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Abstract

The Epidermal Differentiation Complex (EDC) locus comprises a syntenic and linear cluster of 

genes whose concomitant expression is a hallmark feature of differentiation in the developing skin 

epidermis. Many of the EDC proteins are cross-linked together to form the cornified envelope, an 

essential and discrete unit of the mammalian skin barrier. The mechanism underlying coordinate 

transcriptional activation of the EDC is unknown. Within the human EDC, we identified an 

epidermal-specific regulatory enhancer, 923, that responded to the developmental and spatio-

temporal cues at the onset of epidermal differentiation in the mouse embryo. Comparative 

chromosomal conformation capture (3C) assays in proliferating and differentiated primary mouse 

keratinocytes revealed multiple chromatin interactions that were physiologically sensitive between 

the 923 enhancer and EDC gene promoters and thus depict the dynamic, chromatin topology of 

the EDC. We elucidate a mechanistic link between c-Jun/AP-1 and 923, whereby AP-1 and 923-

mediated EDC chromatin remodeling is required for functional EDC gene activation. Thus, we 

identify a critical enhancer/transcription factor axis governing the dynamic regulation of the EDC 

chromatin architecture and gene expression and provide a framework for future studies towards 

understanding gene regulation in cutaneous diseases.

INTRODUCTION

The epidermis lies at the surface of the skin and provides the first line of defense against the 

external environment (Koster and Roop, 2007; Fuchs, 2009; Kubo et al., 2012). Protecting 

against infection and inflammation, the epidermis comprises stratified layers of epidermal 

cells or keratinocytes that are individually surrounded by a cornified envelope and function 

as one of the essential core units of the skin barrier. To build the epidermal barrier akin to a 

“bricks-and-mortar” architecture, a basal keratinocyte in the innermost layer of the 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*To whom correspondence should be addressed. Tel: (314) 362-7695; Fax: (314) 362-8159; cstrong@dom.wustl.edu.
Present Address: Cristina de Guzman Strong, Ph.D., Department of Internal Medicine, Division of Dermatology, Center for 
Pharmacogenomics, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA

CONFLICT OF INTEREST
The authors state no conflict of interest.

HHS Public Access
Author manuscript
J Invest Dermatol. Author manuscript; available in PMC 2015 March 01.

Published in final edited form as:
J Invest Dermatol. 2014 September ; 134(9): 2371–2380. doi:10.1038/jid.2014.44.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


epidermis receives an inductive cue to differentiate and orients its mitotic spindle 

perpendicularly to the basement membrane (Lechler and Fuchs, 2005). In doing so, an 

asymmetric cell division gives rise to a basal cell and a suprabasal daughter cell that is 

committed to terminal differentiation. As the keratinocyte completes the differentiation 

process, it is pushed upward and sequentially through the spinous and granular layers and 

finally to the outermost stratum corneum.

A hallmark feature for the execution of the terminal epidermal differentiation program is the 

expression of genes encoded by the Epidermal Differentiation Complex (EDC) locus 

(Mischke et al., 1996; Zhao and Elder, 1997; Marshall et al., 2001; de Guzman Strong et al., 

2010). The EDC (located on human 1q21 and mouse 3q) consists of 4 gene families that are 

associated with skin barrier formation: Small Proline Rich Region (SPRR), Late Cornified 

Envelope (LCE), filaggrin (FLG) and filaggrin-like (FLG-like), and S100 genes. Genes 

encoded in the EDC are coordinately activated during embryonic epidermal differentiation 

(de Guzman Strong et al., 2010). Exciting and recent studies in mice have identified a role 

for epigenetics in the regulation of the EDC during skin development (reviewed in 

Botchkarev et al., 2012). Epidermal-specific loss of Ezh2, an essential component of the 

Polycomb repressor complex for histone modification, resulted in early epidermal 

differentiation owing to precocious recruitment of AP-1 transcription factor to the EDC for 

gene expression (Ezhkova et al., 2009). Furthermore, Satb1, a higher-order genome 

organizer, was recently identified as a p63 target and binds to the EDC (Fessing et al., 

2011). Satb1−/− mice exhibited alterations in the chromatin conformation of the EDC 

resulting in defects in keratinocyte-specific and EDC gene expression and hence abnormal 

epidermal morphology and further demonstrated a requirement for the proper establishment 

of higher order EDC chromatin structure and coordinated gene expression. This was further 

supported by confocal microscopy and computational modeling that identified distinct and 

active remodeling of the nuclear architecture associated with gene expression specifically in 

the terminally differentiated keratinocyte (Gdula et al., 2013). Comprehensive studies of the 

β-globin locus control region and the X-inactivation center further support evidence for 

causality of chromatin folding and 3D genome organization with respect to gene regulation 

(Deng et al., 2012; Nora et al., 2012). However, despite these studies, the molecular 

mechanism(s) that underlie activation and coordinate regulation of the EDC genes at the 

nucleotide level are unknown. The synteny and linearity of the EDC across a wide range of 

mammalian species suggests a molecular mechanism originating at the proximal genomic 

level.

One plausible model is the activation of critical EDC expression by cis-regulatory elements 

during skin barrier formation. Comparative genomics and the Encyclopedia of DNA 

Elements (ENCODE) consortium that has annotated 80% of the genome attributed to 

function have greatly facilitated identification of regulatory elements (Dunham et al., 2012). 

We previously identified many conserved non-coding elements (CNEs) within the human 

EDC that could synergistically or independently coordinate EDC gene expression (de 

Guzman Strong et al., 2010). Approximately 50% of them exhibit regulatory activity. CNE 

923 (approximately 923 kb from the transcriptional start site of S100A10, the most 5′ EDC 

gene) displayed the strongest enhancer activity in proliferating and differentiated 
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keratinocytes in our functional screen. This result corroborated with transgenic reporter mice 

that demonstrated epidermal-specific enhancer activity for CNE 923 in vivo. This led us to 

hypothesize a role for 923 in the coordinate transcriptional activation of the EDC.

Here, we tracked the activity of CNE 923 during development in transgenic mice and 

identified spatio-temporal sensitivity for 923 that coincides with the onset and patterning of 

epidermal differentiation. Chromatin conformation capture (3C) studies were employed to 

determine the physical interactions between 923 and EDC gene promoters and revealed 

multiple chromatin spatial interactions surrounding 923. Comparative 3C analyses between 

proliferating and differentiated primary keratinocytes revealed a dynamic 923-centric EDC 

chromatin domain associated with concomitant EDC gene expression. Comparative 

genomics and genetic studies identified an AP-1 transcription factor binding site within 923 

that was required for enhancer activity. We determine that the AP-1 binding site in 923 is 

functionally relevant, as pharmacological inhibition of AP-1 in calcium-induced 

keratinocytes repressed EDC gene expression and was associated with aberrant chromatin 

remodeling and loss of c-Jun/AP-1 binding to 923. Thus, our results provide a framework to 

examining molecular mechanisms that link DNA sequence to chromatin architecture and 

biological functions relevant to development and disease.

RESULTS

923 is an epidermal-specific enhancer responsive to the spatial and temporal cues in the 
developing mouse epidermis

We previously observed that human CNE 923 exhibited epidermal-specific enhancer 

activity, driving lacZ expression in G0 transgenic mice (923-hsp68-lacZ) analyzed only at 

mouse embryonic day (E)16.5 (de Guzman Strong et al., 2010). However, the onset and the 

spatial and temporal patterning for 923 during mouse embryonic development were unclear. 

To address this, we generated additional 923-hsp68-lacZ transgenic mice. 923 enhancer 

activity (as measured by lacZ transcript levels) was detected as early as E15.5 in the 

developing mouse epidermis (Figure 1e), and coincided with the onset of early epidermal 

differentiation as demonstrated by positive Keratin 1 (K1) expression (Figure 1d) and 

activation of involucrin (Ivl), Flg, and loricrin (Lor) expression (Figure 1e). X-galactose 

reactivity (blue) was not detectable at E15.5 in whole-mount or cross-sections of the 

epidermis (Figure 1a, 1b) owing to the lack of β-galactosidase protein expression. At E16.5 

and E17.5, we observed expression of 923 enhancer activity correlating with the patterning 

of barrier acquisition (dorsal to ventral migration pattern (Hardman et al., 1998)) (Figure 

1a). 923 β-galactosidase enhancer activity was localized to the spinous to stratum corneum 

layers of the dorsal epidermis at E16.5 and E17.5 (Figure 1b). Failure to detect β-

galactosidase activity on the dorsal epidermis of E17.5 whole-mount embryos is consistent 

with barrier acquisition that precludes substrate penetration to detect β-galactosidase 

activity. Together, the data supports the responsiveness of 923 enhancer activity to the 

spatio-temporal cues of the developing mouse epidermis.
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The dynamic chromatin architecture of the EDC

We previously identified DNaseI hypersensitivity for 923 (de Guzman Strong et al., 2010) 

and note ENCODE-annotated H3K4me1 histone modification mark in proliferating primary 

human keratinocytes that independently tags functional enhancers (Ernst et al., 2011) 

(Figure 3a). Enhancers are known to form long-range physical interactions with target gene 

promoters for activation (Tolhuis et al., 2002). Given these observations and the spatio-

temporal sensitivity in the developing mouse epidermis, we hypothesized a role for 923 in 

mediating the chromatin conformation of the EDC.

To test this hypothesis, 3C assays coupled with quantitative PCR (qPCR) (Hagege et al., 

2007) were employed in proliferating and differentiated primary mouse keratinocytes to 

detect physical chromatin interactions at the sub-megabase level between the endogenous 

mouse 923 ortholog and the EDC genes. 923 formed multiple interactions with EDC gene 

promoters (9 out of 46 tested queries, Sprr2a1, Sprr2d, Sprr2f, Sprr1b, Sprr3, Ivl, Lce1b, 

Lce1a2, and Crct1 [cysteine-rich C-terminal 1]) in proliferating keratinocytes despite the 

lack of EDC gene expression relative to the differentiated keratinocytes (Figure 2a, 2b). In 

differentiated keratinocytes, a reconfiguration of the EDC chromatin state was identified and 

was associated with eleven 923-mediated chromatin spatial interactions between a HindIII 

fragment 5′ of Lce3b and S100a6, Sprr2a1, Sprr2b, Sprr3, Sprr4, Ivl, Lce6a, Lce1b, Lce1e, 

and Crct1 gene promoters that was relatively consistent with their expression during 

terminal differentiation (Figure 2a, 2b). In comparison to the proliferating cells, the observed 

interactions in differentiated keratinocytes that were lost included Sprr2d, Sprr2f, and 

Sprr1b, and Lce1a2 (within 250 kb of 923) as well as a gain with 5′ of Lce3b, S100a6, 

Sprr2b, Sprr4, Lce6a and Lce1e. Notably, the gain of 923’s interaction with S100a6 was 

located 2Mb away across a gene desert and observed higher frequencies of interactions with 

Sprr2a1 and Sprr2b (both >250kb away from 923). All of the above genes with the 

exception of Sprr2f are expressed by E15.5 as previously described in the newly 

differentiated dorsal epidermis of the developing mouse embryo (de Guzman Strong et al., 

2010). The genes for which there were gains of interactions in differentiated keratinocytes 

had similar if not increased levels of expression at E16.5 relative to E15.5. These 

observations further identify a longer range EDC chromatin topology in differentiated cells 

(Figure 2a) and are underestimated given the modest coverage associated with 3C 

methodology and as not all keratinocytes completely differentiated. In sum, our results 

support both shared and unique chromatin spatial interactions between the 923 epidermal-

specific enhancer and EDC gene promoters in proliferating and differentiated primary 

mouse keratinocytes that represent the dynamic chromatin architecture of the EDC.

AP-1 transcription factor binding is required for 923 enhancer activity and EDC gene 
expression

To elucidate the molecular mechanism underlying 923 enhancer activity, we performed a 

bioinformatics search to identify core transcription factor binding sequences within 923 that 

are responsible for driving functional enhancer activity. Assessment of core enhancer 

functional activity in 4 PhastCons blocks were prioritized and represent highly conserved 

sequences between 28 vertebrate species and therefore likely to impart function (Siepel et 

al., 2005; Alexander et al., 2010) (Figure 3b). Deletions of blocks 1 and 4 at the 5′ and 3′ 
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ends of 923 significantly decreased luciferase activity (Figure 3c) thus demonstrating a 

functional role for these blocks for 923 enhancer activity. As deletion of block 1 resulted in 

the greatest and more significant decrease in enhancer activity, we prioritized a search for 

transcription factor binding motifs within block 1. We identified an AP-1 transcription factor 

binding site (Figure 4a) and hypothesized that AP-1 is required for 923 enhancer activity. 

Deletion of the AP-1 binding site by site-directed mutagenesis led to a significant decrease 

in 923 enhancer activity under proliferating and differentiated conditions (Figure 4b) thus 

demonstrating a functional role for AP-1 to mediate 923 enhancer activity in both 

physiological states.

To examine a role for AP-1 activity with respect to 923 enhancer activity and EDC gene 

activation, AP-1 binding was inhibited by Tanshinone IIA (TanIIA) treatment in primary 

mouse keratinocytes induced to differentiate (calcium induction) (Ezhkova et al., 2009). 

Calcium-induced keratinocytes treated with TanIIA exhibited repressed EDC gene 

expression (Figure 5b). Moreover, chromatin immunoprecipitation for AP-1 (c-Jun) revealed 

that the repression was associated with the loss of AP-1 binding to block 1 in 923 in TanIIA-

treated, calcium-induced keratinocytes compared to mock controls (Figure 4c). Together, the 

data demonstrates a requirement for AP-1 in activating EDC gene expression, specifically 

associated with functional AP-1 binding within the 923 enhancer in vivo.

The c-Jun/AP-1/923 axis regulates the EDC transcriptome by modulating the chromatin 
architecture

To identify the mechanism by which AP-1 inhibition represses EDC gene expression, we 

returned to 3C assays to examine the chromatin conformation of the EDC with respect to 

923 in the context of AP-1 pharmacological inhibition. The chromatin conformation was 

assessed at 48 hours post-TanIIA treatment to best ascertain the direct effects of AP-1 

inhibition as opposed to secondary effects beyond 48 hours. Although there was no 

significant differences in the number of 923-mediated chromatin interactions in TanIIA-

treated vs. mock-treated differentiated keratinocytes (11 vs. 12), only 6 interactions were 

shared (Sprr2a1, Sprr3, Ivl, Lce1d, Lce1e, and 5′ of Lce3b) and are close by (within 325 kb) 

(Figure 5a). Moreover, in TanIIA-treated keratinocytes, there was a loss of 923 interactions 

with Sprr2b, Sprr2d, Sprr1b, Lce6a, and 2310050C09Rik and a gain of spatial interactions 

with Sprr1a, Lce1b, and Lce1c and at the relatively extreme 5′ and 3′ ends of the EDC 

reaching as far away as >2 Mb and 866 kb in S100a13 and Tchh (trichohyalin), respectively. 

Despite the gain of chromatin interactions, no appreciable differences in gene expression for 

Sprr1a, Lce1b, Lce1c, S100a13 and Tchh were observed. It appears that AP-1 

pharmacological inhibition resulting in decreased c-Jun/AP-1 binding at 923 (Figure 4c) was 

not sufficient to completely abrogate all chromatin spatial interactions within the EDC that 

could be maintained by other transcription factors. However, our data supports a role for 

AP-1 in mediating proper 923-centric EDC chromatin conformation for EDC gene 

activation.
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DISCUSSION

Although 3C assays and recent high-throughput genomic studies have enhanced our 

understanding of chromatin architecture and gene regulatory modules (de Wit and de Laat, 

2012), the mechanisms governing chromosomal spatial interactions are poorly understood. 

Our studies identify a molecular mechanism describing transcription factor/enhancer 

modulation of a cluster of genes, namely AP-1 in the EDC architecture required for 

epidermal differentiation. We translate a “linear” interpretation (de Wit and de Laat, 2012) 

of the keratinocyte genome from our studies and ENCODE and prioritize functional studies 

on 923 to elucidate the 3D structure or chromatin interactions within the EDC. Our study 

demonstrates that 923 displays epidermal-specific enhancer activity that tracks with spatial 

and temporal patterns of epidermal differentiation and barrier formation during normal 

mouse development. We further elucidate an association of 923 with the coordinate 

activation of EDC genes during epidermal differentiation based on 3C assays that identified 

nearby chromatin spatial interactions between 923 and several EDC genes located as far as 

2Mb away. Specifically, we observe a chromatin state of the EDC in proliferating 

keratinocytes that are marked by fewer cis-spatial interactions with 923 and do not express 

EDC genes. By contrast, the chromatin state of the EDC remodels in differentiated 

keratinocytes that express many EDC genes, as demonstrated by greater observed 923-

mediated interactions with EDC gene promoters. Although in vivo knockout studies for 923 

are beyond the scope of this study and would address the functional role of 923 as an 

intriguing locus control region (LCR) for the EDC during mouse development, our data 

nevertheless support a functional role for 923 in mediating the chromatin spatial interactions 

of the EDC. In support of this model, a recent study evaluating a ZF-mediated Ldb1/β-

globin LCR physical tethering to the β-globin promoter in GATA-1 deficient erythroid cells 

demonstrated causality of chromatin spatial interactions to gene transcription (Deng et al., 

2012). The requirement of the AP-1 binding site for 923 enhancer activity in both 

proliferating and differentiated states and the repression of EDC expression by 

pharmacological inhibition of AP-1, suggest that the AP-1/923 axis is an important 

mechanism to coordinate the EDC transcriptome. A bioinformatic analysis of transcription 

factor binding sites in 923 suggests additional putative transcription factor binding sites 

including CREB within PhastCons Block 4 that could likely contribute to 923 enhancer 

function.

It is interesting to note that even in a proliferative state, the loss of the AP-1 binding site in 

923 led to a significant decrease in enhancer activity and chromatin interactions were 

observed between EDC gene promoters and 923. A majority of AP-1 members are 

expressed in basal keratinocytes with a more restricted expression of specific AP-1 members 

in the suprabasal layers (Jochum et al., 2001). AP-1 is known to translate extracellular 

signals to a transcriptional response (Schonthaler et al., 2011). Together, these observations 

and our data suggest a role for AP-1 (c-Jun) in modulating 923 activity in basal 

keratinocytes by folding the EDC chromatin state, and for which activation of EDC 

transcription in the terminally differentiated keratinocyte is driven by the specificity of an 

AP-1 homo/heterodimeric partner. Although the epidermis with targeted loss of c-Jun (Zenz 

et al., 2003) and c-Jun/JunB (Guinea-Viniegra et al., 2009) exhibited normal skin 
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morphology (that could be attributed to compensatory mechanisms to correct for skin barrier 

(Koch et al., 2000; Huebner et al., 2012)), the epidermal-specific c-Jun/JunB and JunB 

knockouts exhibited inflammatory defects owing to interleukin 6 (IL-6) and tumor necrosis 

factor α (TNFα expression respectively. Together, these observations lay the groundwork 

for investigations linking the role of chromatin architecture in skin barrier as well as 

inflammation.

A recent study revealed that chromatin architectural proteins may play a greater role than 

transcription factors in mediating promoter-enhancer interactions (Phillips-Cremins et al., 

2013). Genome-wide analysis of chromatin interactions lost during the differentiation of 

embryonic stem cells (ESCs) to neural progenitor cells (NPCs) unveiled a strong 

colocalization of the architectural proteins Mediator and cohesin to the ESC-specific 

interactions, a partial colocalization of the Oct4/Sox2/Nanog (OSN) transcription factors 

with Mediator and cohesin, and far fewer interactions that were enriched for only 

transcription factors. The roles of Mediator and cohesin in mediating enhancer-promoter 

interactions were validated by the abrogation of an interaction between Olig1 and a putative 

ESC-specific enhancer in Mediator and cohesin knockdown cells. This data suggests that a 

proportion of AP-1-mediated 923 interactions may in fact be dependent on the presence of 

chromatin architectural proteins that are able to maintain these interactions even when AP-1 

activity is inhibited, while a smaller proportion of interactions are mediated solely by AP-1.

A genomic study has recently elucidated the chromatin topologies of the human and mouse 

genome that are marked by distinguishing structural topological domains (Dixon et al., 

2012). These domains are stable, highly conserved, and often demarcated by boundaries 

enriched for CCCTC-binding factor (CTCF), housekeeping genes, tRNAs, and short 

interspersed nuclear element (SINE) transposons. That the EDC is also syntenic and linear 

across a wide range of metatherian genomes (de Guzman Strong et al., 2010) suggests a 

model for the EDC as a single distinct topological domain. Of note, ENCODE-annotated 

CTCF elements flank the gene families within and just outside the EDC, suggesting a role 

for CTCF as boundary elements for a putative EDC topology (Ernst et al., 2011). More 

high-throughput and higher resolution characterization of the EDC chromatin conformation 

using 4C or 5C methodology would certainly address this hypothesis as well as to depict 

additional chromatin interactions in an unbiased manner.

The EDC has been implicated in atopic dermatitis and psoriasis (Giardina et al., 2006; 

Palmer et al., 2006; Sandilands et al., 2007; de Cid et al., 2009; Esparza-Gordillo et al., 

2009; Hirota et al., 2012; Paternoster et al., 2012). Specifically, discovery of FLG mutations 

initially in ichthyosis vulgaris (Smith et al., 2006) and particularly in atopic dermatitis (AD) 

(Palmer et al., 2006) and other atopic diseases such as asthma and allergic rhinitis (Irvine et 

al., 2011), highlights the importance of how even one of the EDC components broadly 

affects prevalent allergic diseases. Even at the exclusion of common FLG mutations, genetic 

association to the EDC continues to persist in atopic dermatitis suggesting additional genetic 

variants within the EDC (Morar et al., 2007; Esparza-Gordillo et al., 2009). Our analysis 

provides a genomic framework for which we can begin to interrogate regulatory element 

variants as causative in these diseases. Although discovery of causative variants is 

prioritized in genomic regions in linkage disequilibrium (LD) with genome-wide association 
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study (GWAS)-identified SNPs, our chromatin experiments suggest discovery of causative 

SNPs that are not in LD but are in “physical proximity” and trans to GWAS-identified 

SNPs.

MATERIALS AND METHODS

Mice

h923-hsp68-lacZ reporter FVB/N mice were housed in pathogen-free, barrier facilities at 

NIH (Bethesda, MD) and Washington University School of Medicine (St. Louis, MO). All 

animal procedures were approved by the NHGRI Animal Care and Use Committee and 

Washington University Division of Comparative Medicine Animal Studies Committee. All 

animal work was conducted in accordance with the Guide for the Care and Use of 

Laboratory Animals of the National Institutes of Health. Morning observation of a vaginal 

plug was designated as embryonic day (E) 0.5.

LacZ staining and Immunohistochemistry

Whole-mount embryos and frozen OCT sections were stained overnight for β-galactosidase 

activity as previously described (de Guzman Strong et al., 2010) and imaged on a Nikon 

SMZ 1500 Stereomicroscope and a Nikon Eclipse 80i brightfield microscope (Nikon, 

Tokyo, Japan), respectively. Primary antibodies used for immunofluorescence are rabbit K1 

(17iKSCN, 1:500), rabbit FLG (5C-KSCN, 1:500) and chicken K14 (5560, 1:1000) 

(courtesy of J. Segre). Secondary antibodies used were goat anti-rabbit (Alexa Fluor 488, 

1:500) and goat anti-chicken (Alexa Fluor 594, 1:1000) IgG antibodies (Life Technologies, 

Frederick, MD). Sections were fixed in 4% paraformaldehyde (Electron Microscopy 

Sciences, Hatfield, PA) prior to permeabilization with 0.1% Triton X-100 and subsequent 

antibody incubation. Sections were counterstained with SlowFade Gold antifade reagent 

with DAPI (Life Technologies, Frederick, MD) prior to fluorescent imaging on a Zeiss 

AxioImager Z1 and captured with AxioCam MRc and Axiovision software (Carl Zeiss, 

Stockholm, Sweden).

Chromosomal conformation capture (3C) assay

Primary keratinocytes were isolated from newborn mice as previously described (Lichti et 

al., 2008) and plated under proliferating or differentiating (2.0 mM Ca2+) conditions in 

custom keratinocyte media. 3C assays were performed as previously described (Hagege et 

al., 2007). Briefly, approximately 10 million cells were harvested at 72 hours post-calcium 

treatment and cross-linked with 2% formaldehyde prior to overnight HindIII (New England 

Biolabs, Ipswich, MA) digestion. Each 3C library was assessed for efficient digestion 

efficiency by qPCR, and then further ligated with T4 DNA ligase (New England BioLabs, 

Ipswich, MA) overnight, decrosslinked using Proteinase K (IBI Scientific, Peosta, IA), and 

purified by phenol/chloroform (Life Technologies, Frederick, MD). Each putative physical 

interaction between 923 and an EDC gene promoter (detected by head-to-head [same strand] 

primer pair within 50–150 bp of a HindIII cut site and designed in NCBI37/mm9, Table S1) 

was detected by qPCR (Quantitect SYBR Green, Qiagen, Chatsworth, CA, ViiA7, Applied 

Biosystems, Foster City, CA) in triplicate in 3C libraries of equivalent concentrations. CT 

values for each measured interaction were normalized against CT values across an uncut 
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region and a pan-cell Ercc3 chromatin interaction (Hagege et al., 2007). Positive 3C 

interactions represent a minimum average of at least 1 replicate from 2 independent 3C 

libraries as a criteria to best exclude false positive and random events.

RNA isolation and analysis

RNA-seq—RNA isolation and analysis is described in supplementary methods. RNA-seq 

data have been deposited in the NCBI SRA under accession number PRJNA210793.

qRT-PCR—Real-time qPCR on cDNA (generated using SuperScript II reverse 

transcriptase (Life Technologies)) using SYBR Green was performed in triplicate (ABI 

ViiA7, Foster City, CA) and normalized to β2-microglobulin. Only CT values with single 

peaks on melt-curve analyses were included. Primers are listed in Table S2.

Luciferase assay

923 deletion constructs were cloned synthetically (IDT) or by PCR amplification. AP-1 site 

deletion was generated by site-directed mutagenesis (QuikChange Site-Directed 

Mutagenesis Kit, Agilent, Palo Alto, CA). All clones were verified by Sanger sequencing. 

Dual luciferase assays were performed in duplicate as previously described (de Guzman 

Strong et al., 2010).

Transcription factor binding prediction

Transcription factor binding sites were predicted by aligning each PhastCons block sequence 

(with a relative profile score threshold of 80%) against the JASPAR CORE database of 

transcription factor binding profiles (http://jaspar.genereg.net/) (Bryne et al., 2008).

AP-1 binding inhibition assay

Primary keratinocytes grown under differentiating conditions (2.0mM Ca2+) were treated 

with either 1.0mg/L Tanshinone IIA (Biomol, Plymouth Meeting, PA) or DMSO (mock) 

during calcium shifting 24 hours after plating. Cells were harvested at 2 days post-calcium 

treatment for 3C assays and RNA isolation for gene expression analysis by real-time qPCR.

Chromatin Immunoprecipitation

Chromatin (approximately 5 × 106 cells) was sonicated (Bioruptor XL [Diagenode, 

Denville, NJ]) prior to immunoprecipitation with rabbit antibodies: c-Jun (AP-1) (Abcam, 

Cambridge, MA; Cat. # ab31419) and IgG (Millipore, Billerica, MA; Cat. # 12-370) 

antibodies bound to Dynabeads Protein A (Life Technologies). ChIP Primers are listed in 

Table S4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

EDC Epidermal Differentiation Complex

3C chromosomal conformation capture

SPRR Small Proline Rich Region

LCE Late Cornified Envelope

FLG filaggrin

ENCODE Encyclopedia of DNA Elements

CNEs conserved non-coding elements

E embryonic day

qPCR quantitative PCR

TanIIA Tanshinone IIA
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Figure 1. 923 is sensitive to spatio-temporal cues during mouse embryonic epidermal 
development
(a) Whole mount lacZ staining of 923-hsp68-lacZ mice demonstrates 923 activity (β-

galactosidase/X-gal blue reactivity) following spatio-temporal patterns of epidermal barrier 

formation in the developing embryo by initial observation of activity at E16.5 (dorsal) that 

migrates ventrally by E17.5. (b) 923 activity localizes to granular and spinous layers of 

embryonic dorsal epidermis with corresponding (c) filaggrin (FLG) and (d) keratin1 (K1) 

immunofluorescent staining (green). Keratin14, K14 (red) marks basal keratinocytes, 20X. 

Dotted lines, basement membrane. Experiments observed in ≥ 2 independent mice. (e) 923 

activity (qPCR, lacZ transcript) is noted at E15.5, E16.5, and E17.5 dorsal epidermis, 

concomitant with Flg, involucrin (Ivl), and loricrin (Lor) transcription relative to E14.5. 

Error bars represent mean+/−SD. Scale bar = 50μm.
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Figure 2. The Chromatin State of the Mouse EDC is Dynamic
(a) Semi-quantitative chromosomal conformation capture (3C-qPCR) assays were 

performed on primary mouse keratinocytes (proliferating and differentiated). Peaks = 

frequencies of physical interactions observed between HindIII restriction fragments 

containing 923 (green bar) and queried restriction fragments containing/neighboring EDC 

gene promoters (black bars + gray lines) or proximal sequences (gray lines) relative to a 

cell-ubiquitous Ercc3 control. HindIII fragment (5′ of Lce3b) represents a chromatin 

interaction that was not enhancer-promoter specific. Peaks, average of at least 2 biological 

replicates. Error bars represent the mean+/−SEM. (b) EDC gene expression heatmap (fold 

change) in differentiated vs. proliferating keratinocytes based on analysis of 3 pairwise 

RNA-seq libraries, green/yellow = upregulated, blue = downregulated, black = no change, 

(Table S3).
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Figure 3. PhastCons (vertebrate conserved) blocks 1 and 4 are required for 923 enhancer 
activity
(a) 923 correlates with ENCODE-annotated strong enhancer (H3K4me1) and DNaseI 

hypersensitivity clusters in normal human epidermal keratinocytes (NHEK) and 4 

PhastCons blocks (UCSC, hg18, block 1 (23 bp): chr1:151145182-151145204; block 2 (34 

bp): chr1:151145525-151145558; block 3 (26 bp): chr1:151145572-151145597; block 4 (9 

bp): chr1:151145661-151145669). (b) Individual deletion (del) of each PhastCons block 

reveals that c) blocks 1 and 4 are required for enhancer activity based on transient dual-

luciferase reporter assays in proliferating and differentiating keratinocytes (n=2). *, P = 2.05 

× 10−4, *′, 1.6 × 10−4, **, P = 31.02 × 10−3, **′, 3.51 × 10−3. P-values are based on a two-

tailed t-test. Error bars represent mean+/−SE.
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Figure 4. c-Jun/AP-1 transcription factor binding to PhastCons block 1 is required for 923 
enhancer activity
(a) PhastCons block 1 contains a conserved AP-1 transcription factor binding sequence 

(UCSC, hg18, chr1:151145183-151145189). (b) Deletion of the AP-1 binding site 

significantly decreased luciferase and hence enhancer activity (n=3), * P=1.93 × 10−4, ** 

P=4.76 × 10−4 (two-tailed t-test). (c) Chromatin immunoprecipitation on differentiated cells 

demonstrates 1.6-fold decrease in AP-1 binding to PhastCons block 1 in TanIIA-treated 

versus mock-treated cells (P=0.04). The positive control, an ENCODE-annotated site within 

Keratin5 (Krt5), displayed 2.3-fold decrease in AP-1 binding in TanIIA-treated versus 

mock-treated cells (P=0.06). A negative control (no AP-1 site) showed no difference 

between mock-treated and TanIIA-treated cells (n=2). P-values based on a one-tailed t-test.
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Figure 5. c-Jun/AP-1 activity is required for 923-mediated chromatin state remodeling to 
activate EDC gene expression
(a) Pharmacological inhibition of AP-1 binding using TanIIA (1.0 mg/L) modulates the 

chromatin interactions between 923 (green bar) and EDC gene promoters (gray bars) (n=2) 

in differentiated keratinocytes and (b) represses EDC gene expression based on heatmap 

depiction, yellow = upregulated, blue = downregulated in TanIIA-treated relative to mock.

Oh et al. Page 17

J Invest Dermatol. Author manuscript; available in PMC 2015 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


