particularly relevant in 
the analysis of ultimate or inevitable outcomes, such as death. 
Statistical methods to estimate survival percentiles, and differ-
ences in survival percentiles according to exposure level, are 
available at the univariable and multivariable level.10 Among 
these, Laplace regression is a flexible approach to directly esti-
mate the conditional percentiles of the time-to-event variable 
as a linear combination of the predictors.11,12

The aim of this article is to present the evaluation of sta-
tistical interaction in the context of survival percentiles, intro-
ducing Laplace regression as a possible approach to evaluate 
and test additive interaction in time-to-event analysis.

DEFINING ADDITIVE INTERACTION IN THE 
CONTEXT OF SURVIVAL PERCENTILES
The common scenario in time-to-event analysis is repre-

sented by a cohort of n individuals, free from a specific disease 
of interest D at time t = 0, who are observed during a follow-up 
period to evaluate the disease-free survival. Survival percentiles 
can be defined as the time points by which specific proportions 
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of the study population have experienced the event D. For exam-
ple, the time by which the first 50% of the individuals have expe-
rienced the event is defined as 50th survival percentile or median 
survival. The survival curve depicts a complete summary of the 
entire range of observed survival percentiles, presenting the 
proportion of events during the follow-up time. A common 
approach to evaluate the survival function is to fix a specific time 
t—usually the end of follow-up—and to estimate survival prob-
abilities or rates of the event D in the time interval [0, t], possi-
bly according to levels of specific exposures or risk factors. In a 
percentile approach, on the other hand, the incidence proportion  
p is fixed to a specific level and the outcome to be evaluated is 
the corresponding survival percentile, the time t by which the 
study population reaches the specific fraction of events p.

Let G and E be two binary exposures, which can take 
values 0 or 1, and are both risk factors for the event D. 
Figure 1 presents a possible survival experience for the four 
combinations of the two exposures (i.e., G = 0, E = 0; G = 1,  
E = 0; G = 0, E = 1; G = 1, E = 1). Given a fixed proportion 
of events p, the pth survival percentiles for each of the four 
groups (t00, t10, t01, t11) are displayed in the figure. The differ-
ence (t11 − t00) represents the difference in the pth survival 
percentile between participants with both exposures and par-
ticipants with neither. The quantities (t10 − t00) and (t01 − t00) 
are the differences between participants with only exposure 
G or E, respectively, and participants with neither exposure. 
Following the conventional notation introduced in terms of 
risk,1,7 the following difference represents an intuitive mea-
sure of interaction at the pth percentile (Ip):

	 I t t t t t tp = −( ) − −( ) + −( )  11 00 10 00 01 00 � (1)

This difference, calculated as an additive measure, can 
be rewritten as t11 − t10 − t01 + t00 and represents a measure 
of interaction on the metric of survival time. It expresses to 
what extent the difference in survival due to the presence of 
both exposures exceeds the sum of survival differences due to 
each specific exposure. Comparing this measure with 0, we 
can define the interaction as superadditive, if greater than 0, or 
subadditive otherwise.

LAPLACE REGRESSION
Unadjusted differences in survival percentiles can be 

obtained from the Kaplan–Meier method, deriving the confi-
dence intervals of the differences via bootstrap. When adjust-
ment for other covariates is needed, other methods to evaluate 
survival percentiles are required. Laplace regression was 
introduced as a method for estimating the conditional percen-
tiles of a potentially censored outcome, and can be used in 
time-to-event analysis to evaluate adjusted survival percen-
tiles.10,11 Differently from other survival analysis techniques, 
Laplace regression directly models the percentiles of the time 
variable as a linear combination of the predictors. Coefficients 
estimates can be interpreted as differences in time (i.e., years, 
months, days) by which different subpopulations reach the 
same fraction of events. As any regression method, Laplace 
can model the outcome (i.e., survival time) as a function of 
multiple covariates, possibly including continuous exposures 
with flexible transformations. Situations of heteroskedasticity 
can be accommodated by letting the scale parameter depend 
on one or more covariates. Multiple percentiles can be esti-
mated simultaneously, testing coefficients within and between 
survival percentiles. The simultaneous estimation and plot-
ting of different percentiles might require some smoothing, 
depending on the variability across percentiles, and algo-
rithms such as the lowess can be applied.

Laplace regression assumes the errors follow an 
asymmetric Laplace distribution. Nevertheless, this para-
metric assumption, shared by other methods in quantile 
regression,13–16 has been shown not to influence the perfor-
mances of the model under different data distributions.11,12,17 
Simulations studies from previous articles have documented 
good performances of the model in terms of computational 
speed, precision, robustness of standard errors, and coverage 
of confidence intervals that was close to the nominal value.11,18 
Performance of the model was further improved after the 
introduction of a gradient search maximization algorithm, 
currently implemented for the estimation of the model.18 A 
flexible user-friendly program for the estimation of Laplace 
regression, which makes use of this algorithm, is available in 
Stata.12

Recent developments have increased the potential of 
Laplace regression in the epidemiologic context, presenting 
how to use the method to derive and draw adjusted survival 
curves,19 and to estimate percentile of attained age at the event 
of interest.17 This latter study presented the meaning and 

FIGURE 1.  Survival percentiles. Given a fixed fraction of cases, 
survival percentiles are defined as the time points by which 
different subpopulations reach the same proportion of events. 
The horizontal line indicates a specific survival proportion. The 
time points t00, t10, t01, and t11 are the pth percentiles in each 
of the four possible combinations of two binary exposures  
G and E.
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estimation of survival percentiles with different time scales, 
exploring the statistical properties of Laplace in estimating 
percentiles of attained age, and discussing the advantages that 
this application may accrue in time-to-event analysis.17

EVALUATING ADDITIVE INTERACTION WITH 
LAPLACE REGRESSION

To evaluate the impact of the two binary exposures G 
and E and their interaction on the pth survival percentile of the 
time variable T, we can fit the following model

  | ,T p G E p p G p E p G E( ) = ( ) + ( ) + ( ) + ( )β β β β0 1 2 3   ⋅ ⋅ ⋅ ⋅ � (2)

The time variable T is defined as time between entry into 
the study and experiencing the event D. An implicit assump-
tion to allow interpretability of Equation (2) is that parameters 
are constrained to keep the right-hand side of the equation 
positive. This should hold for all the observed, and possibly 
for all the potentially observable, combinations of covariate 
patterns. To improve interpretability, we prefer to code G and 
E so that their effects are in the same direction, that is, β1(p) 
and β2(p) have the same sign. From Equation (2), it is possible 
to estimate the pth survival percentiles for the four combina-
tions of the two exposures, corresponding to the time points 
displayed in Figure 1.
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It simply follows that the measure of additive interac-
tion (1) is estimated by the parameter β3(p). If β3(p) > 0, we 
are in the presence of superadditive interaction between G and 
E. If β3(p) < 0, the interaction is subadditive. The statistical 
test associated with the parameter β3(p) can hence be viewed 
as a test for additive interaction. Model (2) can be extended to 
include additional covariates. In this situation, the interpreta-
tion of the product term coefficient as a measure of additive 
interaction is still valid when conditioning on the additional 
covariates.

The fact that in a percentile approach the incidence pro-
portion p is fixed at a specific value, as displayed in Figure 1, 
implies that the measure of additive interaction depends on p. 
This allows the study of interaction between two risk factors 
according to the fraction of events considered.

EMPIRICAL EXAMPLE
We evaluated the interaction between smoking status  

(0 = current smoker; 1 = never smoker) and educational level 
(0 = primary education; 1 = high school/university education) 
in predicting overall mortality. We used data from the Cohort 
of Swedish Men and the Swedish Mammography Cohort, two 
large cohorts of ~80,000 men and women from central Swe-
den, aged 45–83 at baseline, established in 1997 and largely 
described elsewhere.20 After exclusions we considered in 
these analyses 71,238 participants who were followed up for 
16 years between January 1, 1998, and December 31, 2013. 
During this period, an overall 23% of the study participants 
died (n = 16,346). Because of the different fractions of cases 
across strata of the exposures, we focused our main analysis 
on the 10th survival percentile, the time by which the first 10% 
of subjects have died.

First, we evaluated the following Laplace regression 
model on the 10th percentile, with the two binary exposures 
and their interaction:

	

T p( )= = + +
+

10 0 1 2

3

β β β
β

⋅ ⋅
⋅ ⋅

smoking education

smoking education
� (3)

Predicted values of the 10th survival percentile for 
each of the four subpopulations, calculated by combining the 
obtained coefficients estimates, are presented in the Table. 
The product term β3, which estimates the additive interaction 
presented in Equation (1), has a simple and intuitive interpre-
tation, as it represents the excess in survival when both pre-
dictors are equal to 1. In our example, the presence of both 
predictors (nonsmokers and highly educated) was associated 
with 2.1 additional years of survival (β3 = 2.1 years, 95% CI: 
1.2, 2.9). This excess is larger than 0, suggesting the presence 
of super additive interaction in predicting mortality between 
being nonsmoker and highly educated.

We next adjusted for age at baseline as a 5-year categor-
ical variable to evaluate the age-adjusted additive interaction 
between smoking and education in predicting overall mortal-
ity. This adjustment, which can be done simply by including 
the additional covariate in model (3), strongly changed the 
estimate of the product-term coefficient to −0.8 years (95% 
CI: −1.4, −0.1). This suggests that the crude interaction was 
probably explained by the different distribution of age across 
strata of the two exposures. In particular, the median age at 

TABLE.   Tenth Survival Percentiles, in Years, by Levels of 
Smoking and Education

Current Smokers Never Smokers

Low education t00 = 7.5 years 

(95% CI: 7.2, 7.7)

t10 = 9.2 years 

(95% CI: 9.0, 9.4)

High education t01 = 11.2 years 

(95% CI: 10.6, 12.0)

t11 = 15.0 years 

(95% CI: 14.3, 15.5)
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baseline ranged from 53 years for current smokers with high 
education to 66 years for never smokers with low education.

The evaluation of additive interaction can be extended 
to other fractions of events rather than the first 10%. For 
example, we fitted age-adjusted Laplace regression models to 
evaluate the interaction between smoking and education for 
percentiles 1 to 15. This was done by evaluating model (3), 
further adjusted for age at baseline, varying p from 1 to 15. 
Figure 2A presents the survival curves for the four combina-
tions of smoking and education, further adjusted for age at 
baseline. The estimated coefficients of the interaction term 
from these models, with confidence interval, are reported in 
Figure 2B. When looking at the first percentiles, which repre-
sent the early cases, the interaction is positive, later decreasing 
to a subadditivity.

DISCUSSION
In this study, we introduced the topic of interaction in the 
context of survival percentiles. In a percentile approach to 
time-to-event outcomes, a specific fraction of events is fixed 
while the time point is estimated. Interaction can therefore be 
evaluated in the unit of measurement of time. A measure of 
additive interaction can be estimated using Laplace regres-
sion to model conditional survival percentiles, including a 
product term between two exposures of interest in the model. 
The regression coefficient of the product term represents the 
excess/decrease in survival due to the presence of both the 
exposures of interest.

Evaluating the possible interaction between two expo-
sures is a common component of epidemiologic studies.21 
A detailed tutorial, summarizing the wide discussion on the 
topic, has recently been published.7 It is important to sepa-
rate the concepts of biological and statistical interaction.3,22–25 
Statistical interaction, which is the focus of this article, arises 

from a statistical model and should not be used to draw bio-
logic conclusions.1,24,26,27 Statistical interaction is usually 
assessed by including in the model a product-term between 
the two exposures of interest.2 This implies that the evaluation 
and interpretation of interaction depend on the scale of the 
model chosen, which can be either additive or multiplicative.1

In the context of time-to-event analysis, the multiplica-
tive nature of the Cox proportional-hazard model implies that 
interaction analysis is commonly limited to the multiplicative 
scale.6 Various studies have underlined the important public 
health meaning of additive interaction, which can be used to 
assess which subgroups of individuals are to be treated.1,6,7,28,29 
Presenting both additive and multiplicative measures of inter-
action has been widely recommended,7,30–32 but this practice 
is still very uncommon.5 Moreover, the absence of interaction 
on one scale implies the presence of interaction on the other 
scale.3,6 In survival analysis, measures of additive interaction 
such as the relative risk due to interaction, the synergy index, or 
the attributable proportion due to interaction can be calculated 
after fitting a Cox model.8,9 Among these, the relative risk due 
to interaction is the most frequently utilized approach, even if 
it can only be used to assess the direction of the additive inter-
action without any indication on the magnitude.33 As an alter-
native approach, the use of the additive hazard regression has 
been proposed.4 To the best of our knowledge, however, this 
method is seldom used in epidemiologic research. When deal-
ing with time-to-event outcomes, the risk of the event of inter-
est often varies across follow-up. All the available measures of 
interaction, whether additive or multiplicative, are calculated 
on the risk scale, and commonly assume a time-fixed effect.

Evaluating percentiles of survival represents a possible 
alternative for the analysis of time-to-event outcomes.10 Com-
mon approaches fix the follow-up time to a specific value and 
evaluate the risk of the event within that time interval. By 

FIGURE 2.  A, Age-adjusted survival curves by levels of smoking (current, never) and education (high, low). Curves are calculated 
from age-adjusted Laplace regression models, with fraction of events between 1 and 15. An interaction term between smoking 
and education is included in the models. B, The estimates of the interaction term, with confidence interval, smoothed by applying 
the lowess algorithm with a bandwidth of 0.6.
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focusing on survival percentiles, on the other hand, a specific 
survival probability is fixed and the time by which that propor-
tion is achieved is estimated. This change of perspective clari-
fies the connection between incidence proportion and time, 
and allows evaluating how the joint effect of two exposures is 
changing over time.

In this article, we have chosen to use Laplace regres-
sion to model survival percentiles because of its stability and 
computational speed. Other approaches are available and 
worth mentioning. An option often used in epidemiologic 
studies is to derive the adjusted survival curves after estimat-
ing a Cox model, and calculating the quantiles. This method, 
however, is computationally demanding and unclear with 
respect to standard error derivation.34 Assumptions such as 
proportionality of hazards strongly influence the shape of the 
derived survival curve. Other methods to evaluate quantiles 
of censored outcomes have been proposed and are available 
in R and SAS.35–37 These methods make different assump-
tions and are valid semi-parametric alternatives to Laplace 
regression.11

In this article, we showed how a measure of additive 
interaction expressed in the metric of time can be derived 
by evaluating survival percentiles. An advantage of the pre-
sented approach is that the additive interaction depends on 
the specified fraction of events. Within a follow-up time, it is 
therefore possible to investigate how the interaction between 
two exposures changes according to the fraction of cases, or 
equivalently by time. Currently available methods typically 
provide a single product-term coefficient, implicitly assum-
ing that main effects and their interaction are constant over 
the entire follow-up time. We limited our presentation to the 
simplest scenario of two binary covariates. Extension to inter-
action analysis between categorical or continuous exposures 
is straightforward.

In conclusion, we introduced the concept of interaction 
analysis in the metric of time, which can be investigated by 
switching the focus from survival probabilities to survival per-
centiles. When Laplace regression is used to model survival 
percentiles, a measure of additive interaction can be easily 
estimated without assuming a constant effect over time.
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