
www.nrronline.org

173

NEURAL REGENERATION RESEARCH 
February 2017,Volume 12,Issue 2

The promise of stem cell-based therapeutics in 
ophthalmology

Stem Cell Transplantation as a Therapeutic 
Strategy
Stem cells are highly conserved biological units of develop-
ment and regeneration with variable capacity to adopt differ-
ent developmental traits and self-renew in the undifferenti-
ated state. These features have prompted extensive research 
in recent years into the feasibility of stem cell transplantation 
as a therapeutic tool to maintain, enhance, and restore tis-
sue viability and organ function. The search for the safest, 
most accessible and most efficient stem-cell source for re-
generative purposes have focused on three main categories: 
embryonic stem cells (ESCs), adult stem cells, and induced 
pluripotent stem cells (iPSCs). Researchers first successfully 
isolated cells with pluripotent differentiation capability from 
mouse embryos in 1981 and, thereafter, from humans (Evans 
and Kaufman, 1981; Martin, 1981; Thomson et al., 1995). 
However, later studies showed that this stem cell population 
harbors a significant risk of tumor formation. In addition, 
ethical questions were raised regarding the use of human 
undeveloped embryos as a stem cell source (Simonson et al., 
2015). Therefore, attention was directed to multipotent adult 
stem cells which may be successfully isolated from various 
tissues and have been found effective in the maintenance 
of normal tissue function and repair of physiological and 
pathological wear and tear. The main advantages of adult 
stem cells are their optimal use in autologous transplants and 

their low tumorigenic potential compared to other stem cell 
types. However, some adult stem cells have a limited differ-
entiation capacity and, consequently, a limited regenerative 
potential (Sousa et al., 2014; Zomer et al., 2015). To counter 
this problem, in 2006, researchers created iPSCs from ma-
ture differentiated cells using four transcription factors: oct-
amer-binding transcription factor 4 (Oct4), sex determining 
region Y-box 2 (Sox2), cMyc, and kruppel-like factor 4 (KLF4) 
(Takahashi and Yamanaka, 2006; Okita et al., 2007; Taka-
hashi et al., 2007). Further investigations showed that iPSCs 
are pluripotent and have the potential to form any cell in the 
body, similar to ESCs (Carr et al., 2009). However, in some 
syngenic recipients, autologous transplantation of iPSCs 
induces a T-cell-dependent immune response. Additionally, 
the conversion of cells to iPSCs poses a substantial risk of 
tumorigenesis (Zomer et al., 2015).

Clinical Challenges in Ophthalmology
Stem cell transplantation may hold the solution to several im-
portant clinical challenges in ophthalmology. Cell damage in 
different structures in the eye requires prompt intervention to 
prevent secondary damage and irreversible loss of vision. 

The cornea
Abrasions, chemical injuries, infections, and autoimmune 
diseases affecting the cornea (Klintworth, 1977; Bourne, 
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2003) may result in blurred or cloudy vision, pain, tearing, 
and sensitivity to light. At present, corneal transplantation 
is the only definitive, clinically relevant approach to treat 
severe corneal disease (Wakefield et al., 2015). However, the 
procedure is hampered by donor shortage, particularly in 
developing countries, considerable risk of immune rejection 
(Niederkorn, 2007; De Miguel et al., 2010), and occasional 
transmission of infections such as hepatitis B  and rabies by 
the donor tissue (Dubord et al., 2013).  

The retina
In the eye, the degeneration of neural cells may occur in the 
inner retinal ganglion cell (RGC) layer due to optic nerve 
damage and in the outer photoreceptor layer mainly in he-
reditary genetic diseases. The death of RGC cells is an end 
product of both anterior ischemic optic neuropathy (AION), 
which obliterates the blood supply to the optic nerve head, 
and glaucoma, which causes chronic elevation of intraocular 
pressure. Primary loss of the photoreceptors is the under-
lying cause of retinitis pigmentosa and of the damage to the 
retinal pigment epithelium (RPE) (Landau and Kurz-Levin, 
2011; Alonso-Alonso and Srivastava, 2015) in age-related 
macular degeneration (AMD). Retinal dysfunction due to 
cell death may also be secondary to such systemic disorders 
as diabetic retinopathy and arterial hypertension. Current 
approaches to the prevention, arrest, and reversal of cell 
loss in the retina are largely inefficient in restoring visual 
function (Levin, 2007; Winter et al., 2007; Landau and Kurz-
Levin, 2011; Seung and Sumbul, 2014). 

Stem Cell Treatment of Ophthalmic Disorders
Studies evaluating the use of stem cells for ophthalmic dis-
orders have reported three potential approaches: sustained 
drug delivery, immunomodulation, and  tissue regeneration. 

Stem cells as vehicles for drug delivery
The need for continuous drug delivery to the eye is a major 
concern in ophthalmological practice (Roth et al., 2008). The 
solution may lie in stem cells owing to their unique ability to 
sustain viability throughout the lifetime of the organism. The 
cells may be grafted at the desired location without the need 
for repeated interventions. 

Neurotrophic factors (NTF) are a family of proteins that 
participate in the regulation of the development, function, 
and survival of neurons and other cells in the nervous system 
(Mey and Thanos, 1993; Unoki and LaVail, 1994; Huang and 
Reichardt, 2001; Sofroniew et al., 2001; Buch et al., 2007). 
They have been shown to prevent RGC loss in neurodegen-
erative diseases of the eye. Recent studies have highlighted 
the potential of NTF-secreting stem cells in the treatment of 
several ocular disorders. The most prominent NTF in this 
setting is brain-derived neurotrophic factor (BDNF), a tyro-
sine receptor kinase B (TrkB) ligand expressed primarily in 
RGCs (Jelsma et al., 1993; Perez and Caminos, 1995). BDNF 
has been found to promote neuronal survival both in cul-
ture and in rodent models of retinal damage (Johnson et al., 
1986; Mey and Thanos, 1993; Mansour-Robaey et al., 1994; 
Peinado-Ramon et al., 1996). Implantation of BDNF-trans-

duced mesenchymal stroma cells (MSCs) into the rat retina 
was associated with a significant increase in BDNF levels for 
periods of up to 14 days (Park et al., 2012). Others found that 
intravitreal transplantation of BDNF-secreting MSCs in a rat 
model of chronic ocular hypertension improved RGC surviv-
al and preserved optic nerve structure (Harper et al., 2011).  

Neuroprotective effects on RGCs and photoreceptors have 
also been reported for ciliary neurotrophic factor (CNTF) 
(Tao et al., 2002; Thanos et al., 2004; Buch et al., 2007). CNTF 
is a member of the interleukin (IL)-6 cytokine family and 
serves as a ligand for the heterotrimeric receptor complex 
that consists of CNTF receptor alpha (gp103) and leukemia 
inhibitory factor receptor beta (Wen et al., 2012). Intravitreal 
injection of CNTF-secreting neural stem cells in murine Pde-
6brd1 and Pde6brd10 models of retinitis pigmentosa resulted in 
significant photoreceptor protection (Jung et al., 2013). Stem 
cells might also serve for the delivery of glial cell-line-derived 
neurotrophic factor (GDNF), a ligand for the RET/GDNF 
alpha receptor complex, previously shown to slow retinal de-
generation (Andrieu-Soler et al., 2005; Buch et al., 2006). For 
this purpose, researches induced ESCs and neural progenitor 
cells to express and secrete GDNF (Gregory-Evans et al., 2009; 
You et al., 2011). Subsequent intravitreal injection of the GD-
NF-expressing ESCs in a rhodopsin TgN S334ter-4 rat model 
of retinitis pigmentosa had a neuroprotective effect for up to 90 
days (Gregory-Evans et al., 2009). To test the effect of a combi-
nation of different neuroprotective factors on RGC, bone mar-
row-derived MSC were induced to secrete high levels of BDNF, 
GDNF, and vascular endothelial growth factor (VEGF) and 
then injected into rat eyes following optic nerve transection. 
A significant increase in mean RGC survival was noted after 8 
days (Levkovitch-Verbin et al., 2010). 

Overall, current preclinical data support the use of stem 
cells for the delivery of drugs for various ophthalmic dis-
orders. However, it remains unclear whether the modest 
therapeutic efficacy is due to limited activities of the neuro-
trophic factors, suboptimal delivery, a lack of combination of 
co-factors, reduced secretion over time, or the presence of an 
inhibitory agent. 

Transplantation of Stem Cells for 
Immunomodulation
Regulation of the immune response is an important factor in 
the treatment of ophthalmic disorders (Nelson, 1976; Dana 
and Hamrah, 2002; Wakamatsu et al., 2008; Caspi, 2010). Dif-
ferent subsets of stem cells display variable immunomodulato-
ry activities. The most prominent is the suppression of immune 
responses and inflammation by bone marrow-derived MSC. 
Under conditions of ischemia, MSCs induce the expression 
of immune-modulatory proteins,  including Ym1, insulin-like 
growth factor-1 (IGF-1), Th2 related cytokines, galectin-3 
(Gal-3), and class II major histocompatibility complex (MHC) 
antigen (Ohtaki et al., 2008). Culture studies have yielded some 
insights into the mechanisms of action of MSCs cells in neural 
tissues when used for corneal and retinal repair. 

Corneal repair
In one study, rat bone marrow-derived MSCs were added 
to cultures of human corneal epithelial cells stimulated by 
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interferon gamma (IFN-γ) and tumor necrosis factor alpha 
(TNF-α). This led to a reduction in the inflammatory respons-
es via activation and translocation of nuclear factor-κB (NF-
κB) and the transforming growth factor-β1 (TGF-β1) signaling 
pathway (Wen et al., 2014). Other in vitro studies showed that 
MSCs cultivated from the corneal limbus secreted TGF-β1 and 
suppressed T-cell proliferation (Garfias et al., 2012; Bray et al., 
2014). The anti-inflammatory effect of MSCs on the micro-
environment was also demonstrated in alkali-burned eyes, in 
which systemic MSC injection led to a decrease in leukocyte 
infiltration and in local levels of proinflammatory cytokines 
such as interleukin-1α (IL-1α), IL-6, and nitric oxide (Javorkova 
et al., 2014). Moreover MSCs administered to a murine model 
of dry eye syndrome protected the ocular surface by suppress-
ing CD4+ T-cell infiltration and decreasing levels of inflamma-
tory cytokines such as IL-2 and IFN-γ (Lee et al., 2015). 

Retina
The immune-modulatory role of retinal stem cells in the pro-
tection of the RGC was shown in an experimental model of 
glaucoma, wherein a significant reduction in IFN-γ levels in 
the serum and aqueous humor led to a decrease in RGC apop-
tosis (Zhou and Xia, 2011). Although bone marrow-derived 
MSCs can differentiate into cells expressing photoreceptor 
proteins when injected into the subretinal space, their ability to 
differentiate into functionally useful retinal cells is under de-
bate. Furthermore, untreated MSCs in an in vitro rat retina-ex-
plant model seemed to transdifferentiate into microglia1cells 
(Azizi et al., 1998); therefore, non-autologous MSC transplan-
tation might induce an inflammatory reaction. 

Overall, these data suggest that various subsets of stem 
cells may be used as a clinical option in immune modula-
tion. Several ongoing preliminary clinical trials have so far 
demonstrated good tolerability and long-term persistence of 
intravitreally transplanted MSC (Park et al., 2014; Siqueira et 
al., 2015; Weiss et al., 2015).

Transplantation of Stem cells for Tissue
Regeneration
The limited options for tissue rescue in ophthalmic disorders 
have led to intensive work on the regenerative potential of 
stem cells. Stem cells that are differentiated to phenotypes of 
the various ocular layers before transplantation have shown 
a reduced incorporation capacity compared to undifferen-
tiated stem cells (Gu et al., 2007). Therefore, researchers are 
testing two competing approaches in corneal and retinal re-
pair: differentiated stem cell grafts to replace selected injured 
structures, and transplantation of undifferentiated stem cells 
to correct multiple deficits.   

Cornea
The cornea delineates the anterior border of the eye. It 
consists of five distinct layers: epithelium, Bowman’s layer, 
stroma, Descemet’s membrane, and endothelium. Tissue 
stem cells are prevalently located in the limbal palisades of 
Vogt (Grieve et al., 2015), the transition zone between the 
cornea and the surrounding tissue, and are considered to be 
essential for the maintenance of corneal function (Dua and 
Azuara-Blanco, 2000; Ordonez and Girolamo, 2012; Funder-

burgh and Funderburgh, 2016). Limbal stem cell deficiency 
(LSCD) is either a primary condition of aniridia caused 
by PAX6 gene mutations (Dua, 1995; Puangsricharern and 
Tseng, 1995; Li et al., 2015) or a consequence of chemical 
or thermal injury, Stevens-Johnson syndrome, and repeated 
corneal surgery. LSCD is characterized by chronic inflam-
mation, pain, conjunctivalization, subepithelial vasculariza-
tion, and epithelial defects that lead to eventual blindness 
(Dua and Azuara-Blanco, 2000; Shortt et al., 2007). Currently, 
transplantation of limbal epithelial stem cells (LESCs) is the 
only effective means to reverse total LSCD. LESCs may be de-
rived from the conjunctiva of the contralateral healthy eye of 
the patient (autologous conjunctival limbal autograft) or from 
the conjunctiva of a living or deceased related donor (alloge-
neic conjunctival limbal allograft) or unrelated donor (alloge-
neic keratolimbal allograft) (Basti and Rao, 2000; Javadi and 
Baradaran-Rafii, 2009; Liang et al., 2009). The cells are collect-
ed by biopsy, expanded in culture, and grafted into the diseased 
recipient eye (Pellegrini et al., 1997). A newer approach, termed 
simple limbal epithelial transplantation (SLET), involves the 
cultivation of donor LESCs on amniotic membranes which are 
then placed on the surface of the recipient eye. Both techniques 
result in re-epithelialization with comparable success (Sangwan 
et al., 2012; Mittal et al., 2015; Basu et al., 2016; Vazirani et al., 
2016). Their disadvantages include a deficiency of limbal stem 
cells in the healthy donor eye following extraction, immune 
responses after implantation of allogeneic grafts, and infections 
and neoplasms arising as side effects of immunosuppressive 
therapy administered to prevent rejection (Sahu et al., 2009; 
Bakhtiari and Djalilian, 2010; Baradaran-Rafii et al., 2013; Han 
et al., 2015). Therefore, intensive efforts are being invested to 
develop alternative stem cell sources.

Using a preclinical model, one group found that ESCs cul-
tured over superficial corneoscleral slices or seeded on collagen 
IV in the presence of limbal fibroblast-conditioned medium 
differentiated to a corneal epithelium phenotype (Wang et al., 
2005; Ahmad et al., 2007; Notara et al., 2012). Similar find-
ings were reported for ESCs derived from murine or monkey 
embryos engineered to express the transcription factor Pax-
6, which is essential in the development of corneal epithelium 
(Ueno et al., 2007; Kumagai et al., 2010). There is also evidence 
that human ESC layered over injured human cornea express 
CK3 and Pax-6 within three days in vitro (Hanson et al., 2013). 
Numerous attempts to differentiate ESCs into corneal pheno-
types are ongoing, with variable success, but the limitations of 
using this  source of stem cells still need to be overcome (Chan 
et al., 2013; Zhu et al., 2013; Brzeszczynska et al., 2014; Zhang 
et al., 2014; Hertsenberg and Fudnerburgh, 2016).  

In a study of the use of adult stem cells to treat ocular dis-
orders, the transplantation of oral mucosal epithelial cells 
(OMECs) cultured on human amniotic membranes in a rab-
bit LSCD model created epithelium expressing cytokeratins 
characteristic of the cornea and connexin-43 (Nakamura et 
al., 2003; Madhira et al., 2008). OMEC transplants were also 
successfully applied to treat human LSCD, but the resulting 
corneal morphology was substantially different from normal 
(Nakamura et al., 2004; Sugiyama et al., 2014; Haagdorens et 
al., 2016). Others used stem cells derived from hair follicles 
to induce differentiation demarcated by Pax-6- and CK12 in 
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cultures of corneal limbal microenvironments (Blazejewska 
et al., 2009; Yang et al., 2009; Meyer-Blazejewska et al., 2011). 
Because MSCs are pivotal to tissue restructuring, they can be 
induced to differentiate into corneal epithelial cells, as man-
ifested by the expression of CK3 and CK12 in vivo and in vi-
tro (Ye et al., 2006; Ma et al., 2006; Gu et al., 2009; Liu et al., 
2012; Garzon et al., 2014). Differentiation is apparently dic-
tated by the microenvironment, as cells grown on different 
platforms, such as amniotic membranes, three-dimensional 
culture systems, and nanofiber scaffolds, have distinct char-
acteristics (Ma et al., 2006; Zajicova et al., 2010; Katikireddy 
et al., 2014). The extent to which adult tissue stem cells can 
be manipulated to differentiate is still unknown, and their 
potential and the consistency of the differentiation methods 
remains controversial (Harkin et al., 2015). 

In preliminary studies of the use of iPSCs to treat corneal 
defects, researchers showed that iPS-derived differentiated 
cells from mouse embryonic fibroblasts  differentiate into ep-
ithelial progenitor cells, express CK1 and CK12, and  create 
polar-stratified epithelial layers on denuded mouse corneas in 
vitro (Okita et al., 2007; Yoshida et al., 2011; Yu et al., 2013). 
Likewise, iPSCs derived from human dermal fibroblasts and 
LESCs express CK3, CK12, and Pax-6 (Hayashi et al., 2012) 
and integrate with denuded corneas when subjected to condi-
tions mimicking the native LESC niche (Sareen et al., 2014).  

Contact lenses offer a minimally invasive, long-lasting, 
cost-effective means of delivering corneal epithelial cells 
for the treatment of LSCD. In this manner, suture-related 
complications can be avoided. Lenses coated with polymers 
containing a high percentage of acid functional groups were 
found to promote corneal epithelial cell adhesion and pro-
liferation and transfer and retention of stem cell in a rabbit 
model of corneal injury.  Further studies are needed to deter-
mine if the lenses can be used as a substrate for the culture 
and transfer of limbal cells in the treatment of LSCD (Brown, 
2014; Bobba 2016). 

Retina
Owing to the intricate structure and interconnections of the 
retinal layers, repair of injury and prevention of degenera-
tion are particularly difficult. Each retinal disease warrants 
a different reconstructive therapy according to the distinct 
ocular layer affected. For example, AMD is characterized by 
damage to the photoreceptors and RPE; retinitis pigmentosa 
is associated with photoreceptor loss; and glaucoma may re-
sult in the loss of RGCs and their axons (Alonso-Alonso and 
Srivastava, 2015). 

The non-neuronal supportive RPE is composed of mel-
anin-containing cells. It plays an important role in main-
taining the photoreceptors and reducing backscattering of 
incoming light. Photoreceptors are specialized neurons that 
convert light into electrical signals which are integrated by 
the RGC and transmitted to relay nuclei. ESCs, adult stem 
cells, and iPSCs are all able to differentiate into RPE cells, 
photoreceptors, and RGCs (Osakada et al., 2010; Boucherie 
et al., 2011; Goldenberg-Cohen et al., 2011, 2014; Ong and 
da Cruz, 2012). 

The implantation of photoreceptors derived from ESCs 
into the subretinal space has been evaluated in various ani-

mal models of retinal disease. One study was conducted in 
Crx-deficient mice, a model of Leber’s congenital amaurosis, 
in which the photoreceptors are present but lack the expres-
sion of phototransduction genes (Lamba et al., 2009). Trans-
planted human ESC-derived photoreceptors were able to 
function and restored responses to light. Likewise, subretinal 
grafts of human ESCs-differentiated cells transplanted into a 
rat model of retinal degeneration and an Elov14 mouse mod-
el of Stargardt disease survived for 220 days and sustained 
visual function and photoreceptor integrity without teratoma 
formation (Lu et al., 2009). These findings were supported by 
studies using transplants of human ESC-derived RPE cells 
in the same models, which showed long-term integration, 
rescue of photoreceptors from apoptosis, and reduced glial 
stress, with preservation of the responses to light stimuli (Zhu 
et al., 2013; Plaza Reyes et al., 2016; Riera et al., 2016). 

More recently, the clinical utility of human ESC-derived 
retinal transplants was evaluated in primate models of retinal 
degeneration. The models were created by retinal injection of 
cobalt chloride, a hypoxia-mimicking agent that induces the 
expression of hypoxia-inducible factor-1α and irradiation 
at 577 nm to induce coagulation (Shirai et al., 2016). The 
retinal grafts survived, matured, and integrated to a certain 
degree with host bipolar cells. 

Preclinical studies suggest that adult stem cells might also 
be used to treat retinal injury without induced differentia-
tion in culture. Photoreceptor cells derived from adult ret-
inal stem cells that were transplanted into a Pde6brd1 model 
of retinitis pigmentosa showed promising incorporation 
with improved responses to light (Li et al., 2013). Accord-
ingly, human Müller glia, which display some stem cell and 
progenitor cell characteristics, were induced to differentiate 
into RGCs by stimulation with fibroblast growth factor-2 
and Notch inhibitors  and then transplanted  into rat retina 
depleted of native RGCs by N-methyl-D-aspartate (NMDA) 
(Singhal et al., 2012). A significant recovery of RGC func-
tion, measured by electroretinography, was noted. Others 
found that pretransplantation priming alone may also be suf-
ficient for progenitor cells. Human mobilized PBMCs pulsed 
with retina in vitro for several days migrated from the sub-
retinal space and expressed the human photoreceptor mark-
er rhodopsin (Zhang et al., 2013; Peng et al., 2014). Indeed, 
some subsets of stem cells may not even require priming. 
In one study, retinal stem cells isolated from newborn mice 
and labeled with the red lipophilic fluorescent dye (PKH26) 
or from green fluorescent protein transgenic mice were 
implanted intravitreally or subretinally into adult wild-type 
transgenic mice with slow or rapid retinal degeneration. 
The cells migrated to the ganglion cell layer and expressed 
ganglion cell or glial markers (Canola et al., 2007). Cell 
incorporation was more pronounced in the late disease stag-
es, possibly owing to the greater intensity of injury signals 
emanating from the degenerating tissue. Only a minority 
of cells expressed photoreceptor markers, suggesting that 
ex vivo enhancement may be necessary for to the differen-
tiation of retinal stem cells into photoreceptors. In another 
study, subset of small-sized bone marrow-derived stem cells 
(BMSC) injected intravitreally and intravenously into an an-
imal model of optic nerve crush differentiated into RGCs in         
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ganglion layer of the ischemic retina (Goldenberg-Cohen et 
al., 2011). Co-administration of neuronal growth factors en-
hanced the neuroglial differentiation of the BMSC, primarily 
through their effect on the stem cells rather than a direct 
neuroprotective effect (Goldenberg-Cohen et al., 2014). 

Similar results were reported for iPSCs in preclinical mod-
els of retinal dystrophy, retinitis pigmentosa, and AMD. For 
example, photoreceptor precursors derived from murine iP-
SCs differentiated to express Crx, recoverin, and rhodopsin. 
When implanted subretinally into rhodopsin-null mice, they 
integrated with the retina and restored retinal function, as 
demonstrated by electroretinography and c-Fos expression 
in response to light (Tucker et al., 2011). Likewise, subretinal 
injection of human iPSC-derived RPE cells in the Rpe65rd12 
mouse model of retinitis pigmentosa showed co-localization 
with the native host RPE cells and long-term survival, with-
out tumor formation. Electroretinography revealed sustained 
improvement in visual function throughout the lifetime of 
the mouse (Li et al., 2012). Other studies showed that human 
iPSC-derived RPE cells maintained visual function and photo-
receptor integrity in a dystrophic rat model (Carr et al., 2009) 
and were associated with negligible tumor formation following 
injection into nude mice and rats (Kanemura et al., 2014). It is 
possible that iPSC technology has reached the stage of clinical 
implementation, with the use of human stem cell-derived RPE 
cell implantation to treat patients with AMD and Stargardt 
disease. This method offers hope of protracted graft survival 
and improved visual acuity and quality of life with minimal 
adverse effects (Schwartz et al., 2012, 2015; Song et al., 2015). 

Future Directions
This review highlights the tremendous potential of stem cell 
transplantation for the repair and regeneration of ocular 
structures in a variety of ophthalmic disorders, primarily 
of the cornea and retina. Advances are being made in novel 
technologies for the differentiation of embryonic, adult, and 
induced pluripotent cells to various phenotypes, and data on 
the manner in which injury signals  direct stem cell differ-
entiation are rapidly accumulating. In the cornea, stem cells 
offer promise as the optimal method of wound repair, and 
contact lenses offer many advantages as a vehicle for delivery 
of stem cells to the cornea for the treatment of LSCD. 

In the retina, there are many obstacles still to overcome. 
Injury or damage appears to be essential for eliciting the 
migration and incorporation of stem cells, and the nature of 
the injury usually affects the location of the engrafted cells 
and their phenotype. However, in studies of a mouse model 
of retinitis pigmentosa with rapid degeneration (rd1), only a 
few cells differentiated into photoreceptors or incorporated 
in the outer nuclear layer. Thus, further studies of the in-
corporation, migration, and differentiation of stem cells in 
the retina are still needed. While the photoreceptors and the 
RPE are affected in degenerative retinal disease, in models 
of optic nerve damage, loss of the RGC was noted but other 
layers of the sensory retina, as well as the external nonsenso-
ry RPE layer, remained intact.  

Neuronal differentiation is hard to induce, as the dominant 
astrocyte differentiation overcomes neuronal differentiation. 
Neurotrophic factors, either external or internally secreted 

by the MSCs may enhance their differentiation into neuronal 
lineages. 

Locating the donor cells, especially long after trans-
plantation, is technically difficult. Although the retina is 
considered an immunologically privileged site, researchers 
have reported GFP rejection in rabbits after subretinal ad-
ministration. Furthermore, there is a need to overcome the 
labeling difficulties in PKH26 techniques and the quenching 
effect of GFP labeled cells. 

One of the major drawbacks of neural models of regener-
ation is the difficulty in measuring the effect of the neuronal 
regeneration and repair on retinal functionality. It depends on 
the correct path-finding and proper preservation of the neu-
ronal network/topographic innervations of the retina. In view 
of the limited success in applying protective and neurotrophic 
factors, stem cells will more likely be applied for reconstruction 
and regenerative purposes, which appear to be feasible and 
achievable in experimental models. Although preserving and/
or renewing visual perception is within the realm of possibility, 
we still have a long way to go before a newly-generated retinal 
ganglion cell will transduce axonal signals to the brain.   
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