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Potential viral pathogenic mechanism in human type 1 diabetes
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Abstract In type 1 diabetes, as a result of as yet unknown
triggering events, auto-aggressive CD8+ T cells, together with
a significant number of other inflammatory cells, including
CD8+ T lymphocytes with unknown specificity, infiltrate the
pancreas, leading to insulitis and destruction of the insulin-
producing beta cells. Type 1 diabetes is a multifactorial dis-
ease caused by an interactive combination of genetic and
environmental factors. Viruses are major environmental can-
didates with known potential effects on specific key points in
the pathogenesis of type 1 diabetes and recent findings seem
to confirm this presumption. However, we still lack well-
grounded mechanistic explanations for how exactly viruses
may influence type 1 diabetes aetiology. In this review we
provide a summary of experimentally defined viral mecha-
nisms potentially involved in the ontology of type 1 diabetes
and discuss some novel hypotheses of how viruses may affect
the initiation and natural history of the disease.
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Introduction

While there is undoubtedly evidence for a genetic basis of
type 1 diabetes, especially with regard to permissive HLA
class II genotypes, many features of this disease have to be
attributed to environmental factors, specifically, (1) the annual
increase in type 1 diabetes incidence, currently estimated to be
3% [1]; (2) the strong heterogeneity of its geographical distri-
bution, which is subject to considerable regional gradients [2];
(3) the fact that the incidence rate in first-generation offspring
of immigrants is the same as that in the new home country
[3, 4].

In animal models of diabetes the established role of innate
inflammation in the insulitic process [5–7] and the increasing
evidence supporting the contribution of viral infections to a
proinflammatory islet milieu [8–10] strongly suggest that
viruses may contribute to beta cell damage and dysfunction.
The evidence for the presence of similar mechanisms in
humans is still circumstantial [11–13]; however, the insights
gained from animal studies imply that innate immunity is an
important component of the pathogenesis of type 1 diabetes.
Lately, novel developments in analysis techniques, as well as
access to organ libraries, such as the Network of Pancreatic
Organ Donors (nPOD, www.jdrfnpod.org) in the USA or the
collection of Foulis et al [14] in the UKwill be instrumental in
allowing us to link the presence of these environmental
determinants to the highly complex histopathological
features of type 1 diabetes.

In this review we will analyse how viral infections can
account for these highly complex scenarios.
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Hallmarks of type 1 diabetes pathogenesis

Type 1 diabetes results from the selective and progressive
destruction of insulin-producing cells by autoreactive CD8+

T cells [15] and a variable number of bystander CD8+ T cells
[16, 17]. The presence of anti-islet cell antigen autoantibodies
and a predominantly lymphocytic infiltrate of the islets
(insulitis) including CD8+ Tcells antigen-specific for beta cell
antigens [15] are regarded as proof of the autoimmune
aetiology of the disease [14, 18, 19] (Fig. 1).

The nature of early disease may be cyclical
and relapsing–remitting

Based on the very character of the most prolific feature of type 1
diabetes—insulitis—it is thought that early disease might in-
volve cycling between remission and relapse [20]. In spite of
being considered a hallmark of type 1 diabetes, the occurrence
of insulitis is heterogeneous and often elusive.When combining
all ~215 cases of type 1 diabetes for which minimal clinical and
histopathological data exist, it can be estimated that in young
type 1 diabetes patients <14 years old, insulitis occurs in 73% of
thosewith a diabetes duration of <1month, in 60% of thosewith
a diabetes duration of >1 month but <1 year, and in 4% of
patients with a diabetes duration of >1 year. In donors >15 years
of age, insulitis was only found in 29% of those with acute-onset
diabetes [21, 22]. In autoantibody-positive donors, the numbers
were far lower: only two out of 62 autoantibody-positive, non-

diabetic organ donors showed insulitis [23]. Furthermore,
insulitis seems to follow a lobular pattern rather than affecting
all islets in a given pancreas [14, 24]. If we regard insulitis as a
conditio sine qua non for the later development of type 1
diabetes, given that insulitis is not observed in all cases positive
for autoantibodies, we have to consider the possibility that the
nature of early disease is remitting–relapsing, with phases of
intense inflammation alternating with quiescent phases.

The distribution of the disease is not homogeneous

Contrary to what we would expect in a stochastic development,
the distribution of the immune process in type 1 diabetes is
inhomogeneous and lobular, with pancreatic lobules that are
affected, and lobules that are not [14, 15, 19, 24, 25]. This
pattern is also seen in the map of inflammatory cytokine pro-
duction [26]. Furthermore, the exocrine pancreas is often smaller
[27, 28] and mildly infiltrated, and insulitis is not as prominent
as usually seen in animal models, e.g. the NODmouse [22, 29].

The presence, temporal pattern, cellular composition and
distribution of the inflammatory infiltrate [20] are highly
variable [30], which is mirrored in the high variability of the
preclinical period preceding diabetes [31].

Taken together, we can envision the following picture: an
underlying inflammation of the pancreas, caused by an as yet
unknown initial event and characterised by a rather discrete
lymphocytic infiltrate and the upregulation ofMHC I on some
beta cells [15], could represent a fertile soil [32, 33] for a
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Fig. 1 Timeline of development of type 1 diabetes. In genetically sus-
ceptible individuals, an as yet unknown environmental trigger (1) causes
an underlying inflammation of the pancreas that is characterised by a
rather discrete lymphocytic infiltrate and the upregulation of MHC I on
some beta cells (insulitis). This represents a fertile soil for a complex
interplay between T-effector and T-regulatory cells, eventually favouring
the CD8+ T-effector-mediated attack, causing a scenario of concomitant
beta cell destruction and enhanced proliferation (2). The sequential

appearance and spreading of antigenic determinants leads to the enhance-
ment of the immune response (3) and feeds a vicious cycle. As soon as the
vast majority of beta cells is destroyed, the immune reaction slows down
(4), yet some of its features (MHC I upregulation) remain detectable for a
long time, probably fuelled by the few remaining beta cells.
Pathophysiologically, phases (2) and (3) coincide with the transition from
normoinsulinaemia to hypoinsulinaemia and finally to the loss of detect-
able C-peptide levels
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complex interplay between effector and regulatory T cells,
eventually favouring CD8+ effector T cells that attack the beta
cells. This leads to a scenario of concomitant beta cell destruc-
tion and enhanced proliferation, with the sequential appear-
ance and spreading of antigenic determinants and the en-
hancement of the immune response [34]. As recent works
suggest [35], the underlying inflammatory state of the pancre-
as might initially involve the exocrine pancreas, prior to the
induction of autoimmunity. As soon as the latter is triggered, a
vicious cycle is born.

How can the histopathological hallmarks of diabetes
be explained by viral infection?

In spite of a plethora of studies (see Table 1 for an overview of
important studies), we are still lacking a clearly established,
causal link between viral infection or presence and the devel-
opment of autoimmunity or progression to diabetes, yet the
histopathological hallmarks of diabetes can be elegantly
explained as effects of viral interference:

(1) The heterogeneous, possibly relapsing–remitting insulitis,
with upregulation of MHC class I molecules on most
islets, which persists for years irrespective of the function-
al status of the islets, can be caused by interferons or other
factors secreted from cells infected by virus.

(2) Enteroviruses have been shown to have a strong
pancreotropism—severe islet damage has been demon-
strated in fatal group B coxsackievirus (CVB) infection
cases [36], human islets show strong expression of the
coxsackie virus and adenovirus receptor (CAR) [37] and
beta cells are permissive for enterovirus in vitro [38].
Also, human peripheral blood mononuclear cells
(PBMCs) experimentally infected with CVB4 show
enhanced production of proinflammatory cytokines such
as TNF-α and IL-6 [39].

(3) It has recently been shown that the inflammatory state of
the pancreas can be explained by direct or indirect viral
effects [40, 41].

Mechanisms of viral involvement in type 1 diabetes
aetiology

When we discuss viral infections, we have to consider viral
infections of the pancreatic beta cells as well as of those cells
adjacent to the beta cells (acinar cells, endothelial cells, neu-
rons) or of cells at a remote location, such as dendritic cells,
leading to presentation of cross-reacting epitopes, or of gut
cells, leading to increased gut permeability and the

presentation of cross-reacting antigens in the pancreatic lymph
nodes, where pancreatic and gut lymphatic drainage intersect
[42]. From a chronological point of view, viral infections can
be either (1) acute, (2) exacerbated chronic infections, (3)
reactivated persistent, quiescent viruses (e.g. Herpesviridae),
or (4) represent the restoration of pathogenicity of viral seg-
ments that had long been integrated in the human genome,
such as human retroviruses.

Infection of beta cells

Infection of beta cells with subsequent damage and release of
antigens, as well as release of interferons and involvement of
both innate and adaptive immune system, is the mechanism by
which enteroviruses are thought to be involved in the patho-
genesis of type 1 diabetes. This is, by far, the mechanism that
has been investigated to the largest extent and has dominated
scientific debate on this topic for many years.

Acute infection Acute infection is linked with severe damage
of the beta cells and rapid progression towards fulminant dia-
betes. This is the case in fulminant type 1 diabetes, where an
association with direct enteroviral infection has been discussed
in case reports [43] and where autoimmunity is not primarily
involved. Here we may also add examples of enterovirus-
induced diabetes in animals: cattle after infection with the foot
and mouth virus [44], voles after infection with Ljungan virus
[45], rats after infection with the Kilham virus [46], as well as
higher non-human primates infected with CVB4 virus [47].
Especially in the case of CVB4, we suspect considerable dif-
ferences in viral strain-specific pancreotropism.

Chronic infection Chronic, rather slow and persistent type of
infection with stimulation of resting beta-cell-antigen-specific T
lymphocytes is thought to be the link between CVB infections
and the induction of autoimmunity and/or progression to diabe-
tes and leads to subtle changes in the beta cells. These changes
may involve the induction of endoplasmic reticulum stress [48]
or mutations in tyrosine kinase 2 (TYK2) or similar proteins
leading to beta-cell-specific suppression of cytokine responses
including interferon [49], which leads to high sensitivity to
CVB4 infection [50] or other changes in beta cell metabolism
which, in turn, lead to local inflammation and tissue damage
with the slow release of sequestered islet antigen and stimulation
of quiescent, beta-cell-antigen-specific T (memory) cells.

Infection of cells adjacent to beta cells

Exocrine pancreatic cells The exocrine pancreas is targeted
by a myriad of different viruses, and many of them have been
associated with type 1 diabetes either in humans or in animal
models: measles virus, congenital rubella virus, mumps virus,
cytomegalovirus [51], or even viruses with high penetration of
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Table 1 Synopsis of important studies addressing viral causes of type 1 diabetes

Reference Virus Main message

Rasmussen et al, 2011 [90] Respiratory viruses Respiratory infections more common in children who later progress to type 1 diabetes.

Beyerlein et al, 2013 [91] Respiratory viruses,
not classified

Increased hazard ratio of islet autoantibody seroconversion is associated with respiratory
infections during the first 6 months of life.

Gale, 2008 [92] Rubella Congenital rubella may predispose to subsequent autoimmunity but existing studies are weak.

Viskari et al, 2003 [93] Rubella No evidence of increased frequency of markers for humoral beta cell autoimmunity in
patients with congenital rubella syndrome.

Green et al, 2004 [94] CVB Review of 26 case–control studies: no convincing evidence for or against an association
between CVB infection and type 1 diabetes.

Stene et al, 2010 [65] EV Progression from islet autoimmunity to type 1 diabetes may increase after an EV infection
characterised by the presence of viral RNA in blood.

Tapia et al, 2011 [95] EV No support for faecal shedding of enteroviral RNA as major predictor of advanced islet autoimmunity.

Yeung et al, 2011 [96] EV Clinically significant association between EV infection, detected with molecular methods,
and autoimmunity/type 1 diabetes.

Salur et al, 2011 [97] EV Nested case–control study where all case children have progressed to type 1 diabetes. EV
RNA-positive samples were more frequent among the cases than among the controls.

Oikarinen et al, 2012 [98] EV Large proportion of type 1 diabetes patients have prolonged/persistent EV infection
associated with an inflammation process in gut mucosa.

Mercalli et al, 2012 [99] EV Small intestine biopsy samples from 25 individuals at different stages of type 1 diabetes,
21 controls and 27 individuals with coeliac disease analysed for the presence of EV RNA
by in situ hybridisation and RT-PCR. Prolonged/persistent EV infections in gut mucosa
are not common in patients with type 1 diabetes.

Viskari et al, 2000 [100] EV The rapid decrease in EV infection frequency in Finland may explain the increasing incidence
of type 1 diabetes.

Roivainen et al, 2002 [101] EV Patterns and consequences of EV infections investigated in cultured adult human isolated islets.
The capacity of EV to kill human beta cells or impair their function is not solely defined by
the serotype, but also by as yet unidentified characteristics of the virus strain involved.

Viskari et al, 2004 [102] EV EVantibodies less frequent in countries with high diabetes incidence compared with countries
with low diabetes incidence.

Viskari et al, 2005 [103] EV Maternal EV antibodies analysed from serum samples taken from pregnant women between
1983 and 2001 in Finland and Sweden. A low frequency of EV infection in the background
population increases the susceptibility of young children to the diabetogenic effect of EV.

Richardson et al, 2009 [104] EV EV capsid protein VP1 is commonly found in the islets of recent-onset type 1 diabetic patients,
but only rarely in normal paediatric controls.

Gamble et al, 1973 [105] CVB4 Antibody to CVB4 virus more often found in diabetic patients than in controls, particularly
in the 10–19 year age group.

Gamble et al, 1969 [106] EV In patients with recent-onset diabetes, no evidence was found of any excess of antibodies
to mumps virus or certain common respiratory viruses. However, those diabetics patients who
developed insulin dependence within 3 months of onset were found to have higher
antibody titres to CVB4.

Dotta et al, 2007 [107] EV Pancreatic tissue from six type 1 diabetic and 26 control organ donors analysed via
immunohistochemistry, electron microscopy, whole-genome ex vivo nucleotide sequencing,
cell culture and immunological studies. CVB4 found in specimens from three of the six
diabetic patients.

Laitinen et al, 2013 [62] CVB1, B3, B6 183 children who persistently tested positive for at least two diabetes-predictive autoantibodies
and 366 autoantibody-negative matched control children. CVB1 was associated with an
increased risk of beta cell autoimmunity. This risk was strongest when infection occurred a few
months before autoantibodies appeared and was attenuated by the presence of maternal antibodies
against the virus. Two other coxsackieviruses, B3 and B6, were associated with a reduced risk.

Oikarinen et al, 2014 [61] CVB1 249 children with newly diagnosed type 1 diabetes and 249 control children matched according
to sampling time, sex, age and country recruited in Finland, Sweden, England, France and
Greece between 2001 and 2005 (mean age 9 years; 55% male). Antibodies against CVB1
were more frequent among diabetic children than among control children.

Cabrera-Rode et al, 2003 [108] Echovirus 16 The occurrence of a large-scale echovirus 16 epidemic was associated with the appearance
of humoral autoimmune markers of type 1 diabetes. Echovirus 16 infection might be capable
of inducing a process of autoimmune beta cell damage.

EV, enterovirus
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the population, examples of which include influenza A [52]
and B [53]. To date, however, we lack a direct causative link
between viraemia and the development of autoantibodies or
the transition from autoantibody positivity to diabetes, as a
recent analysis of cases from The Environmental Determi-
nants of Diabetes in the Young (TEDDY) study has shown
[54]. We can envision that a viral infection of acinar cells and
the subsequent activation of the innate immune response may
be responsible for the inflammatory state that we and others
have noticed in the pancreas, which sets the stage for the
development of autoimmunity (self meets inflammation). If
correct, this might support the application of anti-
inflammatory therapies at onset of diabetes (in conjunction
with other tolerogenic approaches).

Neuronal cells adjacent to beta cells The pancreatic islet is a
highly innervated and vascularised mini organ, and viral in-
fections can occur in any of the cell types surrounding the
actual beta cell. The recent observation in the mouse that the
first structures to be prone to the autoimmune attack do not
necessarily have to be the beta cells themselves, but can be
sensory neuronal cells innervating the islet [55], prompted us
to investigate the role of neurotropic viruses in the induction
of autoimmunity in human samples. Reoviridae (like rotavi-
rus) have long been found to induce autoimmune biliary
atresia and to infect the plexus myentericus and the nervus
vagus and persist in neuroenteric structures, and ciclosporin
was shown to inhibit rotavirus replication and to restore inter-
feron beta signalling pathway both in vitro and in vivo [56].
This hypothesis would elegantly account for the lobular
spreading and the temporal pattern of diabetes, and also for
the methodical difficulties encountered in identifying viral
traces in islets, since neurotropic viruses would reside in
dorsal root ganglia when quiescent. This concept, corroborat-
ed by the fact that remote infections of neurons innervating the
myenteric plexus with human herpesvirus 6 (HHV6)may lead
to increased gut inflammation and, subsequently, permeability
[57] offers a new avenue for research.

Infection of cells at remote locations

Infection of dendritic cells by viruses carrying cross-reactive
epitopes: the concept of molecular mimicry This mechanism
has been extensively discussed elsewhere [58, 59] and is
based on the observation that a single T cell receptor can
recognise quite distinct but structurally related peptides from
multiple pathogens [60]. Directly linked to type 1 diabetes
triggering was the observation that one amino acid sequence
from GAD65 (PEVKEK) is highly conserved in CVB4
isolates as well as in different viruses of the subgroup of
CVB-like enteroviruses.

Coxsackie viruses have long been suspected to be the main
culprits in the induction of autoimmunity in the aetiology of

type 1 diabetes, and large studies of young children have
substantiated these hypotheses: antibodies against CVB1 are
more frequent among diabetic children than in control chil-
dren, while other CVB types do not differ between the groups
[61], and CVB1 is associated with an increased risk of beta
cell autoimmunity [62]. This risk is strongest when infection
occurs a few months before the appearance of autoantibodies
and is attenuated by the presence of maternal antibodies
against the virus. Two other CVB types, B3 and B6, are
associated with a reduced risk, with an interaction pattern
suggesting immunological cross-protection against CVB1
[62].

Besides enterovirus, other viruses known to contain cross-
reactive epitopes (rubellavirus, rotavirus) have often been
identified during the onset of diabetes [63–65] or have been
shown to facilitate the appearance of autoantibodies, as in the
case of certain strains of echovirus [66].

Pivotal players in these scenarios are the dendritic cells,
which are known to initiate the immune response by potent
expression of co-stimulatory molecules. The observation that
reduced early virus replication blunted CD8+ T cell priming
and prevented the onset of diabetes in a model of virus-
induced diabetes led to the discovery that early virus replica-
tion in dendritic cells is essential to disrupt immune tolerance
and that this process is dependent on expression of ubiquitin
specific peptidase 18 (USP18), an inhibitor of the IFNγ path-
way [67]. In this study, early viral replication was only
possible in dendritic cells, in which the IFN pathway was
downregulated, which is also an important prerequisite for
the induction of autoimmunity.

Infection of gut cells and changes in gut permeability This is a
speculative thought based on the observation that many viral
infections of the gut lead to increased gut permeability, with
novel antigens being presented in draining lymph nodes.
Bearing in mind that the lower gut and the pancreatic lym-
phatic drainage intersect in the pancreatic lymph nodes
(PLNs) [42], one can easily envision a scenario in which
auto-reactive CD8+ cells are primed with cross-reactive epi-
topes occurring in the PLNs as the result of increased gut
permeability. Another possibility is that changes in the
microbiome are induced by viral infections. For example, it
is known that, in particular, bacteriophage, i.e. viruses that
infect bacteria of the human gut microbiome, show high
variation as a result of changes in diet, hormonal balance or
even climate changes [68]—much more than the infected
bacteria themselves. Recent findings suggest that altering
certain bacterial populations present in the gut can lead to an
inflammatory state associated with Th1/Th17 polarisation
and, thus, to autoimmunity [69]. Therefore, since bacterio-
phage seem to be important determinants of the gut
microbiome, the differences in diabetes incidence between
monozygotic twins, or between inhabitants, different regions
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[2], or between immigrants and the first-generation of
offsprings from those immigrants [3, 4] can be explained by
differences in the gut virome.

Other mechanisms potentially involved in virally
facilitated initiation or acceleration of autoimmunity

Reactivation of endogenous HERV

Human endogenous retroviruses (HERVs) [70] are fossil
viruses that began to be integrated into the human genome
some 30–40 million years ago and now make up 8% of the
genome. HERVs may be triggers of autoimmune disease by
provision of a source of novel viral genes for recombination
with exogenous viruses, by immune dysregulation or by
super-antigen motifs. HERV infection has been shown to
trigger autoimmune rheumatic disease, and the resultant
inflammation observed could lead to elevated HERV expres-
sion [70]. The potential role of HERV in diabetes has not been
deciphered yet, but we will likely see more work done in this
field in the upcoming years.

Activation of polyclonal T cells

Recent observations in a virus-based diabetes models of the
mouse [17, 71, 72] have taught us that beta-cell-antigen-
specific T cells can recruit a high number of non-beta-cell-
antigen-specific bystander Tcells that add to the destruction of
beta cells (more than 98% of infiltrating CD8 cells in the rat
insulin promoter–lymphocytic choriomeningitis virus
(RIP-LCMV)model are not viral-antigen-specific [17]). From
this point of view, any viral infection of pancreatic structures
can lead to an accumulation of activated T cells in the imme-
diate vicinity of beta cells, which might significantly affect
their health and function.

Viral transformation of autoreactive B cells

Polyreactivity can arise as a result of random rearrangement of
Ig genes during B cell development [73], yet most of the
autoreactive B cells are eliminated via clonal deletion, anergy
or receptor editing [74]. However, cross-reactivity is a com-
mon serological feature of certain viral infections in humans
(HIV [75], Epstein–Barr virus [76], hepatitis A virus [77],
hepatitis C virus [78]) and persisting viral infection have long
been shown to lead to polyclonal B cell activation [79]. We
have yet to find an explanation of how these phenomena are
accompanied by a mechanism for affinity maturation of these
clonal products, which would be the crucial prerequisite for
autoimmunity, but recent observations have provided new,
exciting insights [80, 81].

Can viral infections afford protection against diabetes?

In the NOD mouse, we and others have shown that infection
with CVB can abrogate the development of type 1 diabetes
[82] when given at a very early time point. Mechanistic
explanations comprise an upregulation of programmed death
ligand 1 (PD-L1) and TNF-α production, as well as a by-
stander activation of protective regulatory T cells. Further-
more, transferring a small number of regulatory T cells (that
would not normally be sufficient to afford protection) from a
NOD mouse that has previously been infected with CVB3 to
another NOD mouse will protect the latter from developing
type 1 diabetes; thus, the viral infection may invigorate the
regulatory T cell compartment [82]. These enhancing effects
upon polyclonal Tregs are mainly elicited through TLR2 [83].

Conclusive information in humans is lacking. A prerequi-
site for viral infection-associated induction of autoimmunity is
the ability of the viral strain to damage islet cells and to induce
proinflammatory innate immune responses within the infected
islets. Thus, the presence of certain viral strains that lack this
ability (as is the case with CVB6 or echovirus E4 [66]) may
protect the host from infections with their beta cytotoxic
counterparts. Hence, there might be a protective mechanism
at play, similar to the one facilitated by the commensal bacte-
ria present in the gut, and further work is necessary to ascertain
this.

Besides strain specificities, infection dose and viral repli-
cation rate may also determine whether a given infection is
protective or promoting with regard to the initiation of auto-
immunity [84]. These differential effects may be explained by
differences in the virus-mediated upregulation of inflammato-
ry cytokine production, since the potentiation of cytokine
production in infected human PBMCs has been shown to be
associated to CVB4 infectivity. Hence, a vaccine covering all
major CVB strains, for example, might lower the severity of
infections and transform a promoting into a protective infec-
tion type.

Conclusions

When cumulative environmental determinants facilitate the
development of autoimmunity, virus infections may serve as
one of many risk factors. While many associations have been
found between type 1 diabetes and viruses, mostly enterovi-
ruses, we do not have a clear picture overall. It remains to be
determined how often viruses induce autoimmunity or beta
cell destruction and how often they accelerate the progression
from autoimmunity to disease.

Attempts to directly demonstrate the presence of viral
peptides within beta cells of diabetic patients have led to
controversial results. In spite of several successful reports
[85], a recently published work by Korsgren and colleagues
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[86] has reported that the particular mouse monoclonal anti-
body (clone 5D8/1) used to detect the viral capsid protein VP1
strongly cross-reacts with human mitochondrial peptides, es-
pecially in situations of mitochondrial stress. Thus, in addition
to the detection of viruses by antibodies, we will need to
demonstrate the presence of their genome by in situ hybridi-
sation and, in the ideal case, associate these findings with local
pathology present in the human pancreas, such as the lobular
MHC class I upregulation in whole islets—indeed, such effort
is already being carried out by the nPOD viral consortium
(nPOD-V) [87] and should provide more conclusive results
within the next year. The recently founded nPOD-V group
represents an unparalleled collaborative setting, highly com-
mitted to answer the question of viral implication in diabetes
and we are looking forward to the results.

From a mechanistic point of view, viral infections can very
well explain many of the hallmark features of early diabetes,
the difficult task is now to focus on novel methodologies that
are capable of dissecting the few existing specimens in depth
and establish conclusive associations between pathology and
viral presence or traces thereof. The breakdown of tolerance
towards autoantigens could indeed represent a derailment of
physiological autoreactivity and may thus be a secondary
phenomenon caused by chronic stimuli. One of these stimuli
might be chronic viral infections, but we have to bear in mind
that there are other chronic states, such as the recently de-
scribed regurgitation of duodenal bacteria into the common
pancreatic duct [88] or various forms of stress [89], that can
serve as stimuli in this very context.

For the future, we need considerably more studies on
human specimens to address crucial questions in the quest
for the causes of type 1 diabetes: What is the exact phenotype
and antigen specificity of immune cells infiltrating the islets?
What is the exact involvement of the innate immune systems
in human type 1 diabetes? What is the exact time point for the
occurrence of insulitis? What methods are most suitable to
detect viral causes of autoimmunity and how can we avoid
causality traps in complex biological systems? What changes
within the islets may lead to their own demise even before
autoimmunity is involved?
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