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ABSTRACT

The 3D chromatin structure modeling by chromatin
interactions derived from Hi-C experiments is
significantly challenged by the intrinsic sequencing
biases in these experiments. Conventional modeling
methods only focus on the bias among different
chromatin regions within the same experiment but
neglect the bias arising from different experimental
sequencing depth. We now show that the regional
interaction bias is tightly coupled with the
sequencing depth, and we further identify a chroma-
tin structure parameter as the inherent characteris-
tics of Hi-C derived data for chromatin regions. Then
we present an approach for chromatin structure
prediction capable of relaxing both kinds of
sequencing biases by using this identified param-
eter. This method is validated by intra and inter
cell-line comparisons among various chromatin
regions for four human cell-lines (K562, GM12878,
IMR90 and H1hESC), which shows that the
openness of chromatin region is well correlated
with chromatin function. This method has been
executed by an automatic pipeline (AutoChrom3D)
and thus can be conveniently used.

INTRODUCTION

The increasing applications of chromosome conformation
capture-based techniques (1–4), especially Hi-C (5) and its
derivatives (6–9), have prompted the development of
theoretical methods for reconstructing 3D chromatin
structures. Several chromatin 3D modeling methods
(5,6,8,10–14) have been raised based on the physical

theory and/or optimization theory, which validates the
link between chromatin 3D structures and genomic func-
tions (15). In the original Hi-C article, Liebeman-Aiden
and colleagues (5) adopted polymer model together with
Monte Carlo simulation to reveal the potential principle
of chromatin folding. Various Monte Carlo procedures
were further developed to simulate chromatin 3D struc-
tures by fitting Hi-C data (10,13,16). Alternatively, Duan
et al. (6) proposed a constrained optimization strategy to
reconstruct chromatin 3D structure of budding yeast,
which was then applied to fission yeast with some modifi-
cations (14). Kalhor et al. (8) developed another kind of
optimization-based approach to predict the population of
chromatin structures. More recently, a Bayesian frame-
work was raised to infer the chromatin spatial organiza-
tion and evaluate the structural variations (12).
However, the wide use of these methods is limited by the

sequencing biases of Hi-C derived data. First, it is pointed
out that the raw Hi-C chromatin interactions have system-
atic biases resulted from experiment, such as restriction
enzymes, GC content and sequence uniqueness (17). The
current bias reduction and 3D modeling schemes only
focus on the sequencing bias within the same experiment
caused by differences in enzyme efficiency and sequence
coverage for different chromatin regions (5,8,17–19) but
neglect the bias arising from another important factor,
experimental sequencing depth. Our following work will
show that experimental sequencing depth can significantly
change the distribution of the observed chromatin inter-
action frequency, which is tightly coupled with the
recognized bias for chromatin regions. Therefore, the
chromatin 3D structures modeled through conventional
methods cannot be reasonably compared among different
experiments. Second, a lot of modeling approaches are
performed at megabase resolution because it is difficult
to reduce systematic bias at higher resolution. It is
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known that functional structural rearrangement often
occur in genomic sizes ranging from hundreds of kilobases
to megabases (20). Thus, the low-resolution modeling can
only provide information on global chromatin structure
but prevent its application for investigating 3D structure
of functional chromatin regions.
These concerns stimulated our interest to propose a

novel strategy to reduce sequencing-dependent biases by
normalizing Hi-C data with the inherent characteristics of
chromatin interactions. We identified a sequencing-bias-
relaxed parameter, which can represent regional chroma-
tin structure at multi-scale genomic resolution, and used it
to establish an approach for chromatin 3D modeling. As a
consequence, this method not only allows the comparisons
among chromatin structures derived from different chro-
matin regions and experiments but also can be automat-
ically executed at high resolution. To our knowledge, this
is the first approach devoted to automatic chromatin 3D
modeling for structural comparison. Considering that
most researchers focus their studies on specific chromatin
regions, the automatic pipeline (AutoChrom3D) in this
article was used to model chromatin regions with
genomic size ranging from hundreds of kilobases to
megabases at 8 kb resolution. However, the structure of
chromatin region with larger size can also be modeled at
lower resolution by using this method.

MATERIALS AND METHODS

Data sources and processing

The Hi-C derived chromatin interactions for human cell
lines K562 and GM12878 were generated by Liebeman-
Aiden et al. (5) and Kalhor et al., respectively (8), and the
human cell lines IMR90 and H1hESC were generated by
Dixon et al. (9). The ChIP-Seq libraries for cell line
IMR90 were generated by Hawkins et al. (21), and other
RNA-Seq, ChIP-Seq and DNase-Seq libraries were down-
loaded from ENCODE (22). Hi-C raw data processing
refers to the previous pipeline (8), and main steps are
briefly introduced here. It is known that the pair-end
sequencing can surpass the ligation junction in some
reads (8). To improve the mappability of this part of
reads, all reads are scanned to identify the existence of
potential ligation junctions for the expected sequence ‘A
AGCTAGCTT’ from HindIII libraries, and then the
junction and all bases after the 30 of the junction are
removed. The kept reads are then aligned to the reference
human genome hg19 by using bwa-0.6.1-r104 with default
settings. Only the uniquely mapped paired-reads (mapping
quality> 30 for both reads) are selected for the next pro-
cessing. The pairs that originated from PCR duplication
are removed, and the pairs without enzyme restriction site
after the downstream 500 bp is also removed to exclude
incomplete exonuclease action. Finally, all pairs aligned
<10 000 bp are considered as self-ligation and further
eliminated from data set. The detailed information on
the read number of each library can be found in
Supplementary Table S1.

Chromatin representation

Chromatin is represented by the bead-on-a-string model,
in which a bead consists of one or several consecutive
fragments digested by restriction enzyme (HindIII). The
chromatin is represented as N ¼ ceilðLHÞ consecutive beads,
where L is the genomic length of investigated chromatin
region and H is the chromatin resolution. Beads are care-
fully fitted to the required resolution by considering the
fragment length distribution. The interaction frequency
map is defined as an N�Nmatrix, ðfijÞN�N, and the
entry fij is the observed interaction frequency between
beads i and j. Without specific explanation, the following
calculations are based on the selected chromatin regions.

Structure parameter determination

At the given resolution H and genomic distance d, chro-
matin interaction frequencies are averaged by
fðdÞ ¼ 1

n

P
i�jj j¼d fij, where i and j represent ith and jth

beads in the chromatin region respectively, and n is the
total number of bead pairs satisfying i� j

�� �� ¼ d. The
exponent parameter � is calculated as the derivative of
log10

1
fðdÞ against log10 d. Only bead pairs within d ¼ 50

are used in our calculation because log10 fðdÞ fluctuates
greatly outside this genomic distance for many functional
regions. The structure compaction of a given chromatin
region is defined as the normalized exponent parameter:

� ¼

ffiffiffiffiffi
�r
�c

r

where �r and �c are the derivatives calculated from chro-
matin region and whole genome, respectively. Chromatin
interaction coverage is derived from chromatin structure
compaction with modifications:

cðdÞ ¼
1

n

X
i�jj j¼d

signðfijÞ

signðfijÞ ¼ 1, if fij > 0

signðfijÞ ¼ 0, if fij ¼ 0

�

where coverage cðdÞ varies from 0 to 1. Only chromatin
regions with coverage higher than 5% were used in data
analysis and structure modeling in this work.

Data evaluation and filtering

The probability of observing the interaction frequency fij
for bead pair ði,jÞ that satisfies i� j

�� �� ¼ d is modeled using
the Poisson model, where the parameter �d can be
estimated from the interaction set ffijg i�jj j¼d by

maximum likelihood. We treat every ffijg i�jj j¼d with

specific genomic distance d as an independent Poisson
model to reduce the impact of genomic distance on the
observed interaction frequency. Then the interaction fre-
quency fij between beads i and j is evaluated by a P-value,
which is used to filter unreliable interactions. These
selected chromatin interactions are used in subsequent
calculations.
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Interaction strength recalculation

The range of interaction frequencies at high resolution is
limited, but the interactions with the same frequency can
be surrounded by totally different neighbor interactions
(Supplementary Figure S1). The square window is used
to calculate the density of neighbor interactions as follow-
ing equation: tij ¼

1
W2

P
m� ij j �W
n� j
�� �� �W

signðfmnÞ, where

ðm,nÞ 6¼ ði,jÞ, tij is the interaction density of the square
window centered at i,jð Þ, and W is the window size (set
to 5 in this work). Parameter tkij denotes the random

variable for the set ftijgfij¼k, and only interaction sets for

k � 1 are used in next calculations. The interaction
strength Fk

ij is recalculated through linear transformation:

Fk
ij ¼ k+�

k t
k
ij, where � is a parameter, which is proportional

to the bead radius. The standard deviation of Fk
ij decreases

with increasing k to narrow the change in stronger inter-
action frequency k. Then every interaction strength Fij can
be recalculated by using the aforementioned calculation
for existing k. To further eliminate outliers, the top 5%
calibrated interaction frequencies are set to the maximum
threshold of the rest ones, whereas the bottom 5%
interaction frequencies are removed.

Spatial distance conversion and normalization

The flexibility of chromatin region is considered by
following the method proposed by Kalhor et al. (8). The
radius Rreg of the region is defined in the following

formula according to geometry: Rreg ¼
O�Lreg

Lnuc

� �1
3

�Rnuc,

where Lreg and Lnuc are the genomic lengths of the
modeled region and the whole genome, respectively, and
the nuclear radius Rnuc is set to 3.5mm based on prior
knowledge (23). The nuclear occupancy O varies from
Omin to Omax, defining the regional flexibility range from

Dmin
reg ¼ 2 �

Omin�Lreg

Lnuc

� �1
3

�Rnuc to Dmax
reg ¼ 2 �

Omax�Lreg

Lnuc

� �1
3

�Rnuc.

Correspondingly, the diameter of flexible bead ranges

from Dmin
bead ¼ 2 � Omin�H

Lnuc

� �1
3

�Rnuc to Dmax
bead ¼ 2 � Omax�H

Lnuc

� �1
3

�Rnuc

where H is the bead resolution. The minimum and
maximum values of nuclear occupancy O are set to be
Omin ¼ 0:1 and Omax ¼ 0:4 by following the published
data (24). Different values of nuclear occupancy are
used to reconstruct chromatin structures to evaluate
their potential impact (Supplementary Table S2). The
maximum value of nuclear occupancy Omax does not
change the modeling a lot, whereas the increase of
minimum nuclear occupancy Omin makes the predicted
structures bigger in overall. However, there is no signifi-
cant change of the relative structural openness among dif-
ferent parameter values as shown by Pearson correlation
coefficient, indicating that the selection of these parameter
would not change the conclusions.

To normalize the disparate data sets into unified input
to chromatin structure predictor, the piecewise linear
function based on the characteristics of chromatin
interaction are used in the spatial distance conversion.

It is known that interaction frequency decreases when
genomic distance increases (5,11). Our calculation shows
that in all experimental data sets, the genomic distances
can be generally separated into three parts according to
the decrease patterns (Supplementary Figure S2).
Although the genomic sizes 160 kb and 1.2Mb are just
simple estimates in this separation, this result is well con-
sistent with the hierarchical organization of chromatin
structures, in which genomic size 1.2Mb coincides with
the size of topology-associated domains and 160 kb coin-
cides with the size of sub-domains (9,15). The piecewise
function is used to distinguish these parts in spatial
distance conversion. Together with the aforementioned
chromatin structure compaction � and region radius, the
interaction strength Fij is converted to spatial distance by
using two linear transformations determined by three
points: ðFmax, DminÞ, ðFq, DqÞ and ðFmin, DmaxÞ. The par-
ameters Fmax and Fmin represent the maximum and
minimum Fij (Fij > 0), respectively, and Fq is the corres-
ponding quantile calculated from data set (Supplementary
Figure S2). Dmin, Dq and Dmax are set to Dmin

bead, 2D
min
bead and

� �Dmin
reg , respectively (Supplementary Figure S3). The

spatial distance Dij for interaction ði,jÞ is calculated by
using the following equation:

Dij ¼
� Dq�Dmin

Fmax�Fq Fij+
Dq�Fmax�Dmin�Fq

Fmax�Fq , if Fq < Fij � Fmax

� Dmax�Dq

Fq�Fmin Fij+
Dmax�Fq�Dq�Fmin

Fq�Fmin , if Fmin � Fij � Fq

(

The 3D chromatin structure prediction and measurement

After the spatial distance conversion, the Cartesian coord-
inates ðP1, � � � ,PNÞ of the investigated chromatin region
are solved by a non-linear constrained optimization:

ðP1, � � � ,PNÞ ¼ argmin
X
i5 j

ð Pi � Pj

�� ���DijÞ
2

D2
ij

Dmin
bead � Pi � Pi+1k k � Dmax

bead

Pi � Pj

�� �� � Dmin
bead, i� j

�� �� > 1

Pi � ð0,0,0Þ
�� �� � Rnuc

8><
>:

where Pi � Pj

�� �� denotes the Euclidian distance between
beads i and j.
Radius of gyration is used to measure the compaction

of chromatin structure: R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 Pi � P
�� ��2q

, where

ðP1, � � � ,PNÞ denotes the Cartesian coordinates, P is the
geometric center, and smaller radius of gyration R indi-
cates denser chromatin structure.

Sequencing data normalization

To conduct reasonable inter cell-line comparisons for
epigenomic signals, the epigenomic signals from different
experiments are normalized by following a previous
procedure with some modifications (25). To be consistent
with our region size, the 500 kb window is used to scan the
genome to calculate its average signal strength with 5 kb
sliding in each step. The corresponding background
ðBÞ and foreground ðFÞ quantiles are used to normalize
the experimental data set by using the equation
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NDðxÞ ¼ ðDðxÞ � BÞ=ðF� BÞ, where x is the regional
position, and DðxÞ is the averaged signal density of chro-
matin region from original data set by eliminating
no-signal positions. To find the optimal background ðBÞ
and foreground ðFÞ, the original signal density DðxÞ is
plotted in an ascent order, and the most stably increased
part is chosen to perform normalization (Supplementary
Figure S4). The raw PolyA+RNA-Seq signals from whole
cell are used for normalization and analysis in the same
way as epigenomic signals. In this work, the raw RNA-Seq
rather than annotated genes are used, as chromatin 3D
structures are more significantly correlated to whole
RNA expression.

Region selection and comparison

For intra cell-line comparison, the active and inactive
regions with 800 kb genomic size are selected by using
DNaseI hypersensitivity sites (DHS) as an indicator (26).
These selected active regions show consistently stronger
DHS signals than inactive regions in all cell lines
(Supplementary Figure S5). Pearson correlation is
performed to investigate the relationship between radius
of gyration and epigenomic signal for every cell line.
For every two cell-line comparison, 20 chromatin

regions with considerable structural differences are
selected based on the criterion that the value of chromatin
structure compaction in one cell line is significantly larger
than that in another cell line (Supplementary Figure S6).
Finally, 120 chromatin regions are randomly selected to
perform inter cell-line comparison for all cell-line pairs.
The 500 kb genomic size domains are selected here
because most epigenetic domains are smaller than
�200 kb in genomic size (20), which makes the inter
cell-line comparison a little more sensitive to genomic
size than intra cell-line comparison. However, we also per-
formed inter cell-line comparisons on 800 kb domains, and
the results are largely consistent (see ‘Results and
Discussion’ section). In the two cell-line comparison, if
the regional epigenomic signal and radius of gyration
are both larger or smaller in one cell line than that in
another cell line, this region is considered to be positively
correlated one. Otherwise, they are considered to be
negatively correlated one. The numbers of positively
correlated regions (Np) and negatively correlated
regions (Nn) are then used to calculate the significance
by s ¼ ðNp �NnÞ=ðNp+NnÞ, where s varies from �1 to 1.

RESULTS AND DISCUSSION

Dependence of regional interaction bias on sequencing
depth in Hi-C derived data

Four human cell lines with considerably different Hi-C
sequencing depths K562 (5), GM12878 (8), IMR90 and
H1hESC (9) were selected to explore the impact of
sequencing depth on regional bias, based on the finding
that the topological domains are stable among different
cell lines in mammalian species (9). To conduct a more
strict comparison by eliminating potential structural
variations among different cell lines, available biological
replicates in cell lines IMR90 and H1hESC, denoted as

IMR90-R1, IMR90-R2, H1hESC-R1 and H1hESC-R2,
respectively, were used in the comparison. Because the
sequencing depths of replicates in the cell line K562 is
extremely low, the biological replicates were merged for
analysis in this experiment. In the cell line GM12878, there
are only technical but not biological replicates. However,
there exist two independent Hi-C derived experiments on
this cell line from a previous study (8). The two experi-
ments were performed by two related but different
technologies: classical Hi-C and tethered Hi-C (called
TCC). It is reported that TCC can reduce noises on
Hi-C, especially the noises on the inter-chromosomal
interactions (8). Though different technologies can
generate potential sequencing differences, it is not likely
that the noise-reduction in TCC will significantly influence
our analysis and modeling as only intra-chromosomal
interactions are used in our analysis on selected
chromatin regions. Without specificity, GM12878-T and
GM12878-H are used to represent the experiments with
higher and lower sequencing depths, respectively, in this
work.

First, typical chromatin regions were randomly selected
in four cell lines to perform interaction frequency com-
parison by using DHS as indicator (Supplementary
Table S3). Though the detailed DHS distribution can
change in different cell lines, the statistical test shows
that the selected DHS-rich chromatin regions exhibit sig-
nificantly stronger signals than DHS-poor chromatin
regions in all four cell lines (Supplementary Figure S5).
These regions were further identified as either active or
inactive by using epigenomic signals because the genome
has a tendency to cluster into active and inactive regions
(20). Figure 1a illustrates that the sequencing bias for
chromatin regions is tightly coupled with that from
sequencing depth. In the cell line H1hESC, there is no
statistical difference in interaction frequency between
active and inactive regions in the lower sequencing-depth
biological replicate, but significant difference is observed
in the higher sequencing-depth biological replicate. As for
the cell line IMR90, it is the higher sequencing-depth
biological replicate showing no significant interaction fre-
quency change between two sets of regions, whereas lower
sequencing-depth replicate shows significant difference.
The exactly same situation to IMR90 is observed in the
two independent experiments on the same cell line
GM12878. The reversal trend occurs in the cell line
H1hESC, with the interaction frequency of inactive
regions being significantly higher than the frequency of
active regions (Figure 1a).

We next partitioned whole genome into chromatin
regions with 800 kb for each one, which was used to
evaluate the impact of sequencing depth on interaction fre-
quency in a genome-wide scale. To reduce the impact of
chromatin structural stochasticity, only the chromatin
regions with enough interaction coverage were considered
to be stable ones since these regions generally show higher
percentage of reproducible chromatin interactions
(Supplementary Figure S7). Finally, 1923 regions were
selected for subsequent analysis. Then all partitioned chro-
matin regions were sorted in an ascent/descent order
according to their averaged interaction frequencies, and
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Spearman correlation was used to define to what extent the
position order of chromatin region can change when
sequencing depth changes (Table 1). The low correlation,
especially between cell lines, indicates that chromatin inter-
action frequencies undergo dramatic position changes
among different experiments when sequencing depth
changes, consistent with the comparison of active and
inactive regions mentioned above. These results together

provide the evidence of the dependence of regional inter-
action bias on sequencing depth.

Sequencing-bias-relaxed parameter for chromatin
structure modeling

The difficulty of normalizing Hi-C derived data sets from
disparate regions and experiments lies in selecting an

Figure 1. Statistical analysis of chromatin structure parameter on different regional and experimental Hi-C data sets (*P< 0.05, **P< 0.01,
***P< 0.001). (a) Statistics of the distribution of averaged interaction frequency in different regional and experimental data sets. In all, 31 active
and 31 inactive regions were randomly selected in seven Hi-C experiments from four human cell lines K562, GM12878, IMR90 and H1hESC, with
the genomic size of 800 kb. The relative values between active and inactive regions change significantly in different experiments, showing that the
sequencing depth greatly affects the relative values of averaged interaction frequency between active and inactive regions. (b) Statistics of the
distribution of regional exponent parameter. The exponent parameter can well distinguish the structure compaction of active regions from
inactive regions. However, the absolute values of this parameter change among different experiments. (c) Box plot of the distribution of the
normalized exponent parameter. Except for the higher value in active regions compared with inactive regions, the normalized parameter
smoothes the original difference in Figure 1b, which makes chromatin region compaction comparable among different experiments.
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inherent chromatin structure parameter independent of
sequencing biases. To address this challenge, we
analyzed the local dependence between interaction fre-
quency and genomic distance. Previous genome-wide
analyses (5,7,11) on Hi-C data have shown that the chro-
matin interaction frequency is inversely proportional to
genomic distance by following the power–law relation-
ship, where the exponent parameter represents the global
chromosome structure property. Here, we further showed
that the power–law relationship remains consistent for dif-
ferent regional and experimental data sets by reanalyzing
the aforementioned chromatin regions (Supplementary
Table S3). As shown in Figure 1b, the regional exponent
parameter can well distinguish active from inactive regions
in every independent experiment. We performed
Spearman correlation analysis again on this regional
exponent parameter as we did on interaction frequency.
Our results show that this parameter is much more stable
in position order under different experimental sequencing
depth (Table 1). For the biological replicates in the same
cell line, the regional exponent correlations significantly
improve from 0.85 to 0.9 for H1hESC and 0.9 to 0.96
for IMR90, compared with the interaction frequency cor-
relation. More dramatic changes are observed in the inter
cell-line comparisons. Most inter cell-line correlations
from interaction frequency are below 0.4, even smaller
than 0.2 in some cases, whereas the correlations from
regional exponent are above 0.5 in almost all cases. All
these results imply that this regional exponent can be a
potential candidate to represent inherent structural char-
acteristics of Hi-C derived data.
Though the regional exponent order largely remains, its

absolute value still undergoes significant change when
sequencing depth changes (Figure 1b). To make the par-
ameter comparable among different experimental data
sets, this regional exponent is normalized by the chromo-
somal exponent determined by experiment. Our calcula-
tion shows that this normalized parameter is comparable
among different experiments for both active and inactive
regions, with active regions exhibiting statistically higher
values (Figure 1c). Altogether, our results argue that this
normalized exponent is a sequencing-bias-relaxed param-
eter of chromatin structure (Supplementary Figure S8).

Pipeline of AutoChrom3D

AutoChrom3D uses this derived structure parameter to
normalize chromatin interactions with the attempt of

chromatin structure comparison. First, the local structure
compaction parameter of chromatin region is computed
by using raw data. To reduce the negative effects of noisy
and weak interactions on structure prediction, the Poisson
model is used to evaluate the credibility of chromatin
interactions, and only those interactions that represent
most stable structure patterns are selected. Considering
that most interaction frequencies are extremely low in
some data sets, the square window is used to calibrate
interaction strength by taking neighbor interactions into
consideration (Supplementary Figure S1). The calibrated
interaction strength is then transformed to spatial distance
by using the structure compaction parameter to perform
normalization. Finally, the normalized spatial distances
are used to predict chromatin structure via a nonlinear
constrained optimizer (Figure 2). As the chromatin struc-
tures reconstructed by our approach capture the structural
characteristics by relaxing the coupled sequencing biases,
they can be used for both intra and inter cell-line struc-
tural comparison.

Method validation and application

To verify the applicability of AutoChrom3D, the four
human cell lines mentioned earlier in the text, K562,
GM12878, IMR90 and H1hESC were selected for subse-
quent statistical analysis. Different biological replicates in
the same cell line were merged, and GM12878-T was used
in structural analysis. Radius of gyration was used to
measure the compaction of modeled chromatin structure.
To investigate the relationship between chromatin 3D
structure and epigenetic state, seven epigenetic markers
available for all cell lines, H3K4me1, H3K4me3,
H3K9ac, H3K27me3, H3K9me3, H3K36me3 and
K3K79me2, were used to represent different chromatin
states and functions. In these epigenetic markers,
H3K4me1 and H3K4me3 represent the enhancer and
promoter signals, respectively, and H3K9ac generally
occur concomitantly with these two signals, reflecting
that the enhancer and promoter are active or not.
H3K27me3 is the polycomb signal, H3K9me3 is a hetero-
chromatin signal, and H3K36me3 and H3K79me2 are two
markers to reflect transcription activity (27,28). Two add-
itional signals are included in the analysis: GC-content
and RNA-Seq, in which GC-content represents the
overall gene density of chromatin region and RNA-Seq
directly shows the transcription level.

Table 1. Statistical analysis of the influence of sequencing depth on averaged interaction frequency and regional exponent parameter

H1hESC-R1 H1hESC-R2 IMR90-R1 IMR90-R2 GM12878-T GM12878-H K562

H1hESC-R1 0.85, 0.9(*) 0.56, 0.78(***) 0.57, 0.79(***) 0.87, 0.67(***) 0.4, 0.52(*) 0.31, 0.48(**)
H1hESC-R2 0.85, 0.9(*) 0.53, 0.85(***) 0.38, 0.85(***) 0.7, 0.71 0.05, 0.55(***) 0.13, 0.51(***)
IMR90-R1 0.56, 0.78(***) 0.53, 0.85(***) 0.9, 0.96(***) 0.51, 0.7(**) 0.27, 0.57(***) 0.3, 0.5(**)
IMR90-R2 0.57, 0.79(***) 0.38, 0.85(***) 0.9, 0.96(***) 0.58, 0.7(**) 0.56, 0.56 0.38, 0.5(*)
GM12878-T 0.87, 0.67(***) 0.7, 0.71 0.51, 0.7(**) 0.58, 0.7(**) 0.56, 0.67(*) 0.35, 0.51(**)
GM12878-H 0.4, 0.52(*) 0.05, 0.55(***) 0.27, 0.57(***) 0.56, 0.56 0.56, 0.67(*) 0.41, 0.42
K562 0.31, 0.48(**) 0.13, 0.51(***) 0.3, 0.5(**) 0.38, 0.5(*) 0.35, 0.51(**) 0.41, 0.42

The first number is the Spearman correlation coefficient between two Hi-C derived experiments calculated from all 1923 chromatin regions for
averaged interaction frequency, and the second number is for regional exponent parameter. The correlation coefficients from 23 individual chromo-
somes are used to test the difference between the first and the second numbers (*P< 0.05, **P< 0.01, ***P< 0.001).
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We first applied AutoChrom3D to perform intra
cell-line structural analysis. Fluorescence in situ hybridiza-
tion (FISH) experiment (29) has shown that the active
regions are more open than the inactive regions by using
chromatin areas ranged from several megabases to tens of
megabases in human primary female fibroblast, which was
verified by several other cell lines (30). We grouped these
active and inactive FISH regions into 1Mb chromatin
regions (Supplementary Table S4) and reconstructed 3D
chromatin structures for each one. Figure 3a illustrates the
structures predicted by AutoChrom3D for one region
from these FISH areas. The two structures well capture
the structural difference between the two regions, with the
radius of gyration of the active region significantly larger
than that of the inactive region (0.176 mm versus
0.138mm). Calculations from other cell lines show the
similar results (Supplementary Figure S9). Our statistical
analysis on these FISH regions shows that the active
regions generally exhibit higher spatial distance than
inactive regions in four cell lines (Figure 3b and
Supplementary Figure S10), consistent with previous
FISH experiments (29,30).

To further compare the active and inactive chromatin
regions in 3D structure, the aforementioned active and
inactive chromatin regions (Supplementary Table S3)
were used for 3D structure modeling and comparison. It
can be seen that the 3D structures of active chromatin
regions are statistically more open than those of inactive
regions (Figure 3c). To investigate the relationship
between chromatin structure and state, Pearson correl-
ation between radius of gyration and every selected chro-
matin state marker was calculated on these selected
chromatin regions for all cell lines. As shown in
Figure 3d, GC-content is positively correlated to radius
of gyration, implying that gene-dense chromatin regions
are generally more open in 3D space than gene-poor
regions. Correspondingly, the active signals (H3K4me1,

H3K4me3 and H3K9ac), the transcription signals
(H3K36me3, H3K79me2 and RNA-Seq) and even the
polycomb signal H3K27me3 also show strong positive
correlations to radius of gyration. It is not surprising to
observe the positive correlation for H3K27me3, as
previous studies have already shown that H3K27me3 is
closely associated with high CpG density (28,31).
Contrary to those signals, heterochromatin signal
H3K9me3 is negatively correlated to radius of gyration
in overall, with the exceptions indicating the complicated
situations in biological system.
We next applied AutoChrom3D to perform inter cell-

line structural analysis. To our knowledge, a previous 5C
work (32) on human functional domain a-Globin in cell
lines K562 and GM12878 is the only study on modeling
chromatin 3D structures for inter cell-line comparison.
Figure 4 illustrates the chromatin structures predicted
from our method. Our work is highly consistent with the
previous 5C work, with the cell line K562 exhibiting more
open chromatin structure and stronger active signals than
GM12878 (0.117 mm versus 0.105 mm). However, the struc-
tures from our method are considerably more compacted
than those in the 5C work, especially in K562. This is
because Hi-C captures whole-genome chromatin inter-
actions, but the number of detectable interactions in 5C
depends on the designed probes. This difference also
implies the potential and advantage of Hi-C data in
regional chromatin 3D modeling.
To statistically compare the differences in regional

structure and activity among different cell lines, 120 chro-
matin regions with considerable structural differences
were selected to conduct comparisons for every two cell
lines (Supplementary Table S5). GC-content is eliminated
from inter cell-line comparison because the four cell lines
do not differ in GC-content for the same chromatin
region. It can be seen that the cell line with stronger
active signals (H3K4me1, H3K4me3 and H3K9ac) and

Figure 2. The pipeline of AutoChrom3D.
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transcription signals (H3K36me3 and RNA-Seq) statistic-
ally exhibits more open chromatin 3D structure than the
cell line with weaker signals (Figure 5 and Supplementary
Figure S11). By contrast, heterochromatin signal
H3K9me3 mainly show negative relationship to the
openness of chromatin structure in almost all inter cell-
line comparisons. The situation for polycomb signal
H3K27me3 is a little more complicated, with negative cor-
relation to chromatin structural openness in some cases
but not in other cases. Some minor exceptions can be

observed not only because of the complication of biolo-
gical systems but also because of the difficulty in finding
the best way to normalize different kind of sequencing
data among different cell lines. In overall, these results
are highly consistent with the intra cell-line analysis.

Our comparative analyses partly reveal the relationship
between chromatin 3D structure and functional state. The
results from intra cell-line comparisons actually show that
gene-rich chromatin regions are generally more open in
3D structure than gene-poor regions (33). As gene-rich

Figure 3. Intra cell-line chromatin 3D structure comparisons. (a) The 3D structures of active region (Chr11: 60 150 000–61 150 000) and inactive
region (Chr11: 84 195 021–85 195 021) predicted from the cell line IMR90 at 8 kb resolution, and the corresponding genomic/epigenomic signals. The
top and bottom panels show the genomic/epigenomic signals for active and inactive regions respectively. (b) Averaged spatial distances of FISH
active and inactive chromatin regions from the cell line IMR90. (c) Box plot showing the statistically larger radius of gyration in active regions
compared with inactive regions. (d) Pearson correlation between radius of gyration and genomic/epigenomic signals for four cell lines.
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chromatin regions have more regulatory elements, such as
enhancer and promoter, these regions often show stronger
active signals (H3K4me1, H3K4me3 and H3K9ac), tran-
scription signals (H3K36me3, H3K79me2 and RNA-Seq)

and even CpG-associated repressed signal H3K27me3.
By contrast, the gene-poor regions are generally hetero-
chromatin regions, showing stronger H3K9me3 signal.
The inter cell-line comparisons provide some insights on
the relationship between chromatin epigenetic state
change and 3D structural rearrangement (34,35). The
active signals H3K4me1, H3K4me3 and H3K9ac show
that the activation of chromatin epigenetic state is signifi-
cantly associated with the opening of chromatin 3D struc-
ture, accompanied by stronger transcription signals
H3K36me3 and RNA-Seq, whereas the inactivation
marked by H3K9me3 is often associated with the chroma-
tin structure closing. The silencing marked by H3K27me3
is also related to the structure closing, but the situation is a
little complicated in this signal partly due to its diverse
distribution patterns in chromatin regions. The negative
correlation of H3K27me3 in inter cell-line comparison
does not mean inconsistence with the positive correlation
in intra cell-line comparison, as the comparison of struc-
tural rearrangement for same chromatin region is totally
different from comparison of different kinds of chromatin
regions.

CONCLUSION

In this work, we show that the bias of chromatin inter-
action is significantly dependent on sequencing depth, and
the normalized regional exponent can relax the coupled

Figure 4. Inter cell-line chromatin 3D structure comparisons. The chromatin 3D structures of human a-Globin domain (Chr16: 60 002–559 999) are
modeled at 8 kb resolution for cell lines K562 and GM12878, and the corresponding genomic/epigenomic signals are shown.

Figure 5. Statistical analysis on the relationship between chromatin
epigenetic state change and 3D structural rearrangement.
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sequencing biases and represent the inherent characteris-
tics of chromatin structure. We then propose a method to
automatically reconstruct chromatin structures by using
this sequencing-bias-relaxed structure parameter to
normalize chromatin interactions. Together with 1D
genomic and epigenomic data, this method can powerfully
interpret the relationship between 3D chromatin struc-
tures and genome functions through intra and/or inter
cell-line comparisons. However, it should bear in mind
that as a first effort devoted to automatic chromatin 3D
modeling for structural comparison, there is ample space
to improve the modeling method to give more accurate 3D
chromatin structures.
All predicted chromatin structures in this work, the

source code and web service of this method are available
at http://ibi.hzau.edu.cn/3dmodel/.
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