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Sepsis is a leading cause of death in hospitals. Early prediction and diagnosis of sepsis, which

is critical in reducing mortality, is challenging as many of its signs and symptoms are similar

to other less critical conditions. We develop an artificial intelligence algorithm, SERA algo-

rithm, which uses both structured data and unstructured clinical notes to predict and diag-

nose sepsis. We test this algorithm with independent, clinical notes and achieve high

predictive accuracy 12 hours before the onset of sepsis (AUC 0.94, sensitivity 0.87 and

specificity 0.87). We compare the SERA algorithm against physician predictions and show

the algorithm’s potential to increase the early detection of sepsis by up to 32% and reduce

false positives by up to 17%. Mining unstructured clinical notes is shown to improve the

algorithm’s accuracy compared to using only clinical measures for early warning 12 to

48 hours before the onset of sepsis.
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Sepsis is a leading cause of death in United States hospitals1,
accounting for half of all hospital deaths2. Early prediction
of sepsis is crucial in preventing mortality, given that sepsis

management is highly time sensitive3. Based on international
medical guidelines4, early fluid resuscitation is recommended to
commence within the first 3 h to stabilize sepsis-induced tissue
hypoperfusion4, and administration of intravenous antimicrobials
is recommended to commence at the earliest possible time,
specifically within 1 h of sepsis4–6. Further, sepsis mortality
increases significantly with each hour of delay in antimicrobials
administration5,6. As sepsis management is often based on a
standardized management approach4, early sepsis identification
may be practically challenging and operational constraints in
healthcare delivery can lead to unacceptably high mortality rates.
For example, delay in communication among clinicians, nurses,
and pharmacist exacerbates delay in sepsis management. Hence,
the early prediction of sepsis before its onset in a patient gives
clinicians additional lead time to plan and execute treatment
plans.

Most of the existing methods for sepsis diagnosis and early
prediction only take advantage of structured data stored in the
electronic medical records (EMR) system7–9. However, research
has shown that about 80% of the clinical data in EMR systems
consist of unstructured data—i.e., data stored without a pre-
determined or standardized format10. Common examples of such
unstructured data are free-form text (e.g., clinical notes) or
images (e.g., radiological images). These unstructured clinical
data contain rich information, i.e., additional clinical details not
captured in the EMR structured data fields. Physicians use such
unstructured clinical data fields to record “free-form” clinical
notes as structured data is designed to store only pre-determined
discrete data (e.g., patient vital signs). Physicians also depend on
unstructured data to review judgments and critical clinical
information entered by other clinicians to gain a better under-
standing of a patient’s condition or effects of their treatment.
Consequently, unstructured EMR data are a potentially rich data
source to develop better artificial intelligence (AI) tools, especially
for medical conditions such as sepsis, where early symptoms are
ambiguous and difficult to recognize. To this end, more recent
work has incorporated text-mining of clinical notes to improve
the accuracy of early sepsis prediction11,12.

In the area of clinical notes mining, researchers have used
natural language processing (NLP) mainly to identify and extract
medical events, medication information, and clinical workflow
from unstructured text data stored in EMR systems13–16. While
most NLP applications on clinical notes mining have mainly
focused on identifying and extracting concepts, our study extends
prior text-mining sepsis predicting algorithms11,12 to diagnose
and predict sepsis with higher accuracy and with a longer early
warning lead time of up to 48 h.

It is a well-known fact that the diagnosis of sepsis is often
equivocal due to the varied nature of infection sources and wide-
ranging patients’ responses7. Prior research that used text mining
to augment sepsis prediction advocates the use of extracting
common words11,12 that are found in clinical notes to improve
model predictive accuracy. In our study, we extend this stream of
research by showing that modeling for common topics can lead to
higher levels of predictive accuracy and the ability to predict up to
48 h prior to the onset of sepsis. We argue that the use of topics—
as opposed to words—is preferred, as lexicographical topics are
more stable compared to individual words17,18. Further, this
method is more generalizable because it can mitigate challenges
such as idiosyncratic words used by different physicians due to
differences in writing styles.

Here, we developed a topic-based, NLP-enabled AI algorithm
that combines the NLP analysis of physicians’ clinical notes with

structured EMR data to improve our ability to predict the risk of
sepsis. Specifically, our algorithm extracts, analyzes, and sum-
marizes physicians’ clinical notes and combines these sets of
summarized clinical information with structured clinical variables
to classify if a patient has sepsis at the time of analysis. For
patients who are not classified as having sepsis at the time of
analysis, the algorithm will then predict the risk of those patients
having sepsis in the following 4, 6, 12, 24, and 48 h. Unlike prior
NLP sepsis predictive models, our model operates in situations
where the prevalence of sepsis is as low as 6%—equivalent to the
prevalence of sepsis in hospitals observed in historical studies19.
In addition, we found that mining clinical notes provide sig-
nificant improvements to the predictive accuracy over structural
variables for predictions 12–48 h ahead of the onset of sepsis; this
is also beyond the accuracy of physician predictions. As discussed
above, under standard sepsis management protocol, every hour
delay in completion of the administration of the 3-h bundle is
found to be associated with a 4% increase in mortality20; thus the
ability of our algorithm to speed up diagnosis and early detection
would potentially reduce overall mortality in hospitals in a
significant way.

Results
Data and data processing. This study examines patients admitted
to a Singapore government-based hospital (details of the sam-
pling are in “Methods”). We construct the dependent variable for
sepsis using the ICD-10 code for sepsis, severe sepsis, or sepsis
shock, and the presence of ICU admission. The hospital practice
is such that patients diagnosed as having sepsis are transferred to
the ICU ward; hence, patients with at least one of these ICD-10
codes and admitted to the ICU ward are allocated to the sepsis
case cohort. All other patients not meeting these criteria are
allocated to the non-sepsis control cohort. There are 240 sepsis
patients in the training and validation sample and 87 sepsis
patients in the test sample. We define the sepsis onset time as the
ICU ward admission time as per the hospital’s practice.

At the patient encounter level, the prevalence of sepsis in our
case-control sample is 6.15%, which is equivalent to the estimated
sepsis’s prevalence of around 6% in hospitals19. Given that the
data is imbalanced, we applied the synthetic minority over-
sampling technique (SMOTE) to achieve 1:1 balanced data for
sepsis cases and non-sepsis controls (at the clinical note level).
Prior literature argued that oversampling (instead of under-
sampling) will result in more accurate models21–23 and SMOTE
has been used in earlier studies that develop machine learning
classifiers for other clinical conditions such as oral cancer
detection22 and cell identification/classification24,25 where the
prevalence of the positive cases are low. For comparative
purposes, we also develop, test, and report the models without
any oversampling to present the possibility of operating this
algorithm in a normal clinical environment where the prevalence
of sepsis is relatively low.

Sepsis early risk assessment (SERA) algorithm. Figure 1 outlines
the steps used to develop the SERA algorithm. The unit of ana-
lysis for the SERA algorithm is each patient consultation instance
given that the algorithm utilizes clinical notes and structured data
to make a sepsis risk assessment. We adopt this unit of analysis to
ensure that the algorithm can operate in a typical clinical context
where clinicians consult, assess, and diagnose patients. SERA
algorithm consists of two inter-linked algorithms—a diagnosis
algorithm and an early prediction algorithm. The diagnosis
algorithm determines if the patient has sepsis at the time of
consultation and if not, the early prediction algorithm will

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-20910-4

2 NATURE COMMUNICATIONS |          (2021) 12:711 | https://doi.org/10.1038/s41467-021-20910-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


determine the patient’s risk of having sepsis in the next 4, 6, 12,
24, and 48 h.

For the diagnosis algorithm, we combined EMR system clinical
notes for each consultation with the most recent structured
variables available in the EMR system, as listed in Table 1. These
data are used to classify if the patient has sepsis at the time of
consultation. For the early prediction algorithm, the data
structure is similar to that of the diagnosis algorithm except that
the early prediction algorithm will not consider any patient
consultations from the sample when the patient has been
confirmed to have sepsis (i.e., transferred to an ICU). This
omission is necessary to prevent positively biasing the predictive
power of the algorithm because these positive sepsis consultations
would have traits that are strongly associated with sepsis
conditions.

Processing of clinical notes and machine learning. Before using
the unstructured clinical notes as predictors in the algorithm, we
applied NLP to these notes, specifically using the latent
Dirichlet allocation (LDA) topic modeling algorithm. The major
topics found in the progress notes are extracted, numerically
weighted, and combined with the structured variable data in
Table 1. By applying the NLP LDA model to the clinical notes
dataset, we identified 100 common text topics that are in turn
classified under one of the following seven categories: (1) clinical
status, (2) communication, (3) laboratory tests, (4) non-clinical
status, (5) social relationships, (6) symptom, and (7) treatment.
The numerical loadings on the 100 topics, together with the
structured data, are used as predictors in the diagnosis algorithm
and the early prediction algorithm.

In the diagnosis algorithm, the data is subjected to a voting
ensemble machine learning algorithm. For comparative purposes,

we also used dagging, and gradient boosted trees (GBT) as two
alternative classifiers. For consultations where the patient is
classified as not having sepsis, the early prediction algorithm will
then predict if the patient has a high risk of having sepsis in the
next 4, 6, 12, 24, and 48 h using the voting ensemble machine
learning method. The dependent variables for the early prediction
algorithm are whether the patient will have sepsis in the next 4, 6,
12, 24, and 48 h, respectively.

The trained and validated models are subsequently tested using
the independent, hold-out test sample. Methodological details of
the text-mining, diagnosis, and early prediction algorithms are
provided in “Methods”.

We report the test results of the SERA algorithm for both
oversampled (SMOTE) and non-oversampled (non-SMOTE)
data. The SMOTE models present the results typically observed
in machine learning predictive models where the prevalence of
sepsis cases is high and equal to that of the non-sepsis cases12

(Table 2). The non-SMOTE models present the performance of
the model in typical clinical settings where the prevalence of
sepsis is low (Table 3). For brevity, we focus on describing the
results for the SMOTE models as in prior studies22,24,25.

For the diagnosis algorithm, our test sample yielded an AUC of
0.94, sensitivity 0.89, specificity 0.85, and positive predictive value
(PPV) 0.85. The AUC of the diagnosis algorithm is higher than
those of prior studies7,9,11,12,26–31, which range from 0.64 to 0.92.

The SERA algorithm predicts if a patient has a high risk for
sepsis before being diagnosed with sepsis by physicians in the
hospital. The algorithm predicting 48 h ahead of the onset of
sepsis has an AUC of 0.87. The AUC improves to 0.90, 24 h prior
to sepsis, and up to 0.94, 12 h prior to sepsis. Notably, our
algorithm’s prediction at the 12-h lead time has a higher AUC,
sensitivity, specificity, and PPV than prior research8,11,12,32. Our
24-h lead time early prediction also has a high AUC of 0.90 and at
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Fig. 1 Setup of SERA algorithm. The flow diagram shows the steps used to develop the SERA Algorithm. Both structured data (vitals, investigations, and
treatment) and unstructured data (clinical notes) are used in the process of diagnosing and predicting sepsis.

Table 1 List of structural variables used in the predictive algorithm.

Category Predictors

Patient information Age, gender
Vital signs Blood pressure, heart rate, temperature, oxygen saturation, respiratory rate
Investigations Total white cell, culture resultsa, lactate, high-sensitivity C-reactive protein, procalcitonin, arterial blood gas
Treatment Use of vasopressor, use of antibiotics

aThe cultures include: the culture of urine, blood culture (anaerobic/aerobic), general culture, wound culture, stool culture, molecular, fluid culture, respiratory culture, cerebrospinal fluid culture, fungus
smear, tissue culture, fluid culture (bactec bottle), fluid culture (aerobic), ear culture, genital culture, sterility testing, tip culture, wound culture (aerobic), appearance, stain results, or any real-time
polymerase chain reaction. Cultures are typically used to confirm test presence of carbapenem-resistant enterobacteriaceae, methicillin-resistant staphylococcus aureus, clostridium difficile antigen,
clostridium difficile toxin, clostridium difficile influenza, influenza B (real-time polymerase chain reaction), influenzae virus, strep pneumoniae antigen, carbapenem-resistant enterobacteriaceae
screening, hepatitis viral load, cytomegalovirus, methicillin-resistant staphylococcus aureus screening, legionella antigen, sarcoptes scabiei, herpes simplex virus.
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least 0.80 sensitivity, specificity, and PPV values. The additional
hours for early prediction is crucial in improving clinical
outcomes as every 1 h delay in antimicrobial administration is
associated with a decrease in patient’s survival of 7.6%6. The
additional 24 h lead time ahead of similar predictions will provide
clinicians additional lead time to prepare for highly time-sensitive
sepsis management intervention.

SERA algorithm vs. human prediction. We compared the per-
formance of the SERA algorithm with other predictive scoring
systems in the clinical context by juxtaposing the algorithm’s
prediction with the standard clinical practice of diagnosing sepsis
or predicting mortality due to infection. Clinical practice typically
utilizes standardized scoring systems such as systemic inflam-
matory response syndrome (SIRS), sequential organ failure
assessment (SOFA), quickSOFA (qSOFA), and modified early
warning system (MEWS) to predict sepsis or mortality due to
infection. Based on the meta-analysis study8, the typical true
positive rate (TPR, sensitivity) of these four scoring systems have
AUC ranging from 0.50 to 0.78, TPR ranging from 0.56 to 0.8,
and false-positive rate (FPR, 1—specificity) ranging from 0.16 to
0.50 at 4 h before the onset of sepsis. We plotted the ROC curves
of our early prediction algorithm against these reported TPR and
FPR scores (Fig. 2a).

Further, we also estimated the TPR and FPR of the hospital
physician’s diagnosis of sepsis for all the patients’ encounters
within the independent, test sample. Based on medical guidelines
for the management of sepsis4, physicians are required to

normalize lactate in patients with elevated lactate levels for initial
resuscitation. Further, physicians would, as part of the diagnosis,
obtain appropriate routine microbiologic cultures before starting
antimicrobial therapy in patients with suspected sepsis to
minimize delay in the start of antimicrobials. Hence, according
to the hospital practice, when a physician suspects sepsis, she is to
request one or more microbiologic culture tests and lactate tests
as per the above guidelines.

As such, in order to gauge the performance of the physician in
predicting sepsis, we used the time when the physician orders
both culture and lactate tests as the point in time when she
suspects a patient has sepsis. The time between when orders are
made and when the patient developed sepsis is determined as the
prediction time window. Using this methodology, we computed
the TPR and FPR for physicians for five time-windows—48, 24,
12, 6, and 4 h before the onset of sepsis. In Fig. 2a, we can see that
at 4 h before the onset of sepsis, the SERA algorithm out-
performed the hospital’s physicians in predicting sepsis within the
test sample. In addition, the SERA algorithm outperformed the
typically reported accuracy rates of human-based scoring
methods such as qSOFA, MEWS, SIRS, and SOFA as reported
in prior studies8.

Figure 2b presents the ROC of the early prediction algorithm
for all the timings at 48, 24, 12, 6, and 4 h before sepsis. We
observe that the ROC improves from 48 h to 12 h and maintains
at a similar level beyond the 12-h mark. The ROC of the SERA
algorithm at all time periods outperformed hospital physicians’
predictions. As a conservative comparison, we contrasted SERA
algorithm prediction at 48, 24, 12, 6, and 4 h against the

Table 2 Statistics of diagnosis and early prediction algorithm (SMOTE).

Diagnosis algorithm

Outcome predict if the patient has
sepsis

Voting Dagging GBT
AUC Sensitivity Specificity PPV NPV AUC AUC

At the present time 0.94 0.89 0.87 0.85 0.90 0.92 0.94
Early prediction algorithm
Outcome predict if patient will have
sepsis

Voting Dagging GBT
AUC Sensitivity Specificity PPV NPV AUC AUC

48 h later 0.87 0.78 0.77 0.77 0.78 0.83 0.83
24 h later 0.90 0.81 0.80 0.80 0.80 0.86 0.86
12 h later 0.94 0.87 0.87 0.87 0.87 0.92 0.92
6 h later 0.92 0.88 0.81 0.82 0.87 0.90 0.93
4 h later 0.92 0.86 0.80 0.81 0.86 0.85 0.92

SMOTE applied to clinical notes to achieve a balanced sample of sepsis and non-sepsis case entries. SERA algorithm uses the voting algorithm; dagging and GBT algorithms are presented for comparative
purposes.

Table 3 Statistics of diagnosis and early prediction algorithm (in low prevalence condition without SMOTE).

Diagnosis algorithm

Outcome predict if the patient
has sepsis

Voting Dagging GBT
Prevalence AUC Sensitivity Specificity PPV NPV AUC AUC

At the present time 0.177 0.94 0.89 0.87 0.59 0.97 0.92 0.94
Early prediction algorithm
Outcome predict if patient will
have sepsis

Voting Dagging GBT
Prevalence AUC Sensitivity Specificity PPV NPV AUC AUC

48 h later 0.012 0.87 0.76 0.76 0.04 0.99 0.82 0.85
24 h later 0.010 0.90 0.81 0.79 0.04 0.99 0.88 0.89
12 h later 0.008 0.94 0.88 0.82 0.04 0.99 0.92 0.93
6 h later 0.002 0.92 0.88 0.83 0.01 0.99 0.90 0.93
4 h later 0.001 0.92 0.89 0.87 0.01 0.99 0.92 0.94

No oversampled applied. Prevalence is computed at the clinical note level. For the same number of sepsis cases, the clinical note occurrences are different for a different time window. SERA algorithm
uses the voting algorithm; dagging, and GBT algorithms are presented for comparative purposes.
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prediction accuracy of MEWS, qSOFA, SIRS, and SOFA,
performed at the 4-h mark, as reported in the literature8. We
observe that SERA algorithm prediction for all four periods
generally outperformed MEWS, qSOFA, SIRS, and SOFA
prediction scores even when they are assessed at the 4-h mark
before sepsis.

To examine the practical utility of the early prediction
algorithm, we compute TPR and FPR of the early prediction
algorithm at 48, 24, 12, 6, and 4-h mark (Fig. 3). We observed
that 48-h from the onset of sepsis, the SERA algorithm can pick
up 0.78 of all patients that eventually have sepsis, and this
prediction (TPR) improves to at least 0.86 for time periods less
than 12 h before the onset of sepsis. Hospital physicians, on the
other hand, can detect approximately only 0.53 of all patients that
eventually have sepsis at the 48-h mark, and this proportion only
increases marginally to 0.58 at the 6-h mark. At the 4-h mark,
hospital physicians do observe a measurable increase in TPR to
0.65. For all five periods, the SERA algorithm has a higher TPR of
predicting sepsis by 0.21–0.32 compared to hospital physicians in
the same period. This suggests that the SERA algorithm has the
potential to increase the number of early sepsis detection by
21–32% compared to relying only on hospital physicians’
assessment.

The FPR of the SERA algorithm varies from 0.23 at the 48-h
mark to 0.13 at the 12-h mark (Fig. 3b). The FPR of hospital
physicians’ predictions, however, is considerably higher than the
SERA algorithm, and it varies between 0.34 and 0.27 from 48-h to
4-h mark. Thus, the use of the SERA algorithm has the potential to
reduce false positives by 0.07–0.17. Figure 3 suggests that the TPR
and FPR of hospital physicians’ peaked only at the 4-h mark—this
means that physicians have a much shorter lead time for medical
intervention. Conversely, the SERA algorithm is able to achieve
considerably earlier prediction rates of up to 48 h prior to sepsis
onset, which means that physicians have much earlier warnings of
sepsis onset and thus more time for more effective interventions.

Benefits of unstructured clinical text in early sepsis prediction.
To quantify the added predictive value of unstructured clinical
notes in the SERA algorithm, we use only the structured variables,
as seen in Table 1, to diagnose and predict sepsis. We then
compare the algorithm’s performance (with only structure vari-
ables) against the algorithm with structured and unstructured
clinical notes (Fig. 4).

On the one hand, we observed that while the added use of
clinical text did improve the performance of the SERA algorithm
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Fig. 3 Comparing the performance of the SERA algorithm vs. physician. a The bars represent the percentage of sepsis patient records correctly flagged as
having a high risk of sepsis (likely to have sepsis) by either the algorithm or physicians. The chart compares the true positive rate of the algorithm’s
prediction at different lengths of time before the onset of sepsis against the true positive rate of physicians’ prediction in the hospital. b The bars represent
the percentage of non-sepsis patient records erroneously flagged as having a high risk of sepsis (likely to have sepsis) by either the algorithm or physicians.
The chart compares the false-positive rate of the algorithm’s prediction at different lengths of time before the onset of sepsis against the false-positive rate
of physicians’ prediction in the hospital.

Fig. 2 ROC curves for 48, 24, 12, 6, and 4-h early prediction. a, b The ROCs represent the performance of early prediction algorithm at 4, 6, 12, 24, and
48 h prior to the onset of sepsis using the independent, test sample. “qSOFA”, “MEWS”, “SIRS”, and “SOFA” represent the TPR and FPR from these
methods employed by physicians in prior studies at 0–4 h prior to the onset of sepsis. “Physicians” represent TPR and FPR of patients in the independent,
test sample set that were suspected by hospital’s physicians to have sepsis at 4 h prior to the onset of sepsis. b “4 h”, “6 h”, “12 h”, “24 h”, and “48 h”
represent TPR and FPR of patients in the independent, test sample set that were suspected by hospital’s physicians to have sepsis at the respective time
prior to the onset of sepsis.
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for diagnosis and early prediction (up to 6 h), the improvement
was marginal. On the other hand, when we consider time frames
between 12 and 48 h ahead of sepsis, we noted that the use of
clinical text for early prediction had considerable benefits.
Specifically, we observed that for the SERA algorithm in the
12–48-h early prediction window, the added clinical text
improved (1) the AUC by between 0.10 and 0.15, (2) the
sensitivity by 0.07–0.13, and (3) the specificity by 0.08–0.14.

The results suggest that for time periods closer to the onset of
sepsis, the measurable symptoms of sepsis are manifested in the
structured variables such as a drop in blood pressure values. In
this instance, the added use of clinical text provides only marginal
predictive gains to the SERA algorithm as the structured variables
captured most of the sepsis symptoms. The unstructured clinical
text, however, provides greater value in prediction when we are
focusing on early prediction between 12 and 48 h prior to sepsis
as the patient has yet to manifest observable symptoms that can
be measured by the structured sepsis variables. Our model
suggests that the physician’s judgment and qualitative inputs of

the patient’s prognosis at that time provide additional crucial data
that can be used for predicting sepsis.

Application of SERA algorithm in low sepsis prevalence
environment. In a retrospective cohort study of 409 United States
hospitals from 2009 and 2014, sepsis prevalence ranges from 1.8%
to 12% of all hospitalized patients. The mean prevalence is 6%,
and this remains relatively consistent over time19. Despite the
naturally low prevalence of sepsis in clinical settings, most studies
develop sepsis prediction algorithms using oversampled datasets
with a significantly higher prevalence of up to 50%7,9,11,12,26–31.
In our study, we develop the models for both the oversampled
environment, as seen in prior research, and for situations where
the prevalence is low, as seen in a typical clinical environment.

As reported in Table 3, the models developed with the typical
low clinical prevalence context of 6.15% can achieve high
sensitivity, albeit with naturally low PPV. For purposes of clinical
application, we simulate how changes in the prevalence of sepsis
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Fig. 4 Comparing SERA algorithm performance with models without clinical text. We measure the change in performance for each diagnosis and
prediction model when clinical text is added as additional predictors. Structured variables represent the models that only include vitals, investigations, and
treatment data as predictors. Structured variables+ text represent the models have additional clinical notes as predictors. a Compares the AUC of models
with and without clinical notes. b Compares the sensitivity of models with and without clinical notes. c Compares the specificity of models with and without
clinical notes.
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impact the PPV (Table 4). For example, for a 12-h early
prediction window, hospitals experiencing the lower end of 1.8%
sepsis prevalence will have an estimated algorithm PPV of 8.3%
(95% CI: 0.89–8.73%). If the prevalence of sepsis increases to the
higher end of 12%, the estimated PPV increases to 40.25% (95%
CI: 38.94–41.58%). The simulated results illustrate the applic-
ability of the SERA algorithm in natural clinical settings where
the prevalence of sepsis varies depending on the type of clinical
specialty and/or location of the institutions.

Discussion
The SERA algorithm can potentially provide the early detection
of sepsis that clinicians need to effectively intervene and manage
sepsis patients. Medical practice and prior studies4 have shown
that early detection of sepsis is challenging, and sepsis patients
can deteriorate rapidly; thus, every minute counts in the diagnosis
of sepsis. We have shown the effectiveness of the SERA algorithm
in that it is able to flag 21–32% more patients at risk of sepsis
compared to hospital physicians in a clinical setting between 4
and 48 h before the onset of sepsis. This additional lead time in
sepsis alert provides greater opportunities for physicians to
commence treatment, thereby lowering mortality.

As in every medical alert system, false positive in the alert
system is a cost to the healthcare organization. Unacceptable
levels of false positives can lead to wastage of medical resources as
physicians need to perform additional follow-up diagnosis and
treatment. Further, frequent false positives in a clinical setting will
lead to a loss of confidence in these alerts among attending
physicians, who will, in turn, be less likely to act on future alerts.
A high number of false alerts may also reduce their confidence in
other similar best practice alerts embedded within EMR systems.
The SERA algorithm, however, has achieved high TPR while
maintaining a reasonable low FPR—an FPR considerably lower
than hospital physicians’ early assessment of sepsis. Further,
based on the simulation of different sepsis prevalence levels, we
show that the PPV of our model is also appropriate for clinical
applications, where the prevalence of sepsis is naturally low.

This study thus presents the potential of using AI as a “canary
in a coal mine” for clinicians. We could envision running the
SERA algorithm in the background to continuously monitor
patients and act as an early warning system for patients who are
at risk of having sepsis. At the same time, using the SERA algo-
rithm in this manner could also potentially flag sepsis patients
and thus prevent them from being overlooked; a situation that is
common in stressful hospital settings where physicians have to
continually make multiple medical decisions and judgments while
managing high patient loads. We have provided details of how to
practically set up this system in the methods section.

Through this study, we provide further empirical evidence for
the value of data from EMR systems. Notably, we show that the
data from EMR systems can be applied for more advanced

healthcare applications. Unlike prior studies that utilized only
structured EMR data, we demonstrated the value of using the vast
amounts of unstructured data embedded in progress notes. For a
typical EMR system, the volume of unstructured data dwarfs the
volume of structured data, and we believe that the value from
unstructured data could be unlocked in a systematic fashion using
NLP (see below). Using it for sepsis prediction as per our study is
one case in point. The NLP-enabled analysis would be naturally
suited for managing other complexes, equivocal, and critical
clinical challenges as these challenges would benefit from expert
insights embedded within EMR’s unstructured data.

Our study also extends the use of NLP in healthcare research.
Within the medical informatics literature, NLP has been widely
used to extract concepts, entities, and events, as well as their
relations and associated attributes from free-text33,34, given that
free-text is a common form of data in EMR systems10. Our study
suggests that the use of NLP could be extended by integrating
NLP processed text with traditional machine learning tools to
assist in diagnosing and early detection of diseases. Our NLP
results suggest that clinicians’ progress notes, as well as other
clinical reports (e.g., radiologist reports) stored in the EMR sys-
tems, may contain patterns of themes and topics that can be
extracted and used productively for clinical analysis. Mining these
notes are especially useful in clinical settings where the symptoms
of ailments are not easily observed in structured data captured in
the EMR. Our study also highlights the value of mining and
analyzing progress notes, notwithstanding the use of medical
abbreviations and the idiosyncratic manner in which clinicians
record their diagnoses and treatment plans.

Like all studies, there are limitations to our study. While we
have validated and tested the models with an independent, test
sample from a later time period, future research should conduct
external validation in different hospital settings to improve the
SERA algorithm and make our findings more robust.

In conclusion, if predictive algorithms similar to the SERA
algorithm can be designed to access valuable structured and
unstructured data patient data continuously, hospital systems
could potentially provide a 24 by 7, continual monitoring of
patients’ condition, thereby improving the ability for early sepsis
detection and intervention. Though the SERA algorithm can
achieve higher sensitivity and specificity rates compared to some
physician’s diagnoses and prior machine learning algorithms, we
believe its primary role is to complement, not substitute, the
clinical team’s existing work. We further argue that other similar
NLP-enabled algorithms could be developed to augment health-
care workers’ knowledge and improve their decision making35.

Methods
Data sample. National Healthcare Group’s domain specific review board granted
the ethics approval on 26 July 2018 (approval reference 2018/00455). Informed
consent is not required under the Human Biomedical Research Act 2015 (Singa-
pore). Approval was granted to extract de-identified patients’ data from the EMR

Table 4 Simulated PPV at different sepsis prevalence levels.

PPV (95% CI)

Algorithm Prevalence 1.8% 6% 12% 20% 30% 50%
Diagnosis 0.11 (0.11–0.11) 0.30 (0.29–0.31) 0.48 (0.47–0.49) 0.63 (0.62–0.63) 0.74 (0.74–0.75) 0.87 (0.87–0.87)
4 h 0.11 (0.10–0.12) 0.30 (0.28–0.33) 0.48 (0.45–0.51) 0.63 (0.60–0.66) 0.75 (0.72–0.77) 0.87 (0.86–0.89)
6 h 0.09 (0.08–0.09) 0.25 (0.22–0.27) 0.41 (0.39–0.44) 0.56 (0.54–0.59) 0.69 (0.67–0.71) 0.84 (0.82–0.85)
12 h 0.08 (0.08–0.09) 0.24 (0.23–0.25) 0.40 (0.39–0.42) 0.55 (0.54–0.57) 0.68 (0.67–0.69) 0.83 (0.82–0.84)
24 h 0.07 (0.06–0.07) 0.20 (0.19–0.21) 0.35 (0.33–0.36) 0.49 (0.48–0.51) 0.63 (0.61–0.64) 0.80 (0.79–0.81)
48 h 0.06 (0.05–0.06) 0.17 (0.16–0.18) 0.30 (0.29–0.32) 0.44 (0.43–0.46) 0.58 (0.56–0.59) 0.77 (0.75–0.77)

1.8% (12%) represents the low (high) end of the typical sepsis prevalence observed in hospitals based on prior research 19. Six percent represents the average sepsis prevalence of hospitals in the United
States. Other prevalence percentages are for comparison purposes as they represent oversampled prevalence percentages typically observed in prior research.
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system to build the predictive algorithm. MySQL 8.0 was used to extract the data
from the Epic™ electronic medical record system. The sample consists of 5317
patients admitted from 2 April 2015 to 31 Dec 2017 with 114,602 clinical note
entries. We separated this sample into a training and validation sample and an
independent, hold-out, test sample. We used a tenfold cross-validation metho-
dology to train and validate the model on the training and validation sample. In
order to test the stability of the text topics extracted from our text-mining algo-
rithm, we deliberately designed the hold-out test sample to include patients
admitted from a later period (10 May 2017 to 31 December 2017). The training and
validation sample consists of 3722 patients (80,162 clinical note entries) while the
independent, hold-out test sample consists of 1595 patients with 34,440 clinical
note entries. We use each patient consultation instance (clinical note) as the unit of
analysis (see Supplementary Fig. 2 in Supplementary Information for more details
about the data sample).

Text mining technique. In addition to the structured data (Table 1) used in the
predictive model, we utilized clinical notes data that are unstructured free-form
text. Before the unstructured free-form text could be analyzed and used as part of a
predictive model, we first utilize LDA36 to codify the unstructured free-form text
into a numerical representation. LDA, like other topic modeling algorithms, is an
unsupervised technique that empirically creates topics based on patterns of (co-)
occurrence of words found in the analyzed documents. Through LDA we generated
topics from the clinical notes that are represented by a vector with individual topic
loadings corresponding to the concentration of discussion for a particular topic.

We processed the unstructured free-form text using the following five steps.
First, under HIPAA guidelines and standards for anonymization of data (Health
Insurance Portability and Accountability Act of 1996, HIPPA), we removed all
possible identifiers within the clinical notes. Identifiers that we parsed out included:
names, geographic subdivisions, zip codes, ID numbers, all elements of date,
telephone/ fax numbers, vehicle numbers, device serial numbers, and email
addresses. Second, we tokenized the text contained in the documents by removing
all punctuation marks; lemmatizing the words by replacing words with their root
form; applying part-of-speech tagging, and removing stop words, such as articles
and prepositions. We also removed an extended list of medical-related stop words
or phrases that are common in these texts but have no practical meaning. Examples
of such are “report,” “progress,” “provide,” “lab unit” (a complete list of the words
and phrases that are excluded from topic modeling is available upon request from
the authors). After these two steps, we created a term-document matrix, where
rows represented the occurrence (a measure of frequency) of a term in the
documents, and columns represented the documents.

Third, we applied a text filter to the processed text to reduce the number of
terms by eliminating rare terms and weighting the frequencies of terms with
multiple occurrences. Fourth, we ran the LDA topic clustering algorithm on the
terms to determine the various topics. Based on extant literature37, the number of
topics that can be developed from the text is highly subjective and is often a
function of the number of observations or the expected variety of the topics in the
dataset. Using these guidelines, and as part of our robustness checks, we attempted
five different iterations with 25, 50, 75, 100, and 150 topics. Subsequent analysis of
the results yielded qualitatively similar results for all five iterations in the final
predictive model; thus, in this paper, we reported the 100-topic model for brevity.
Drawing on the 100-topic model, we presented the 100 topics to three researchers
to independently classify them into seven topic categories (Table 5). All text-
mining is processed using SAS Enterprise Miner 14.2.

Note that the step of developing the topics is required only during the model
development and validation phase. When using the text-mining algorithm to assess
new clinical notes, the 100 topics developed are used as the benchmark to help
compute the fit between the new clinical note to these 100 topics. The high fit
measure represents a high similarity between the new clinical notes with the
benchmark topics. From a practical implementation perspective, we found that the
computation of the fit values is not computationally intensive. For example, a test-
case patient with a lengthy clinical note of 1806 words (the median length of the
clinical notes in our sample is 840 words) requires only 0.17 s to estimate these fit

values using an Intel i7 processor 2.7 GHz, with 16.0G RAM in SAS Enterprise
Miner 14.2.

Machine learning algorithm. Ensemble methods are machine-learning algorithms
that utilize multiple classifiers to determine the predicted outcome by taking a
(weighted) vote of their predictions. These methods often perform better than any
single classifier38,39. There are several different ensemble methods, such as voting,
bagging, stacking, and boosting.

In our main estimation, we use a voting ensemble. Voting is an ensemble
machine learning model that combines the predictions from multiple other models
(base classifiers). Here, we use two base classifiers: a stochastic gradient descent
(SGD) based logistics regression and a random forest algorithm. Our combination
rule is an average of probabilities, i.e., we calculate the average probability of the
two base models as our voted probability.

The first base classifier, SGD, is an optimizing algorithm that seeks to minimize
the error in prediction by learning iteratively from prior fitted estimates. The
method iteratively draws random samples from the training sample to estimate the
parameters of the model that is used to classify a patient as having sepsis or not
having sepsis. It learns from each sampling iteration to determine the accuracy of
the classification and adjust the parameter estimation until further improvements
in prediction results are minimal.

For each iteration, the predicted parameter β is calculated, and the model is
updated using the following logistic equation:

βnew ¼ βold þ lr y � ŷð Þŷ 1� ŷð Þx ð1Þ

where β is the optimized parameter, lr is a learning rate, y � ŷ is the prediction
error for the model in a particular iteration in the training data, ŷ is the prediction
made by the coefficients, and x is the input value. In our case, the input variables
were a combination of the structured variables (as indicated in Table 1) and the
topic loadings of each clinical note on the 100 topics we extracted in the text
mining procedure.

The second classifier used here for voting is a random forest classifier, with the
case of sepsis being the target variable. The probabilities of both classifiers are
averaged out to arrive at the final probability used in our voting ensemble model.

Alternative estimators. For comparative purposes, we also used two different
alternative estimators, namely, dagging and GBT.

Dagging is an ensemble method that has been widely used in existing machine
learning literature when the data is “noisy,” i.e., data with a large amount of
additional irrelevant information. In dagging, we partition the training data sample
into a set of disjoint stratified samples. We then select the base classifier logistic
regression with SGD as described earlier for this procedure, and train the data
using this base classifier within each of the disjointed samples. Next, the ensemble
method applied the results from the trained copies of the base classifier to the
validation data sample. We compute the average across all sub-samples, and the
predicted result is based on a vote across all sub-samples.

GBT uses an ensemble of multiple trees to create more powerful prediction
models for classification and regression. The key idea is to build a series of trees,
where each tree is trained so that it attempts to correct the mistakes of the previous
tree in the series. GBT involves three elements: a loss function to be optimized, a
weak learner to make predictions, and an additive model to add weak learners to
minimize the loss function. Decision trees are used as the weak learner in GBT and
a gradient descent procedure is used to minimize the loss when adding trees. A
fixed number of trees are added, or training stops once loss reaches an acceptable
level or no longer improves on the validation dataset. All ensemble machine
learning was conducted using the KNIME Analytics Platform (version 4.1.6).

Other model diagnostics. To observe the trade-offs between PPV (precision) and
sensitivity (recall), refer to the precision–recall curves in Supplementary Fig. 3 of
Supplementary Information. Similarly, the SERA algorithm’s calibration curves can
be found in Supplementary Fig. 4 of the Supplementary Information.

Table 5 Topic categories.

Category Count Definition

Clinical status 28 Routine updates of clinical conditions as well as diagnosis (e.g., vitals) excluding lab and radio-diagnostic tests
Communication 3 Communication between staff
lab test 24 Orders and reports of lab or radio-diagnostic test results
Non-clinical status 2 Routine updates of non-clinical conditions
Social relationship 2 Information about family and social aspects of patient
Symptom 10 Clinical symptoms
Treatment 31 Treatment procedure or medication prescribed as well as the status of the treatment/ medication

The 100 topics are classified into seven different categories. The distribution of topics among categories is similar if 25, 50, 75, or 150 topics are extracted instead. Detailed results are available upon
request from the corresponding authors.
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Proposed setup of SERA algorithm within the clinical environment. We pro-
pose two possible modes in which the SERA algorithm can operate within the
clinical environment.

Background mode. In this first mode, the SERA algorithm is designed to run in
the background. Specifically, it is configured to run during key events using the
latest patient’s clinical data available, e.g., during ward shift handovers. If the risk
score exceeds the designated cut-off level, the EMR system will alert the physician.
Alternatively, if there are more computing resources available, hospitals can
choose to run it in fixed hourly-time intervals. For a large 500-bed hospital, if we
run all cases individually, the SERA algorithm will take ~90 s to score all 500
patients. This approach ensures an ongoing, regular time-based sepsis risk
assessment for patients within the hospital. (See Fig. 5a for the workflow for this
mode)

Ad-hoc mode. In the second mode, the algorithm can be designed to run
immediately after a physician updates her clinical notes in the EMR system. In this
case, the SERA algorithm will run in an ad-hoc manner since the score is only
calculated after a physician has updated the patient’s status. The SERA’s score then
acts as a decision support mechanism to flag suspected sepsis cases. As observed
from the study, the SERA algorithm outperforms physicians in the early prediction
of sepsis and thus may be an important early warning indicator to assist physicians
in their diagnosis and patient care. (See Fig. 5b for the workflow)

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw datasets generated during and analyzed during the current study will not be
published publicly due to privacy regulations under the Human Biomedical Research Act
(HBRA) 2015 (Singapore). Raw datasets are available for review purposes. The raw data
consists of clinical data from patients, including textual clinical notes were written by
physicians and contain information that could compromise research participant (patient)
privacy or consent. The processed textual data with vitals is however available from the
corresponding author on reasonable request.

Code availability
The code used in the current study is largely based on the open-sourced software KNIME
with some custom modifications, which will be made available from the corresponding
authors upon reasonable request.
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