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Abstract
Variance component analysis provides an efficient method for performing linkage analysis for
quantitative traits. However, type I error of variance components-based likelihood ratio testing
may be affected when phenotypic data are non-normally distributed (especially with high values of
kurtosis). This results in inflated LOD scores when the normality assumption does not hold. Even
though different solutions have been proposed to deal with this problem with univariate
phenotypes, little work has been done in the multivariate case. We present an empirical approach
to adjust the inflated LOD scores obtained from a bivariate phenotype that violates the assumption
of normality.

Using the Collaborative Study on the Genetics of Alcoholism data available for the Genetic Analysis
Workshop 14, we show how bivariate linkage analysis with leptokurtotic traits gives an inflated
type I error. We perform a novel correction that achieves acceptable levels of type I error.

Background
Variance component methods are very well suited to nor-
mally distributed phenotypes. However, when the pheno-
type under study is not normal, these methods tend to
increase the type I error [1]. A robust LOD score correction
has been developed to solve this problem for univariate
phenotypes [2,3]. This approach takes advantage of a
remarkable result: the distribution of the likelihood ratio
statistic under model misspecification is equal to a con-

stant times a  variate [4]. Therefore, a robust alterna-

tive to the likelihood ratio statistic is: ΛR = kΛ and the

analogous robust LOD score is: LODR = kLOD. That is, the

robust LOD score is proportional to the LOD score under

model misspecification. So the problem simplifies to the
search for the constant of proportionality k.

Blangero et al. [3] proposes a method based on simula-
tion to estimate this constant of proportionality. The idea
is to generate a sample of the distribution of LOD scores
for the non-normal trait under the null hypothesis and a
sample of the asymptotic expected distribution of LOD
scores for a normal trait. Because these two distributions
should be proportional, an estimator of the constant of
proportionality k can be obtained from a simple regres-
sion. To calculate the LOD scores for the non-normal trait,
a set of independent random markers are simulated for
every subject in the study. We call these LOD scores the
observed LOD scores. On the other hand, the expected
LOD scores are sampled from the asymptotic distribution
of the test under normality.
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The benefit of this approach over direct use of the empir-
ical distribution of the LOD scores is that it results in a
LOD statistic whose interpretation remains intact. Also,
the calculation of k requires fewer replicates than the
empirical LOD score distribution for small p-values.

Our aim is to find a similar smoothing correction for the
bivariate phenotype. The Collaborative Study on the
Genetics of Alcoholism (COGA) data contains two quan-
titative phenotypes that are clearly non-normally distrib-
uted: MXDRNK and CIGPKY. Any bivariate linkage
analysis containing either of these phenotypes will pro-
vide biased LOD scores.

In this work we investigate four questions: First, can we
find a robust LOD score approximately proportional to
the LOD score under model misspecification with the
bivariate phenotype? Second, will the proportionality be
between the two degrees of freedom (2-df) LOD scores or
between the equivalent one degree of freedom (1-df) LOD
scores? Third, what is the lower boundary of the number
of replicates required to achieve a good approximation of
the slope? Lastly, which smoothing constant is most
appropriate for use with the phenotypes of the COGA
data?

Methods
Data
The COGA is a multicenter research project to detect and
map susceptibility genes for alcohol dependence and
related phenotypes [5]. We worked with the COGA sam-
ple data available for the Genetic Analysis Workshop 14
(GAW14), consisting of 143 extended families with 1,350
family members with clinical and demographic data. To
avoid the problems of a mixed population of different
ethnicities, we only used the subset of White non-His-
panic individuals (1,074 individuals in 119 families).
This set of data contains 15 quantitative phenotypes. Two
of them are behavioral measures of psychiatric interest:
the "maximum number of drinks consumed in a 24 hours
period" (MXDRNK) is related with alcoholism diagnosis
and provides a quantitative measure to grade alcoholic
and non-alcoholic individuals; the "number of packs of
cigarettes per day for one year" (CIGPKY), is highly corre-
lated with alcohol consumption. The other 13 quantita-
tive phenotypes are electrophysiological traits that
measure the neuroelectric activity generated in response
to stimulus. Electrodes attached to the scalp of an individ-
ual with conductive gel record the event-related potentials
(ERP). Various spatial and temporal characteristics differ-
entiate the different ERPs. View Begleiter et al. [5] for a
detailed description of these phenotypes. We used sex and
age as covariates in all the bivariate models of this study.

Transformation from a 2-df LOD score to a 1-df LOD score
Every LOD score has a direct match with a p-value. How-
ever, because the log likelihood ratio (LR) test where the
LOD score comes from has a different distribution for uni-
variate than for the bivariate phenotypes, these LOD
scores will have different interpretations. The LR test in
the univariate case follows a 1/2:1/2 mixture of a chi
square distribution with 1 degree of freedom and a point
mass at zero [6]. On the other hand, the null hypothesis
in the bivariate case involves constraining to zero three
parameters: the genetic correlation due to the quantitative
trait locus (QTL) for both traits, and the genetic correla-
tion at that QTL. Thus, the LR test for the bivariate case fol-
lows a 1/4:1/2:1/4 mixture of chi squares with 3 and 1
degrees of freedom and a point mass at zero, respectively
[7]. We call the former a 1-degree of freedom LOD score
(1-df LOD) and the later a 2-degrees of freedom LOD
score (2-df LOD). To obtain the 1-df LOD equivalent to a
given 2-df LOD, we follow two steps: first, we calculate the
p-value corresponding to the 2-df LOD; and second, we
calculate the 1-df LOD corresponding to that p-value.

The LODADJ method
The SOLAR command "lodadj" implements the simula-
tion method described in the "Background" section. We
used this command with 27 bivariate phenotypes form
the COGA data (all the possible pairs that include
MXDRNK or CIGPKY) to generate repeated unlinked
markers, calculate their respective LOD scores, and esti-
mate the correction constant. We chose the pair of pheno-
types MXDRNK and ttth3 (one of the electrophysiological
measures) as the bivariate phenotype to perform the main
simulation of linkage with unlinked markers, in which we
ran 100,000 replicates. This experiment, with a huge
amount of simulated markers, will serve to test the utility
of the proposed method. At the same time, we calculated
the slope constant for the 1-df LOD scores obtained from
the transformation of the original 2-df LOD scores.

For the 26 remaining pairs of phenotypes, we calculated
the smoothing slope from only 1,000 simulated markers,
based on the results of the slope sampling experiment
described below. Moreover, in these cases we only give the
smoothing slope calculated from the 2-df LOD score.

Slope sampling
Given the 100,000 observed LOD scores for the
MXDRNK-ttth3 phenotype under the null model, we
selected 100 random samples of varying size n (100, 250,
500, 750, 1,000, 2,000, 3,000, 4,000, 5,000 and 10,000)
and calculated the regression slope between the observed
and the expected LOD scores for each sample. Thus, we
obtained a pool of 100 slopes for each value of n, and we
calculated the mean and standard deviation of the slopes
for each pool.
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Software
We used SOLAR [8,9] for simulation and linkage analyses.
We then used the package R [10] to perform statistical
analyses and to draw the plots.

Results
The 13 electrophysiological measures are approximately
normally distributed, with kurtosis ranging from 0.2 to 1.
However, both MXDRNK and CIGPKY present clear non-

Summary of the MXDRNK-ttth3 simulationFigure 1
Summary of the MXDRNK-ttth3 simulation. Left: 2-df LOD scores. Right: 1-df LOD scores. Top: regression of the 
expected on the observed LOD scores. Bottom: cumulative distributions of the observed, expected and adjusted LOD scores.
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normal distributions with high kurtosis: 6.3 and 8.4,
respectively.

Figure 1 shows a summary in four plots of the LOD adjust-
ment results for the MXDRNK-ttth3 phenotype after the
simulation of 100,000 unlinked markers. The plots in the
first column are derived from the 2-df LOD scores; those
in the second column are derived from the 1-df LOD
scores. In the plots in the first row we show the regression
of the observed LOD scores on the expected ones. In the
plots in the second row we show the empirical cumulative
distributions of the observed, expected and adjusted LOD
scores.

The slopes are 0.78 and 0.73 for the 2-df LOD and 1-df
LOD score, respectively. Thus, both regressions provide a
similar fit. In both cases, we can detect a bias, the high val-
ues are over the mean, and the low values are under the
mean. The plots of the cumulative distributions show also
similar results for the 2-df and 1-df cases.

Table 1 summarizes the type I error rate for the observed
and adjusted LOD scores for both the 1-df and the 2-df
LOD score.

Figure 2 shows the means (on the left) and standard devi-
ations (on the right) of the 100 slopes obtained for each
value of n. The means stabilize quickly and the standard
deviation decreases as the sample size increases. The
standard deviation appears to become asymptotic around
a sample size of 3,000 replicates but it is quite small with
1,000 replicates.

We chose this value (n = 1,000) to calculate the slope cor-
rection for all 27 bivariate phenotypes pairs of quantita-
tive phenotypes of the COGA data containing MXDRNK
or CYGPKY. Table 2 shows the smoothing correction con-
stant for the different phenotype pairs and the corre-
sponding 1-df LOD score equivalent to a LOD score of 3
in the case of normality.

Discussion
Variance components linkage analysis is a powerful and
flexible approach for the analysis of the genetic compo-

Table 1: Summary of the type I error for the observed and adjusted LOD score

2 degrees of freedom 1 degree of freedom

Nominal α LOD observed adjusted LOD observed adjusted

0.1000 0.8088 0.1387 0.0914 0.3566 0.1387 0.0965
0.0500 1.1359 0.0744 0.0413 0.5875 0.0744 0.0429
0.0250 1.4613 0.0403 0.0184 0.8341 0.0403 0.0188
0.0100 1.8883 0.0174 0.0061 1.1752 0.0174 0.0060
0.0010 2.9481 0.0019 0.0003 2.0737 0.0019 0.0002
0.0001 3.9950 0.0002 0.0000 3.0034 0.0002 0.0000

Slope sampling resultsFigure 2
Slope sampling results. Mean (left) and standard deviation (right) of the correction slope for different values of n.
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nents of quantitative traits. Its main drawback is the
increase of type I error when the traits of interest are not
normally distributed. As in the univariate case, a smooth-
ing correction for the LOD score is necessary in the bivar-
iate case. In this work we have presented an empirical
approach showing that the 2-df observed LOD score is
approximately proportional to a more robust 2-df LOD
score. It is important to note that the observed propor-
tionality holds also for the equivalent 1-df LOD score.
This fact is not surprising because the 2-df LOD and the
equivalent 1-df LOD are nearly proportional. Thus, the
correction for deviations from normality could be per-
formed before or after the transformation to the 1-df LOD
score. The smoothing approach presented here appears to
work quite well, although it may be too conservative, as
shown in Table 1.

Bivariate linkage analysis is computationally intensive
and a simulation with 100,000 replicates is sometimes
unfeasible. Our slope sampling experiment, however,
indicates that 1,000 to 3,000 replicates should be enough
to achieve a good estimation of the slope.

We calculated the correction slope for the MXDRNK and
the CIGPKY phenotypes combined with the 13 electro-
physiological measures of the COGA data. The range of
the smoothing constants varies between 0.69 and 0.94.

If we consider a significant 1-df LOD score as being at least
3 (2-df LOD = 3.99), a slope correction of 0.8 requires a 2-
df LOD = 4.95, equivalent 1-df LOD = 3.87 to be signifi-
cant. Table 2 shows the 1-df LOD score required for each
pair of phenotypes to achieve a significance equivalent to
a 1-df LOD of 3 with two normally distributed pheno-

types. This finding must be considered when using bivar-
iate linkage analysis with this data.

Conclusion
Variance component models for bivariate linkage analysis
with at least one non-normally distributed phenotype
give inflated type I error and then inflated LOD scores. A
smoothing correction similar to the one available for uni-
variate linkage analysis could be used to achieve a more
accurate type I error and, thus, more reliable LOD scores.

The smoothing correction gives similar results when per-
formed on the 2-df LOD scores or on the equivalent trans-
formed 1-df LOD scores.

Compared with the direct use of the empirical distribu-
tion of the LOD scores, the calculation of the correction
slope k proposed here requires fewer replicates for small
p-values. Between 1,000 and 3,000 replicates are enough
to obtain a reliable correction.

More studies are needed to evaluate the impact of this cor-
rection on the power to find linkage with a non-normally
distributed bivariate phenotype.

Abbreviations
CIGPKY: Number of packs of cigarettes per day for one
year

COGA: Collaborative Study on the Genetics of Alcohol-
ism

ERP: Event-related potential

GAW14: Genetic Analysis Workshop 14

Table 2: Correction slopes and significant 1-df LOD for 27 bivariate phenotypes of the COGA data

Slope 1-df LOD significance

Phenotype MXDRNK CIGPKY MXDRNK CIGPKY

CIGPKY 0.69 4.65
ecb21 0.87 0.78 3.56 4.04
ntth1 0.8 0.76 3.89 4.15
ntth2 0.96 0.8 3.14 3.92
ntth3 0.89 0.82 3.41 3.77
ntth4 0.93 0.75 3.24 4.19
ttdt1 0.74 0.8 4.3 3.88
ttdt2 0.85 0.85 3.63 3.66
ttdt3 0.9 0.76 3.4 4.17
ttdt4 0.94 0.77 3.23 4.11
ttth1 0.75 0.71 4.2 4.46
ttth2 0.83 0.81 3.72 3.84
ttth3 0.84 0.82 3.68 3.8
ttth4 0.8 0.82 3.88 3.81
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