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Learning exceptions to the rule 
in human and model 
via hippocampal encoding
Emily M. Heffernan*, Margaret L. Schlichting & Michael L. Mack

Category learning helps us process the influx of information we experience daily. A common category 
structure is “rule-plus-exceptions,” in which most items follow a general rule, but exceptions violate 
this rule. People are worse at learning to categorize exceptions than rule-following items, but 
improved exception categorization has been positively associated with hippocampal function. In 
light of model-based predictions that the nature of existing memories of related experiences impacts 
memory formation, here we use behavioural and computational modelling data to explore how 
learning sequence impacts performance in rule-plus-exception categorization. Our behavioural results 
indicate that exception categorization accuracy improves when exceptions are introduced later in 
learning, after exposure to rule-followers. To explore whether hippocampal learning systems also 
benefit from this manipulation, we simulate our task using a computational model of hippocampus. 
The model successful replicates our behavioural findings related to exception learning, and 
representational similarity analysis of the model’s hidden layers suggests that model representations 
are impacted by trial sequence: delaying the introduction of an exception shifts its representation 
closer to its own category members. Our results provide novel computational evidence of how 
hippocampal learning systems can be targeted by learning sequence and bolster extant evidence of 
hippocampus’s role in category learning.

Category learning is a mechanism by which we make sense of the influx of information present in our daily 
lives. When we encounter a novel object or situation, we can compare it to previous experiences to make infer-
ences about its qualities. Rapidly generalizing prior knowledge to new information is especially important when 
learning complex category structures. An example of such a problem is one in which categories are defined by a 
rule-plus-exceptions (RPE) structure where most category members adhere to a rule (e.g., birds fly), but a small 
subset of exceptions violates this rule (e.g., kiwis are flightless birds). A successful learner of RPE structure must 
detect general patterns across multiple experiences while also distinguishing and remembering irregularities. A 
wide body of evidence spanning several literatures indicates not only that RPE category rules are readily learned 
but also that rule-violating exceptions items are better remembered, potentially due to the formation of more 
detailed neural  representations1–6.

Indeed, category learning is a complex process that recruits multiple brain  regions7; however, recent work 
implicates hippocampus (HC) as a potential key  player5,8–11. Notably, HC forms conjunctive representations of 
experiences that bind together multiple episodic  features12,13. This rapid formation of conjunctive representations 
is especially important when learning complex category structures like in RPE learning. The formation of distinct 
conjunctive representations is consistent with traditional views of HC’s role in episodic memory  formation14, 
but recent work has also implicated HC in rapid generalization across related experiences, as in statistical 
 learning15 and complex associative  memory16,17. HC’s ability to support these complementary processes may be 
attributed to two functional pathways that traverse specialized hippocampal subfields. Dentate gyrus (DG) and 
cornu ammonis 3 (CA3) fall along the trisynaptic pathway (TSP) and are associated with sparse representations 
appropriate for encoding distinct episodes; conversely, CA1, which is directly connected to entorhinal cortex 
(ERC) by the monosynaptic pathway (MSP), employs dense, overlapping representations ideal for extracting 
 regularity13,14,18,19. The pattern separation from and generalization with prior experiences respectively enabled 
by TSP and MSP render this model of HC function well suited to support the divergent needs of RPE learning; 
however, the role of HC computations in such learning remains untested.

Intuitively, learning an exception to a rule requires first learning that rule. Indeed, it has been demonstrated 
that in an RPE task, learning sequences that group together rule-consistent stimuli apart from exceptions sig-
nificantly improve overall learning outcomes compared to sequences that maximize or minimize between-trial 
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 similarity20,21. From the perspective of the HC model introduced above, the nature of prior experiences is key 
to how new information is encoded into organized memory structures, and this is particularly important when 
considering RPE learning. The prediction follows that CA1-supported generalization processes will capitalize on 
initial exposure to rule-consistent category members to form abstracted representations of rule-based category 
knowledge. When the learner later experiences exceptions, comparisons to these rule-based representations 
result in mismatch  signaling3,8,22 that drives pattern-separation processes in DG and CA3 to distinctly encode 
exception information and facilitate  learning23.

To explore the impact of learning sequence on categorization and to test how this manipulation may target 
key HC computations, here we devised a rule-plus-exception categorization task in which the introduction of 
exception items occurred either early in learning or later in learning, after extensive exposure to rule-following 
items. Participants learned to categorize flowers that varied across four binary-valued dimensions, three of which 
were diagnostic, and category structure followed the “Type III” categorization problem defined by Shephard 
et al.24, as shown in Fig. 1A. Each category had four members: one prototype, two rule-followers, and an excep-
tion. Prototypes from opposing categories were maximally dissimilar and varied across all three diagnostic 
dimensions, rule-followers varied from their category prototype across one dimension, and exceptions varied 
from their category prototype across two dimensions and were more similar to the prototype of the opposite 
category. In each category, two prototype variants were included, one for each value of the nondiagnostic dimen-
sion; the nondiagnostic dimension varied randomly for the remaining stimuli, resulting in a total of 10 stimuli. 
Participants completed three learning blocks with full feedback (Fig. 1B), followed by a test block in which they 
received no feedback. After the test block, participants completed a recognition memory task to test for differ-
ences in memory for exceptions compared to rule-following items. Participants were randomly separated into 
two conditions: in the baseline “early” condition, which matches the manner in which exceptions are typically 
introduced in RPE categorization tasks, participants were first exposed to exceptions in the first learning block, 

Figure 1.  Experimental design. (A) Flowers were categorized using the Type III problem defined  by24. Flowers 
varied across three binary-valued diagnostic dimensions and were defined as prototypes (circled in purple), 
rule-followers (circled in pink), and exceptions (circled in orange). Line type (solid or dashed) indicates category 
membership. (B) In learning trials, participants were exposed to stimuli and were asked whether the presented 
flower preferred sun or shade. They were required to make a category response within 2 s. After making a 
response, participants received feedback for 2 s before proceeding to the next trial. Testing trials followed a 
similar pattern, but no feedback was provided. The test block was followed by a recognition memory task (not 
shown). (C) The breakdown of stimulus types across conditions. The numbers of prototypes, rule-followers, and 
exceptions per block are denoted with purple, pink, and orange rectangles, respectively. Each block has 48 trials, 
and the width of the rectangles in (C) is proportional to the number of trials per type. In the “early” condition, 
participants saw exceptions in learning block one; in the “delayed” condition, exceptions were not introduced 
until the second learning block. The total number of stimuli and the structure of the test block were identical 
across conditions.
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and in the “delayed” condition, exceptions were withheld until the second learning block. The test block was 
identical across conditions. A breakdown of stimuli in each block is presented in Fig. 1C.

We predicted that learners who were introduced to exceptions later in learning would develop a better initial 
representation of category structure, which in turn would improve their ability to detect and learn to categorize 
exceptions. In the context of hippocampal learning systems, in the delayed exceptions sequence, CA1 should 
capitalize on early experiences to capture the category structure. Mismatch signalling should then drive CA3 
and DG to create unique representations of exception items when they are later introduced. To test whether 
HC is targeted by this sequence manipulation, we simulated this task with an extant neural network model of 
 HC15,25. This model was designed to explore mechanisms behind HC’s role in episodic  memory25, but recent 
work has demonstrated that this model also has the capacity for statistical  learning15. If HC computations are 
sensitive to our manipulation, we predicted that the model would also be better able to categorize exception 
items when their introduction was delayed. As this model was not originally designed to model category learn-
ing, its successful replication of behavioural findings would provide compelling evidence of how hippocampal 
computations may support RPE learning. Existing models of category learning have successfully captured human 
behaviour in RPE  tasks5,26–28, but to our knowledge, this work is the first to use a physiologically based model 
of HC to model such a task. We further conducted an exploratory representational similarity analysis of hidden 
layers of the neural network to explore how this manipulation impacted the model’s “neural”  representations15. 
Because novelty facilitates the formation of specialized  representations3,8,22, we expected to observe shifts in the 
model’s representations of exceptions introduced later in learning that were consistent with its performance. 
Such a finding would indicate that the distinctly encoded exceptions were better integrated into existing cat-
egory knowledge. The behavioural experiment and a subset of the analyses were preregistered (https:// osf. io/ 
gner5); the model simulation approach was not. Deviations from our preregistered analysis plan are noted with 
justification throughout the results. For behavioural results that were preregistered but are not the focus of the 
paper, see the Supplement.

Results
Behavioural study. We first explored how delaying the introduction of exceptions would impact learning 
performance in young adults. We hypothesized that this delay would allow participants to form a strong under-
standing of the rules governing category structure compared to a baseline condition in which exceptions were 
introduced at the outset of learning. Specifically, when exceptions were introduced later in learning, enhanced 
mismatch signalling would allow participants to better identify and correctly categorize these exceptions. Par-
ticipants were separated into “delayed exceptions” and “early exceptions” conditions, and we expected to see 
improved categorization of exception items in the delayed condition. We assessed this prediction in two separate 
analyses: one for the three learning blocks, and a second for the test block.

We analyzed learning performance with a binomial generalized linear mixed-effects (GLME) regression 
model to test the impact of stimulus type (exception, prototype, or rule-follower) and sequence (early or delayed) 
on accuracy, averaged across all three learning blocks. In all behavioural analyses, participant was included as 
a random effect.

Stimulus type had a significant effect on accuracy. In the early condition, categorization accuracy was sig-
nificantly higher for rule-followers than exceptions (βR:E = 0.829, P < 0.001, 95% CI [0.68, 0.98]), and accuracy 
was higher for prototypes than rule-followers (βP:R = 0.541, P < 0.001, 95% CI [0.37, 0.71]—where subscripts E, 
P, and R denote exceptions, prototypes, and rule-followers, respectively). The same patterns held in the delayed 
condition (βR:E = 0.362, P < 0.001, 95% CI [0.21, 0.51] and βP:R = 1.211, P < 0.001, 95% CI [1.03, 1.39], respectively). 
Condition had a significant effect on categorization accuracy: accuracy was higher in the delayed compared 
to the early condition for both exceptions (β = 0.317, P = 0.001, 95% CI [0.13, 0.51]) and prototypes (β = 0.521, 
P < 0.001, 95% CI [0.30, 0.74]); no significant effect was found for rule-followers (β = − 0.150, P = 0.128, 95% 
CI [− 0.34, 0.04]). There were also interactions between type and condition. The difference in categorization 
accuracy between exceptions and prototypes did not significantly change across conditions (β = 0.203, P = 0.101, 
95% CI [− 0.04, 0.45]), but the difference between exceptions and rule-followers was significantly lower in the 
delayed compared to the early condition (β = − 0.467, P < 0.001, 95% CI [− 0.68, − 0.25]), and the difference 
between rule-followers and prototypes was significantly higher in the delayed condition (β = 0.670, P < 0.001, 
95% CI [0.42, 0.92]).

Having established overall differences in accuracy across all blocks in the learning task, we next asked whether 
change in performance over experience varied significantly as a function of item type and early/delayed intro-
duction. We thus fit a second model to the learning data that contained repetition as a fixed effect. Repetition, 
which was defined as the number of appearances of a given stimulus type throughout the three learning blocks 
and is distinct from trial number, was included to explore how accuracy was affected at different timepoints 
throughout learning.

In the delayed condition, there was a main effect of repetition: categorization accuracy for exceptions, pro-
totypes, and rule-followers improved significantly with repetition (βE = 0.038, P < 0.001, 95% CI [0.03, 0.05]; 
βP = 0.037, P < 0.001, 95% CI [0.02, 0.05]; βR = 0.019, P =  < 0.001, 95% CI [0.01, 0.03]. In the early condition, cat-
egorization accuracy for prototypes improved significantly with repetition (βP = 0.017, P = 0.011, 95% CI [0.004, 
0.03]); however, categorization accuracy for exceptions and rule-followers showed no significant improvement 
with repetition (βE = 0.006, P = 0.275, 95% CI [− 0.01, 0.02]; βR = − 0.010, P = 0.081, 95% CI [− 0.02, 0.001]). There 
was also an interaction between repetition and learning condition. Categorization accuracy improved more 
with increased repetition in the delayed condition than in the early condition for all stimulus types (βE = 0.032, 
P < 0.001, 95% CI [0.02, 0.05]; βP = 0.021, P = 0.036, 95% CI [0.001, 0.04]; βR = 0.029, P < 0.001, 95% CI [0.01, 
0.04]). This model of performance in the learning blocks is depicted in Fig. 2A. The BIC of the model that 
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included repetition (10,234.7) was considerably lower than that of the one that did not (10,281.5), providing 
strong evidence of its improved fit.

The test block was also analyzed using a binomial GLME model (Fig. 2A). In the test block, categorization 
accuracy was above chance for prototypes in the delayed and early conditions (βP = 2.492, P < 0.001, 95% CI [2.17, 
2.84]; βP = 2.010, P < 0.001, 95% CI [1.72, 2.32]) and for rule-following items in the delayed and early conditions 
(βR = 0.996, P =  < 0.001, 95% CI [0.75, 1.25]; and βR = 0.914, P =  < 0.001, 95% CI [0.67, 1.17], respectively). For 
exceptions, accuracy was above chance in the delayed condition (β0E = 0.732, P < 0.001, 95% CI [0.49, 0.98]) 
but not in the early condition (β0E = 0.132, P = 0.272, 95% CI [− 0.11, 0.37]). In the early condition, categoriza-
tion accuracy was significantly higher for rule-followers than exceptions (βR:E = 0.782, P < 0.001, 95% CI [0.54, 
1.01]), and accuracy was higher for prototypes than rule-followers (βP:R = 1.096, P < 0.001, 95% CI [0.72, 1.29]). 
The same patterns held in the delayed condition (βR:E = 0.264, P = 0.035, 95% CI [0.02, 0.51] and βP:R = 1.496, 
P < 0.001, 95% CI [1.17, 1.84], respectively). Categorization accuracy was significantly higher in the delayed 
condition than in the early condition for prototypes (βP = 0.482, P = 0.034, 95% CI [0.04, 0.93]) and exceptions 
(βE = 0.600, P = 0.001, 95% CI [0.26, 0.94]). There was no significant difference between conditions for rule-
followers (βR = 0.082, P = 0.645, 95% CI [− 0.267, 0.434]). Finally, there were also interactions between type and 
condition. The difference in categorization accuracy between exceptions and prototypes did not significantly 
change across conditions (β = − 0.015, P = 0.944, 95% CI [− 0.45, 0.42]), but the difference between exceptions 
and rule-followers was significantly smaller in the delayed compared to the early condition (β = − 0.510, P = 0.003, 
95% CI [− 0.85, − 0.17]), and the difference between rule-followers and prototypes was significantly greater in 
the delayed condition (β = 0.495, P = 0.027, 95% CI [0.06, 0.94]).

The results from both the learning and test blocks indicate that manipulating trial order by delaying the 
introduction of exceptions significantly improved categorization accuracy of exceptions. As hypothesized, cat-
egorization accuracy for exception items improved more over time in the delayed condition than in the early 
condition. However, a post-hoc analysis of category A and B exceptions (EA and EB, respectively) revealed that 
this effect was not consistent for both exceptions, as shown in Fig. 2B. To contextualize the results that follow, we 
note that when we more closely compare EA and EB to members of their respective categories that share the same 
nondiagnostic dimension, an asymmetry emerges in the category structure. EA is closer to the prototype and 
rule-follower of its category that share the same nondiagnostic value than EB is to its nondiagnostic counterparts 
in Category B. It seems that, though this increased similarity to its own category members is driven by the non-
diagnostic dimension, EA behaved more like a rule-follower; conversely, EB behaved more like an exception.

Learning block categorization accuracy did improve more over time for both EA (β = 0.028, P = 0.015, 95% CI 
[0.022, 0.063]) and EB (β = 0.042, P < 0.001, 95% CI [0.005, 0.050]) in the delayed condition compared to the early 
condition, indicating that our manipulation was indeed successful for both exceptions, but in the test block, the 
delayed condition was only associated with higher accuracy for EB (β = 1.573, P < 0.001, 95% CI [1.136, 2.019]); 
for EA, there was no significant difference between conditions (β = − 0.455, P = 0.047, 95% CI [− 0.909, − 0.004]). 
Moreover, accuracy at test was above chance for EA in both the early and the delayed conditions (β = 1.166, 
P < 0.001., 95% CI [0.80, 1.54] and β = 0.798, P < 0.001, 95% CI [0.43, 1.16], respectively); for EB, accuracy was 

Figure 2.  Categorization accuracy in the behavioural experiment. (A) Results from the three learning blocks 
(48 trials total per block) and the test block (48 trials total) for all stimuli. Large points indicate the median of 
bootstrapped mean accuracies for stimuli in each category across block and condition. Error bars represent 
bootstrapped 95% confidence intervals. Small dots show average accuracy for individual participants. 
Categorization accuracy improved more for exceptions in the delayed exceptions condition compared to the 
early condition. (B) Exception results, separated by category. Exception trials have been grouped into blocks of 
12 (i.e., repetition block 1 encompasses the first 12 appearances of exceptions in the early or delayed condition).
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below chance in the early condition (β = − 0.789, P < 0.001, 95% CI [− 1.14, − 0.43]) and above chance in the 
delayed condition (β = 0.862, P < 0.001, 95% CI [0.49, 1.23]). As these results indicate, category had a significant 
effect on accuracy in the early condition (β = 1.955, P < 0.001, 95% CI [1.60, 2.31]); accuracy was higher for EA 
than EB. This effect was not present in the delayed condition (β = − 0.063, P = 0.727, 95% CI [− 0.42, 0.29]). 
Condition had a significant effect on accuracy for EB (β = 1.651, P < 0.001, 95% CI [1.14, 2.16]); that is, accuracy 
was significantly higher in the delayed condition, but for EA, this effect was not significant (β = − 0.367, P = 0.166, 
95% CI [− 0.89, 0.15]). Finally, there was a crossover interaction between category and condition: the difference 
in accuracy between EA and EB was significantly lower in the delayed condition (β = − 2.02, P < 0.001, 95% CI 
[− 2.52, − 1.51]). Participants in the early condition seemed unable to identify EB as an exception and instead 
attempted to categorize it according to the general category rules, leading to performance that was below chance; 
however, in the delayed condition, participants seemed better able to identify EB as an exception, leading to 
above-chance accuracy. These results seem to indicate that EA is behaving more as a rule-follower, and EB is 
behaving as an exception.

Participant reaction time (RT) was also recorded during the learning and test blocks to assess uncertainty 
throughout the learning process. Models analogous to the GLME models used to analyze categorization accuracy 
in the learning and test blocks were fit to reaction time data. The key findings from these analyses are as follows 
(see Supplement for complete results). In the learning blocks, RTs for prototypes were faster in the delayed com-
pared to the early condition. When category-violating information was withheld, participants seemed better able 
to quickly categorize the items that defined category structure. Further, RT for exception items became faster with 
repetition in the delayed compared to the early condition. Consistent with the accuracy analyses, participants 
were able to rapidly identify and learn to categorize exceptions in the delayed condition relative to the early con-
dition. Interestingly, RT at test was slower for rule-followers in the delayed compared to early conditions, which 
may reflect some uncertainty in overall category structure elicited by the delayed introduction of exceptions.

Results from the recognition memory task supported existing work on enhanced memory for exception 
 items2,5,29. The complete analysis of this task is included in the Supplement. Notably, participants’ sensitivity 
to previously encountered stimuli was only above chance for exceptions in the delayed condition; moreover, 
sensitivity was significantly higher for exceptions than rule-following items in the delayed, but not early, condi-
tion. Further optimizing the recognition memory task used in this work by including lures that vary across both 
diagnostic and non-diagnostic dimensions may provide further insight into these effects.

Our behavioural results confirmed that delaying the presentation of exception items allows the learner to form 
a better understanding of the category structure, enabling them to subsequently identify and learn to correctly 
categorize exception items. To test whether these findings may be related to hippocampal computations, we next 
simulated our task using a neural network model of HC. We endeavoured to determine whether the model also 
predicted an advantage for exceptions and whether this advantage was specific only to EB. Such findings would 
provide novel computational evidence for the role of hippocampal learning systems in RPE tasks.

Computational simulations. To test how our sequence manipulation potentially targets HC computa-
tions and impacts neural representations, we simulated our task using an existing neural network model of HC 
and its subfields (Fig. 3)15,25. The model was trained using a learning sequence that matched either the delayed 
or early behavioural condition, then tested by presenting each of the 10 stimuli and recording output activation 

Figure 3.  (A) A visualization of the hippocampal model used for computational simulations. The input layer, 
EC_in, represents superficial layers of entorhinal cortex. Information flows along two paths, the monosynaptic 
and trisynaptic pathways (MSP and TSP). Hidden layers represent hippocampal subfields dentate gyrus (DG), 
cornu ammonis 1 (CA1) and cornu ammonis 3 (CA3). The model acts as a simple encoder and attempts to 
replicate its input in EC_out, which represents deep layers of entorhinal cortex. EC_in also receives input from 
EC_out to simulate big-loop recurrence. (B) Vector notation for prototypes, rule-followers, and exceptions (P, 
R, and E, respectively) in categories A and B. Dimensions 1 through 4 represent the features outer petal colour, 
outer petal shape, inner petal shape, and central disc colour; dimension 5 indicates category. All features are 
binary and represented in a padded format in the model (i.e., ‘10’ or ‘01’).
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separately across the model layers. Notably, no parameter optimization or fits to behaviour were conducted in 
these simulations. Rather, the model, as formalized in prior work demonstrating its ability to account for statisti-
cal learning and associative inference  behaviours15, was simply exposed to the same training sequences as the 
behavioural participants. The key question is whether such a model naturally accounts for the exception learn-
ing behaviour we observe, serving as a proof of concept implicating hippocampal encoding in complex category 
learning. To explore this question, 500 simulations, or batches, with random weight initializations were run for 
each sequence condition. Model accuracy for each stimulus was quantified by the relative difference in cosine 
similarity between the model’s output (EC_out) for the category dimension (xD5) and the target and nontarget 
categories using Luce’s choice  axiom30 as shown in Eq. (1):

 

Model learning performance. The model’s categorization performance was analyzed using a GLME 
model with stimulus type and sequence condition as fixed effects and simulation batch number as a random 
effect (see “Methods” section). For exceptions, there was a significant effect of sequence condition. As with 
the behavioural findings, accuracy for exceptions was higher in the delayed condition than in the early con-
dition (Fig. 4A; βE = 0.047, P < 0.001, 95% CI [0.03, 0.07]). However, prototype accuracy was not significantly 
different in the delayed condition (βP = − 0.004, P = 0.550, 95% CI [− 0.02, − 0.01]) and performance decreased 
for rule-followers in the delayed condition (βR = − 0.022, P = 0.003, 95% CI [− 0.04, − 0.01]). Moreover, there 
were interactions between condition and type. The difference in categorization accuracy between exceptions 
and prototypes was significantly smaller in the delayed compared to early condition (β = − 0.051, P < 0.001, 95% 
CI [− 0.08, − 0.03]), as was the difference between exceptions and rule-followers (β = − 0.069, P < 0.001, 95% CI 
[− 0.09, − 0.04]), and the difference between rule-followers and prototypes did not significantly change across 
conditions (β = 0.017, P = 0.089, 95% CI [− 0.04, − 0.003]).

The model simulations capture the expected advantage for exception items in the delayed condition. The 
model categorized exceptions more accurately after exposure to the delayed sequence compared to the early 
sequence, demonstrating that the HC neural network is sensitive to learning sequence in a manner consistent 
with human learners. Recall that the behavioural results indicated an unexpected discrepancy between perfor-
mance for EA and EB in the delayed condition. Importantly, this discrepancy was reflected in the model simula-
tions (Fig. 4B). The advantage afforded to exceptions in the delayed condition was specific to EB (βEB = 0.181, 
P < 0.001, 95% CI [0.15, 0.21]); performance was reduced in the delayed condition for EA (βEA = − 0.087, P < 0.001, 
95% CI [− 1.14, − 0.06]). Similar to the crossover interaction observed in participants’ test performance, model 

(1)accuracyM(x) =
cos

(

xD5, targetD5
)

cos
(

xD5, targetD5
)

+ cos
(

xD5, nontargetD5
) .

Figure 4.  (A) Model categorization accuracy for all stimuli. Large points indicate the median of bootstrapped 
mean accuracies for stimulus types in the early (filled) and delayed (open) sequences. Error bars represent 
bootstrapped 95% confidence intervals. Small dots show average accuracy for each batch. The model results for 
exception items were consistent with behavioural findings: accuracy was significantly higher for exceptions in 
the delayed condition. (B) Exception results, separated by category. Again, the model findings were consistent 
with behavioural results: the advantage for exceptions in the delayed condition was driven by the category B 
exception.
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accuracy also demonstrated an interaction between condition and category (β = − 0.268, P < 0.001, 95% CI [0.23, 
0.31]), whereby the advantage afforded to exceptions in the delayed condition was specific to EB.

The HC model accounted for both key behavioural findings related to exceptions; however, the model also 
predicted significantly higher performance for rule-followers in the early condition compared to the delayed 
condition. While participant data revealed no differences in the test performance for rule-followers, a post-hoc, 
qualitative inspection of trial-by-trial accuracy in the behavioural learning phase data was generally consistent 
with model predictions. Participant accuracy for rule-followers did drop when exceptions were introduced in 
the delayed condition. Specifically, rule-follower accuracy in the second learning block (i.e., when exceptions 
were first introduced) decreased from 0.68 in the first half to 0.62 in the second half, which may reflect a disrup-
tion in rule-follower performance when exceptions were introduced. Though participants seemed to resolve 
this discrepancy in accuracy by the end of learning, the RT analysis indicated increased RT for rule-followers 
in the delayed condition at test, reflecting persistent uncertainty. Current models of category learning such as 
SUSTAIN do not consider how highly salient, category-inconsistent information affects existing representations, 
and the insight into human behaviour provided by the hippocampal model should be a focus of future work.

Model representational similarity analysis. With strong evidence of the HC model reflecting par-
ticipant learning outcomes, we next interrogated the nature of the representations formed by the model during 
learning. Specifically, we conducted an exploratory representational similarity analysis on the activations of the 
hidden layers of the model corresponding to CA1, CA3, and DG hippocampal subfields. Previous work has indi-
cated that medial temporal lobe representations capture both category structure and the similarity of exceptions 
to other  stimuli6. We were interested in whether our delayed/early manipulation would impact how exceptions 
would be integrated into existing category knowledge reflected in the model’s hidden layers and whether excep-
tion representations would capture the discrepant results for EA and EB.

During the model’s testing phase, we recorded settled activation in the hidden layers of the network cor-
responding to CA1, CA3, and DG. In keeping with methods from related  work15, we calculated the Pearson 
correlations between activations for each test item (i.e., between each of the 10 stimuli) in each of the layers. The 
results of this analysis are depicted in Fig. 5A, where darker shades represent higher representational similarity 
(the darkest squares, along the diagonal, correspond to a stimulus’ correlation of 1 with itself). The overlapping 
representations of CA1 are reflected in the overall shade of the grids corresponding to this subregion, which are 
darker than those of CA3 and DG, consistent with these regions’ sparser representations. The representational 
similarity of CA1 can also be visually clustered into zones: the darker lower left and upper right quadrants of 
the CA1 grids indicate higher intracategory similarity, whereas the lighter lower right and upper left quadrants 
indicate lower intercategory similarity. In other words, representations of members in the same category are 
more similar, whereas those of members in opposite categories are less similar. Although representations in CA3 
and DG are overall more distinct (i.e., lighter) than those in CA1, higher intra- versus intercategory similarity 
is still evident—albeit to a lesser extent than in CA1—which may suggest sensitivity to category structure in 
these subfields. These patterns reflect existing research on the role of HC’s subfields; however, visually detecting 
representational differences between layers in the early and delayed conditions is quite difficult. To render these 
differences more apparent, Fig. 5B presents the difference between representational similarity in the early and 
delayed conditions, as determined by subtracting the delayed representational similarity matrix from the early 
matrix for each of the three subfields.

In Fig. 5B, the colour red indicates higher similarity between two stimuli in the early condition compared 
to the delayed condition, and blue, higher similarity between two stimuli in the delayed condition compared to 
the early condition. In the grid of Fig. 5B corresponding to CA1, the red colour of the upper left and lower right 
quadrants denotes higher levels of intercategory similarity for stimuli in the early condition; that is, representa-
tions of members in opposite categories are more similar in the early condition compared to the delayed condi-
tion. Median intercategory similarities in the early and delayed simulations were 0.718 and 0.619, respectively; 
a Wilcoxon rank sum test indicated that this difference was statistically significant (W = 148,469, P < 0.001). A 
higher degree of similarity between members in opposing categories indicates a blurring of category boundaries, 
which may reflect the model’s reduced ability to distinguish exceptions, thus lowering exception categorization 
performance in the early condition.

To explore potential mechanisms for the differing behaviour of EA and EB in the early and delayed condi-
tions, we next explored condition-related differences between inter- and intracategory similarity of EA and EB 
in each subfield. To quantify these differences, we calculated the normalized difference between the intra- and 
intercategory similarity for each exception and compared these values across conditions (for convenience, this 
measure is referred to as the category representational difference [CRD]):

where r is the average inter- or intracategory correlation and EX indicates EA or EB. A higher CRD would indi-
cate that an item’s representation was more similar to its own category members and less similar to opposing 
members, which in turn should correspond to improved category performance.

Notably, the effect on the representations of the two exceptions across conditions does not seem to be consist-
ent. Significant differences in inter- versus intracategory similarity across conditions were found for EB in CA1 
and for EA in CA3. In CA1, the median CRD was significantly higher for EB in the delayed condition (early: 
0.015, delayed: 0.024, W = 11,640, P = 0.002), as indicated by the blue colour of zone i and the red colour of zone ii 
in Fig. 5B. This shift in representation corroborates enhanced categorization for EB in the delayed condition. The 
median CRD for EA did not differ between conditions (early: 0.0216, delayed: 0.0271, W = 119,025, P = 0.229); 

(2)CRD =
(1+ ρintra(EX))− (1+ ρinter(EX))

(1+ ρintra(EX))+ (1+ ρinter(EX))
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these values correspond to zones iii and iv of Fig. 5B. In DG, the EB median CRD value was not significantly 
different in the delayed (0.015) versus early (0.134) conditions (W = 122,861, P = 0.679), nor was the EA early 
median CRD (0.033) significantly different than that of the delayed CRD (0.021, W = 132,423, P = 0.092; zones 
v–viii in Fig. 5B). In CA3, the EB early median CRD (0.009) was not significantly different from the delayed 
median CRD (0.017; W = 120,796, P = 0.416); zones ix and x of Fig. 5B). However, the EA early median CRD 
(0.040) was significantly higher than the delayed median CRD (0.026; W = 134,623, P = 0.026), corresponding 

Figure 5.  (A) Representational similarity analysis results, separated by condition and subfield. Rows and 
columns correspond to the 10 stimuli. Darker shades indicate higher similarity. In all subfields, higher intra-
versus intercategory similarity is apparent. Category bounds are indicated in black in the CA1 grid. (B) The 
difference in representational similarity across conditions (early minus delayed). Red indicates higher similarity 
in the early condition; blue, higher similarity in the delayed condition. The red colour of the upper left and lower 
right quadrants of the rightmost plot indicates higher intercategory similarity in CA1 in the early compared 
to the delayed condition. Differences in exception representation are evident throughout the three subfields. 
EA is generally more similar to its own category members in the early condition and more similar to opposing 
category items in the delayed condition (these comparisons are outlined in grey), whereas EB is more similar to 
its own category members in the delayed condition and more similar to members of the opposite category in the 
early condition (outlined in black).
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to the blue colour of zone xi and the red colour of zone xii in Fig. 5B. In other words, in CA3, EA had higher 
intra- and lower intercategory similarity in the early compared to the delayed condition. Subfield characteristics 
that may have led to these differences are further explored in the discussion.

To explore how inter- and intracategory differences for EA and EB emerged across the early and delayed con-
ditions throughout learning, we used a Sammon mapping to project the representational similarity space derived 
for each subfield and condition into a two-dimensional space (Fig. 6). This approach has previously been used to 
explore information encoded in neural  representations6. Sammon mappings were computed for representations 
at different timepoints throughout the model’s learning process (results were computed after early trials 12, 36, 
48, 72, 96, 120, and 144 and delayed trials 24, 48, 60, 72, 84, 96, 120, and 144; the trial intervals varied between 
conditions to capture changes in representations when exceptions were first introduced). All Sammon mappings 
had a stress values of less than 0.035, indicating an excellent  fit31. Procrustes transformations were used to align 
the Sammon mappings at different timepoints from each condition to the end-of-learning representations (i.e., 
after 144 trials) to facilitate comparison. In Fig. 6, increasing trial number is indicated by increasing opacity. EA 
and EB are generally located closer to X = 0 in this representational space, whereas prototypes and rule-followers 
are clustered by category at opposite ends of the space. The Procrustes transformation was successful in aligning 
most stimuli across conditions, indicating that encoding of category structure was consistent within subfields. 
However, in the delayed condition, EB representations in CA1 shift considerably towards EB’s own category 
members. Manipulating learning sequence clearly impacted changes in how exceptions were stored in relation 
to other items over time, but a large shift was not observed for EA across conditions.

Figure 6.  Sammon mapping projections of HC model subfield representations. Two-dimensional projections 
for stimulus representations within each subfield (columns) in the early (top) and delayed (bottom) sequences. 
Representations from tests at various time points throughout learning (early: trial 12, 36, 48, 72, 96, 120, 144; 
delayed: trial 24, 48, 60, 72, 84, 96, 120, 144) are depicted within the same plot with increasing opacity for later 
time points. The model clearly represents the space well after a limited number of trials. Category coding was 
apparent across subfields and sequences with category A stimuli (circles) on the left of the primary dimension 
and B stimuli (squares) on the right. Although stimulus locations were fairly consistent across subfields, a large 
shift was observed for exception B (orange square) across learning trials in the delayed condition. This shift was 
not observed for exception A.
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Discussion
Our aim was to explore how learning sequence impacts categorization performance in an RPE task. We provided 
behavioural evidence that delaying the introduction of exceptions significantly improved participants’ ability 
to categorize certain items. We hypothesized that this delay was advantageous because it targeted hippocampal 
learning systems: in MSP, early exposure to exclusively rule-following items would have enabled better encod-
ing of general category structure; when exceptions were then introduced, increased mismatch signalling would 
precipitate the distinct encoding of exceptions in TSP. We used a model of HC to provide novel computational 
evidence of this proposed hippocampal learning mechanism. Notably, this model, which had previously been 
optimized for episodic and statistical learning, replicated behavioural results for exception categorization. The 
model also captured an unpredicted discrepancy in the effect of our manipulation on each of the two exceptions: 
enhanced categorization was observed for one exception, but not the other, in a manner consistent with subtle 
differences in the exceptions’ relative similarity to the other stimuli. Further analysis of the model’s hidden layers 
revealed unique changes in the representational similarity of the two exceptions that corroborated the model’s 
predictions.

Though the structure of the task used in this work is not universally applicable to all categories that could 
be defined as “rule-plus-exception,” our work presents key evidence of how learning systems within hippocam-
pus encode new experiences in a manner dependent on previously encountered information. The advantage 
afforded to delayed exceptions may be explained by work on schema violation. Evidence of memory advantages 
for schema-violating information spans several literatures, and advantages seem to increase with the degree of 
schema  violation1–4. It follows that enhancing this memory advantage may have been beneficial for correct cat-
egorization. Introducing exceptions after participants had a well-established understanding of category structure 
would enhance the surprise elicited by exceptions, thus facilitating the flexibility necessary to form conjunc-
tive representations that would improve subsequent categorization. Existing work has indicated that learning 
sequence may impact performance in RPE tasks. Notably, work by Mathy and  Feldman20 demonstrated that 
presenting rule-following items before exception items impacted overall categorization performance. However, 
they only delayed the introduction of exceptions from one category, referred to as the positive category (trials 
both rule-following and exception stimuli from the opposing category were interleaved with the positive trials), 
and they examined how overall learning was impacted, rather than exploring specific effects on exception items. 
Moreover, Davis et al.8 noted that presenting all rule-following items before exceptions sped up learning and 
reduced the number of non-learners in their RPE task, no quantification of these effects was provided. Our work 
is the first to manipulate learning sequence to directly target categorization of exception items.

Because forming distinct conjunctive representations is essential to the correct categorization of exceptions 
in an RPE structure, a function which has been previously attributed to  HC12,13, we chose to further explore 
the behavioural findings using a neural network model of HC. Our aim was to evaluate, as a proof of concept, 
whether this model’s hippocampal encoding functions can demonstrate the type of exception learning effects 
we observed in human learners across different sequences, as has been done previously with other non-episodic 
memory  behaviours15. Importantly, our behavioural learning results for exceptions were replicated in these 
computational simulations, without altering the model or conducting any parameter optimization. Our model 
findings support and extend existing evidence of HC’s role in category  learning5,8–11. Studies on populations 
with limited HC function further emphasize this brain region’s importance to RPE learning. Individuals with 
underdeveloped or damaged HC exhibit impaired RPE learning, likely due to their reduced ability to form the 
requisite conjunctive  representations32. Rodent work has also indicated that CA3 damage prevents the rapid for-
mation of conjunctive representations, a capacity essential to exception  learning33,34. Indeed, one recent study in 
young adults demonstrates a distinct association between structural measures of hippocampal pathways and RPE 
learning such that the number of streamlines connecting CA3 and CA1 (i.e., a key connection in the trisynaptic 
pathway) relates to an individual’s ability to learn  exceptions35. Here we demonstrate learning in healthy young 
adults can be influenced by the way in which information is presented. We also provide novel evidence that a 
physiologically informed model of HC and its subfields has the capacity to learn an RPE category structure and 
that the way in which information is stored in this model is altered by learning sequence. Future work should 
explore how individual differences in hippocampal anatomy might affect performance in this  task35 and constrain 
model predictions of learning behaviour.

The hippocampal neural network model captured patterns in exception categorization accuracy; however, 
its performance for rule-following and prototype stimuli did not align as closely with behavioural results. It 
should be noted that HC is just one brain region involved in the complex processes of category  learning7,36, so 
one would not expect a neural network that only models hippocampal encoding to perfectly capture human 
behaviour. Indeed, our use of Luce’s Choice Axiom to transform model outputs into choice probabilities is an 
oversimplification of the decision-making process. Moreover, it has been demonstrated that several extant cog-
nitive models of category  learning26,27,37 account for RPE learning behaviour likely better than the current HPC 
model. However, the aim of the present work was not to identify the best fitting cognitive or neural model that 
best captures our behavioural results. Rather, our goal was, as a proof of concept, to explore whether a physi-
ologically inspired model of hippocampus designed to account for key behavioural markers in episodic memory 
and statistical  learning15 would naturally account for RPE category learning. By doing so, our work is poised 
to bolster our understanding of hippocampus to an encoder that not only stores episodic memories but also 
integrates new information with existing memories by extracting commonalities and differences to dynamically 
create new  concepts38. The current findings also motivated future work that directly compares cognitive and 
neural models to characterize comprehensive theories of human category learning that bridge levels of analysis.

In addition to supporting behavioural findings related to exceptions, the model simulations shed light on how 
this manipulation may have targeted hippocampal representations at a subfield level. Representational similarity 
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analyses on model representations exposed subtle but important differences in representations across conditions. 
In CA1, there were higher levels of intercategory representational similarity in the early compared to the delayed 
condition. Carvalho and Goldstone’s sequential attention  theory39 posits that a blocked learning sequence, where 
the learner is presented with blocks of items from one category, causes them to attend to intracategory similari-
ties, whereas an interleaved design that alternates between items from two categories draws their attention to 
intercategory differences. However, our model results indicate that inter- and intracategory differences can also 
be influenced by when schema-violating stimuli are introduced. Moreover, the computational model used for 
these simulations has no explicit attentional mechanism. Attentional tuning to stimulus dimensions is a key 
mechanism in many successful category learning  models26,37,40, often providing the computational flexibility 
necessary for learning and representing complex category  structures41. That the HC model leveraged here has 
no explicit mechanism of attention yet successfully learns in an RPE task as well as other similarly complex 
category-like  structures11,15 suggests such dimension-weighting attention may be unnecessary or replaced by HC 
encoding functions in certain learning contexts. A theoretical reconciliation of these models awaits future study.

A notable finding from both our behavioural results and computational simulations was the discrepancy 
between exceptions. Further consideration revealed that this discrepancy was likely a consequence of the nondi-
agnostic fourth dimension of our category structure, inner circle colour. Due to differences in exception similarity 
to category members sharing the same non-diagnostic dimension, EB could be considered more “exceptional” 
than EA, which would have afforded it a greater advantage in a learning sequence predicted to emphasize excep-
tions. Though behavioural results showed an advantage for both exceptions during learning, it seems that in 
human and model, the exceptions’ overall similarity to previously encountered exemplars impacted memory 
and categorization, even when that similarity was due to a nondiagnostic dimension. Although pinpointing the 
specific factors leading to the discrepancy between exceptions in the current paradigm is an open question, that 
model-based predictions of this divergence matched those of human learners provided serendipitous evidence 
in support of HC computations underlying RPE learning. Indeed, analysis of inter- versus intracategory simi-
larity in the early compared to the delayed condition revealed that in CA1, EB representations were more like 
its own category members and less like opposing category members, reflecting better integration of EB with its 
own category members when its introduction was delayed. Looking forward, these findings motivate a role for 
CA1 in exception learning; future work characterizing neural function driving exception learning should target 
mismatch signalling and neural representations in CA1.

A final contribution of this work is the methods we have employed to better understand what is happening in 
the hidden layers of our model. A common criticism of neural network models is their “black box”  nature42—it is 
difficult to understand the factors that contribute to a neural network classifier’s decisions. Exploring the repre-
sentations of various stimuli in different hidden layers of a model may help to disentangle this decision-making 
process and provide key predictions for investigating neural representations in the learning brain.

Overall, this work demonstrates that performance on an RPE category learning task can be modulated 
by manipulating learning sequence. We also provide novel computational evidence of HC’s sensitivity to this 
manipulation and use representational similarity analysis to explore the impact of trial sequence on inter- and 
intracategory representational similarity. The experiments presented here serve as a starting point for future 
studies to further explore how HC and its pathways are implicated in category learning tasks and in cognition 
more  broadly7,38,43.

Methods
Behavioural study. Participants. All participants were University of Toronto students who received 
course credit for participating. Data were collected in lab and, as necessitated by COVID-19-imposed restric-
tions, online. There were 49 in-lab participants (37 females; mean age 19.1 years, SD 3.3 years) and 44 online 
participants (20 females, 2 other; mean age 19.9, SD 1.0 years). In total, 93 participants completed the experi-
ment. All procedures were approved by and conducted in accordance with the University of Toronto’s Research 
Ethics Board and all participants provided informed consent.

Participants were excluded from the analysis if they failed to achieve an accuracy of over 0.75 for any stimu-
lus type in at least one of the learning or test blocks or if over 20% of their reaction times fell outside the range 
[0.15 s, 2 s]. Based on these criteria, 10 online participants and two in-lab participants were excluded, resulting 
in a total of 81 participants included in the analyses. Data from included participants were further preprocessed 
to exclude any responses less than 0.15 s or greater than 2 s (7.1% of all trials were excluded).

Stimuli. Throughout the experiment, participants viewed 10 images of flowers. Flower stimuli had four binary 
features: outer petal colour, outer petal shape, inner petal shape, and central disc colour (Fig. 1a). The central disc 
was determined to be least salient in a norming study and as such was chosen to be nondiagnostic and varied 
randomly between stimuli. Category structure was assigned using Shepard et al.’s (1961) Type 3  problem24,44, as 
shown in Fig. 1b. Stimuli were classified as prototypes (maximally dissimilar across categories), rule-followers 
(more similar to their category prototype than to the other category prototype), and exceptions (more similar to 
the prototype of the opposite category). The experiment included four prototypes (two in each category for each 
value of the nondiagnostic feature), four rule-followers, and two exceptions (for which the nondiagnostic feature 
varied randomly), resulting in a total of 10 stimuli.

Procedure. Participants completed three learning blocks, each with 48 trials. Full feedback was provided after 
each trial (Fig. 1b). Participants were randomly assigned into one of two conditions. In the “early” condition, 
participants were first introduced to exceptions in block one, and in the “delayed” condition, participants were 
not exposed to exceptions until the second learning block (Fig. 1c). Participants saw two times more prototypes 



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21429  | https://doi.org/10.1038/s41598-021-00864-9

www.nature.com/scientificreports/

than rule-followers and exceptions to anchor each category. Further, the first eight trials of the first learning 
block consisted of only prototypes in both conditions to expose participants to all possible feature values of the 
stimulus space. Following the learning blocks, participants completed a test block with 48 trials. In this block, 
participants saw an equal number of prototypes, rule-followers, and exceptions and did not receive feedback 
after each response. Participants also completed a recognition memory task in which they were shown previ-
ously encountered and novel stimuli and had to identify these stimuli as “old” or “new.” This task was intended 
to test for enhanced recognition memory for exceptions, as found in existing  work5. The complete results from 
this preliminary investigation have been included in the Supplement. In-lab participants were also asked to 
describe their categorization strategies, but these strategies were inconclusive (for example, participants noted 
focusing on aspects of the stimuli unrelated to the categorization task, such as the number of green leaves on the 
flowers, but still met learning criteria), and there were no apparent differences between self-reported strategies 
across conditions. These responses have been uploaded to the OSF project associated with this work (https:// 
osf. io/ gner5).

Analysis. To account for the higher number of prototypes versus other stimulus types in the three learning 
blocks, only the first 36 repetitions for each type were included in the analysis. A binomial generalized linear 
mixed-effects (GLME) model was fit to the learning data (lme4 ver. 1.1–26, R ver. 4.0.4) to predict trial-by-trial 
accuracy. Because the response data were binary and thus not normally distributed, accuracy was modelled 
using a binomial regression with a logit link function. Inputs to the model were trial scores (0 for incorrect, 1 
for correct). A GLME model was fit to the data that included stimulus type and condition as fixed effects and 
participant as a random effect to assess changes in average accuracy across all three learning blocks. To explore 
how learning was impacted by experience, a second model was then fit to the data that also included repetition as 
a fixed effect. Repetition was defined as the number of times a participant had seen a given stimulus type. The test 
block was analyzed using a GLME model that was identical to the base model of the learning block. Performance 
in the learning and test blocks was visualized by plotting average accuracy for each stimulus type in each of the 
three learning blocks and the test block (Fig. 2A). Performance for each exception was also visualized separately 
by plotting average accuracy for exception trials in each of three blocks of 12 trials (“repetition block” in Fig. 2B). 
Similar analyses were also conducted on reaction time; these results have been included in the Supplement.

Model simulations. Overview of model architecture. To further study the impact of sequence on category 
learning, the RPE task described above was simulated using a neural network model of HC. This model was 
adapted from recent  work15 and was run using  Emergent745, ver. 8.5.2. A simplified explanation of the model’s 
architecture is as follows: input patterns in the form of numerical arrays are presented to the model via its input 
layer, EC_in (which represents superficial layers of EC). During training, the model acts as an encoder and learns 
to replicate the pattern presented to EC_in in its output layer, EC_out (which represents deep layers of EC). 
The model accomplishes this goal by adjusting the weights of connections between its hidden layers through 
a combination of error-driven and Hebbian learning in cycles that reflect hippocampal theta  oscillation46. The 
model’s hidden layers represent subfields DG, CA3, and CA1. Each layer of the model contains a grid of several 
units with activity levels ranging from zero to one. These units represent populations of neurons. Moreover, each 
layer has physiology-based properties. For example, model layers CA3 and DG have high within-layer inhibi-
tion, leading to the sparse representations characteristic of their corresponding neural subfields. Connections 
between layers mimic the flow of information along TSP and MSP, and the learning rate of TSP is also faster 
than that of MSP. The model is shown in Fig. 4. The model has free parameters that allow the user to adjust the 
strength of connections between CA3 and CA1 and EC_in and CA1 to simulate white matter lesions. Because 
this study involved healthy young adults, the fully connected values from Schapiro et al. were  used15. A depiction 
of the model and its subfields and connections is included in Fig. 3A.

Training and testing. The flower stimuli were first transformed into vectorized input patterns according to a 
padded coding scheme. Each input vector had five pairs of units, and each pair represented a feature dimension. 
The first four pairs (units 0 to 7) corresponded to the four binary-valued dimensions, and the final pair (units 8 
and 9) indicates category label. Each unit in a pair represents one of two possible values for a given dimension, so 
only one unit in a pair will be active (i.e., have a non-zero value) for a stimulus. For example, pointed petals may 
be coded as “01”, round petals, by “10”. In vector notation, the prototype for category A is therefore represented 
as “1010101010.” Vector notations for each stimulus are included in Fig. 3B.

Two training sequences were created for the model that corresponded to the early and delayed conditions of 
the behavioural experiment. The number of stimuli and trial order presented to the model in each condition were 
identical to the sequences of the behavioural experiment, but the learning task was not separated into blocks. In 
a training epoch (144 trials), stimuli were presented to EC_in sequentially. With each trial, the model updated its 
connection weights to replicate the input pattern in its output layer. After training, the model was tested: each of 
the 10 stimuli were presented to the model and its settled response (measured after 80 cycles) was recorded. No 
network weights were updated during test. The delayed and early sequences were each simulated 500 times (i.e., 
500 batches were run) on randomly initialized networks. Batch number was included as a random effect in all 
analyses. At test, model accuracy for each stimulus was quantified using Luce’s choice  axiom30 as shown in Eq. (1).

Analysis. A GLME model was used to assess model performance. Batch number was included as a random 
effect and type and condition as fixed effects. We also explored activation of the model’s hidden layers using 
representational similarity analysis. As  in15, for each of the model’s hidden layers (CA1, CA3, and DG), we 
calculated the Pearson correlation between the activation of each of the 10 stimuli (Fig. 5A). To highlight the 
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difference between conditions, we also calculated the difference between Pearson correlations for each condi-
tion by subtracting the delayed representational similarity matrix of each subfield from the corresponding early 
matrix (Fig. 5B). The subfield-level difference in inter- and intracategory similarity for EA and EB was quantified 
using Eq. (2). For each subfield, outputs of Eq. (2) were compared across the early and delayed conditions using 
a Wilcoxon rank sum test.

Finally, multidimensional scaling was used to visually depict the representational similarity between stimuli 
in a two-dimensional  space6. We captured model activation patterns across subfields at different timepoints 
throughout the learning process to assess in more detail how representations changed when exceptions were first 
introduced in the early and delayed conditions. For the early condition, tests were run at 12-trial intervals for 
the first 48 trials and at 24-block intervals thereafter; in the delayed condition, tests were run at 12-trial intervals 
for trials 48–96 and at 24-block intervals otherwise. Representational similarity matrices based on Pearson cor-
relation were constructed at each of these timepoints, and Sammon  mapping47 was used to project the similarity 
relationships into a two-dimensional space. Finally, for each condition and subfield, each timepoint was aligned 
to the corresponding end-of-learning Sammon mapping using a Procrustes  transformation48 to highlight simi-
larities and dissimilarities in category structure throughout learning (Fig. 6).

Data availability
All behavioural data and end-of-learning model data are available at https:// osf. io/ gner5; details on the Emergent 
model used in these simulations can be found  at45. Trial-by-trial model testing data are available from the cor-
responding author upon reasonable request.
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