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Abstract: The relationship between inflammation and cancer has attracted attention for a long time.
The inflammatory tumor microenvironment consists of inflammatory cells, chemokines, cytokines,
and signaling pathways. Among them, inflammatory cytokines play an especially pivotal role in
cancer development, prognosis, and treatment. Interleukins, tumor necrosis factor-alpha (TNF-α),
transforming growth factor-beta (TGF-β), interferons, and vascular endothelial growth factor (VEGF)
are the representative inflammatory cytokines in various cancers, which may promote or inhibit
cancer progression. The pro-inflammatory cytokines are associated with advanced cancer stages,
resistance to immunotherapy, and poor prognoses, such as in objective response and disease control
rates, and progression-free and overall survival. In this review, we selected colorectal, pancreatic,
breast, gastric, lung, and prostate cancers, which are well-reported for an association between cancer
and inflammatory cytokines. The related cytokines and their effects on each cancer’s development and
prognosis were summarized. In addition, the treatment strategies targeting inflammatory cytokines
in each carcinoma were also described here. By understanding the biological roles of cancer-related
inflammatory cytokines, we may modulate the inflammatory tumor microenvironment for potential
cancer treatment.

Keywords: inflammatory tumor microenvironment; inflammatory cytokine; cancer development;
cancer prognosis; cancer treatment

1. Introduction

Inflammation is an innate immune system that involves the recruitment and activa-
tion of immune cells, as well as the function of soluble factors, including cytokines and
chemokines. This process has traditionally represented a front line of host defense against
harmful stimuli, such as pathogens or irritants, and inflammatory cells are also essential for
tissue repair [1]. Beyond this traditional role of inflammation, robust analyses of tumor tran-
scriptomes indicated that inflammation is closely related to tumors by revealing a distinct
expression profile of inflammatory cytokines and recruited immune cells in different tumor
types [2,3]. In the context of ‘tumor-associated inflammation’, recent extensive studies
have demonstrated a reciprocal interaction between inflammation and cancer, providing
a comprehensive concept of tumor microenvironment (TME) where tumor cells exist in
the network of stromal cells and cells of innate and adaptive immunity. While tumor cells
regulate the inflammation state by secreting inflammatory mediators in TME, inflammation
also controls cancer development, progression, and response to cancer therapies [4]. Tumor-
cell-intrinsic changes during tumorigenesis can elicit inflammation. For instance, the loss of
a tumor suppressor, e.g., p53, induces an increased activation of nuclear factor-κB (NF-κB)
and an inhibition of DNA repair, which leads to the expression of inflammatory genes and
the stimulation of the inflammation pathway [5,6]. Signaling through activated oncogenes
can drive the generation of cytokines, chemokines, and various inflammatory factors [7].
In addition, tumor cells in chronic inflammation secrete cytokines (transforming growth
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factor (TGF)-β and interleukin (IL)-10) and chemokines to prevent dendritic cells (DCs)
from the presentation of tumor antigens, and to recruit immunosuppressive cells, such
as myeloid-derived suppressor cells (MDSCs), regulatory T cells, and M2 macrophages,
thereby resulting in the generation of a cancer-promoting inflammation environment by
suppressing anti-tumor immune responses [8]. On the other hand, the notion that inflam-
mation plays a significant role in the regulation of cancer is currently well accepted. The
immune system either promotes or suppresses all stages of cancer, as well as prognosis
and the outcome of cancer treatment. Certain types of cancer are preceded by chronic
inflammation, which occurs before tumor initiation and promotes cancer. As shown in
colorectal or liver cancer cases, chronic inflammation, such as inflammatory bowel disease
or chronic hepatitis, increases the risk of cancer [9]. Reactive oxygen species generated
by macrophages during inflammation may cause the accumulation of mutations in nor-
mal tissues, and inflammatory cytokines can affect the pro-survival signaling, i.e., the
STAT-3 activating pathway, of mutated cells [10,11]. In the course of tumor progression,
inflammatory cytokines, including IL-6 and IL-17, facilitate the proliferation of tumor cells,
and several cytokines can play an antagonizing role in the immune cells of anti-tumor
responses. Inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and
IL-1b, can influence the expression of transcription factors that induce epithelial to mes-
enchymal transitions, which enable the dissemination of tumor cells [12]. However, acute
inflammatory responses contribute to anti-tumor immunity in TME. Upon DCs uptaking
tumor antigens and becoming mature, they induce inflammatory responses by regulating
multiple immune cells, such as M1 macrophages and natural killer cells, via inflammatory
cytokines, including interferon (IFN)-γ, IL-1, IL-12, and IL-15, etc. [13].

Here, we focus on the role of inflammatory cytokines in cancer and review the rela-
tionships of inflammatory cytokines with various cancer types. In this context, we discuss
therapeutic approaches targeting inflammatory cytokines for the development of anti-
cancer drugs. Given that the regulation of cancer is tightly engaged with inflammation,
specifically inflammatory cytokines, defining the underlying mechanisms will provide
insight into advanced strategies for the development of anti-cancer therapies.

2. Inflammatory Cytokines in Cancers
2.1. Colorectal Cancer

Colorectal cancer (CRC) refers to a malignant tumor composed of cancer cells in the
large intestine. CRC is largely divided into colon or rectal cancer, depending on where
cancer occurs. The incidence risk of CRC is associated with risk factors such as physical
inactivity, age, race, or sex [14]. Chronic inflammation is considered to have a strong associ-
ation with the early stages of tumor onset. CRC commonly occurs via a somatic mutation in
a gene that encodes a part of the Wnt signaling pathway; hereditary mutations, such as non-
polyposis colorectal cancer (Lynch syndrome) [15]; or familial adenomatous polyposis [16].
Inherited cases can be prevented or delayed by anti-inflammatory treatment [17,18]. Inflam-
matory bowel diseases, including Crohn’s disease and ulcerative colitis, increase the risk of
CRC related to colitis with poor prognoses [19,20]. Dietary and gut microbiota also affect
the progression of chronic enteritis [21–26]. Gut microbial distribution changes as CRC
progresses, and this change is related to pathological tumor characteristics [27,28]. While
certain types of intestinal bacteria may protect the host by promoting an anti-inflammatory
immune system, others can induce inflammation or mutation [21–26]. Since CRC is closely
associated with chronic inflammation, various studies for inflammatory cytokines in CRC
have been evaluated.

TNF-α is a well-known tumor-suppressive cytokine that induces apoptosis in specific
types of cells. On the other hand, it promotes tumors so that inflammation can proceed to
cancer [29–31]. Colitis and colitis-associated colon cancer (CAC) proceeded fast in a TNF-
α–IL-10-deficient mouse model compared with an IL-10-deficient mouse model. In this
study, TNF-α acted as a protective factor against inflammation and a tumor suppressor [32].
When TNF-α plays a tumor promoter role, a TNF-α inhibitor can be an attractive targeted
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treatment. In a study by Liu et al., a combination therapy of 5-fluorouracil (5-FU) and
infliximab (TNF-α inhibitor) showed better outcomes than 5-FU monotherapy [33]. In
more than 30% of CRC cases, granulocyte–macrophage colony-stimulating factor (GM-CSF)
expression is high. GM-CSF is produced in the hematological part, which may increase
anti-cancer immune responses. Overexpression of GM-CSF was strongly associated with
increased overall survival rates of CRC patients [34]. Interestingly, when anti-programmed
death-1 (PD-1) was used to treat a GM-CSF-silenced mice model, 25% tumor remission was
found, while 50% tumor remission was observed from a GM-CSF-secreting mice model [34].
The combination of anti-PD-1 and GM-CSF showed synergetic anti-cancer effects. Another
overexpressed inflammatory cytokine in CRC is IL-6. Inhibition of IL-6 or its receptors in a
CAC-induced mouse model revealed a decreased tumor burden [11,35]. IL-1β also plays
an important role in CRC oncogenesis with increased Toll-IL-1 receptor signaling [36,37].
Furthermore, the IL-1 receptor antagonist inhibited the metastatic process of CRC by sup-
pressing the IL-1α/PI3K/NF-κB pathway [38]. A meta-analysis of serum IL-6 in CRC
patients was performed, with a total of 17 studies. IL-6 is mainly produced by T cells,
macrophages, and endothelial cells. Elevated serum IL-6 levels correlated with worse over-
all and disease-free survival rates for CRC [39]. Other inflammatory cytokines such as IL-8,
IL-1 receptor antagonist (IL-1RA), and IL-6 were proven to be associated with advanced
CRC [40]. The inflammatory cytokines were confirmed to be attractive biomarkers for CRC
diagnosis and/or prognosis. Several clinical trials targeting inflammatory cytokines in CRC
have been initiated. A phase I/II trial using antibody targeting IL-6 (siltuximab) [41], and
a phase III trial of recombinant TNF receptor (etanercept) [42], failed to induce a clinical
response. However, in metastatic CRC, MABp1 (IL-1α-targeted antibody) proved to be safe
and effective in a phase I study [43]. The IL-1β inhibitor is known to increase the anti-tumor
efficacy of 5-FU. In a phase II clinical trial using 5-FU, bevacizumab, and anakinra (IL-1β
and α inhibitor) for patients with metastatic CRC, promising activity and a controllable
safety profile were shown [44].

2.2. Pancreatic Cancer

Pancreatic cancer is one of the most disastrous cancers and shows a very poor
prognosis. Current standards of care for pancreatic cancer are surgical resection with
chemotherapy [45]. It shows the lowest 5-year survival rate among cancers between 2007
and 2013 [46]. In most pancreatic cancer cases, it is symptomless until it progresses, and
this leads to a poor survival rate. Pancreatic cancer has some relevant risk factors, including
cigarette smoking, diabetes mellitus, chronic pancreatitis, and obesity [47–51]. Recently,
inflammation has been getting attention because it affects the development and progres-
sion of pancreatic cancer. The inflammation process is associated with some carcinogenic
processes [52]. Several inflammatory cytokines are known to be related to the oncogenesis
of pancreatic cancer.

IL-6 is a pro-inflammatory cytokine that shows diverse functions of cell multiplication,
injury, infection, and inflammation [53]. It affects tumor cells to develop pancreatic cancer
by controlling vascular endothelial growth factor (VEGF) secretion [54]. Targeting IL-6 was
suggested to be one of the therapeutic approaches for pancreatic cancer [55]. IL-8 plays
a key role in promoting the angiogenesis of pancreatic cancer. Primary sources for IL-8
are macrophages, platelets, and epithelial cells. IL-8 showed high levels in the serum of
pancreatic cancer patients and in the human pancreatic cancer cell line [56,57]. The elevated
IL-8 level was related to the low survival rate of pancreatic cancer patients, which has
led it to be considered as a marker for prognosis [58]. Interestingly, serum levels of IL-6,
IL-8, IL-10, and IL-1RA were significantly increased in pancreatic cancer patients. These
cytokine levels were associated with worse survival rates, poor performance status, and/or
weight loss [59]. TNF-α is associated with acute and chronic inflammation, autoimmune
disease, and inflammation related to cancers [60]. It has two receptors: (i) TNF-receptor 1,
which is distributed in all types of cells with a death domain that leads to apoptosis; (ii)
TNF-receptor 2, which is only distributed in hematopoietic cells without a death domain.
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According to the study with a pancreatic-cancer-induced mouse model, TNF-α accelerated
tumor growth and metastasis. Furthermore, anti-TNF-α treatment significantly inhibited
tumor progression [61]. IL-1β is known to be related to inflammation responses [62], cancer
progression [63], and cancer cell invasiveness [64] in pancreatic cancer. In this manner, IL-
1β has attracted attention as another therapeutic target for pancreatic cancer. Macrophage
migration inhibitory factor (MIF) appears to have a function as a pro-inflammatory cytokine
that controls immune and inflammatory responses [65]. MIF is also known to be associated
with tumor survival and progression [66,67]. From the phase I clinical study of imalumab
(a fully human recombinant antioxidized MIF antibody), the maximum tolerated and
biologically active doses have been investigated in pancreatic cancer patients [68]. TGF-β
directly inhibits cell proliferation in pancreatic cancer and controls immune response [69].
In a phase I/II study, a TGF-β2-specific inhibitor was used as second-line therapy, and it
showed significant improvements in clinical response compared with the current standard
of care [70].

2.3. Breast Cancer

Breast cancer is a disease that makes the cells in the breast grow out of control. Breast
cancer shows the highest incidence and cause of death in women [60]. It results in 14%
of total cancer deaths worldwide [71]. Risk factors for breast cancer include age; genetic
mutations, such as BRCA1 and BRCA2; reproductive history, and obesity. The initiation
process of breast cancer is not clear; however, inflammation has been suggested as a cause
for tumor initiation, progression, angiogenesis, and metastasis [72]. Inflammation is closely
related the cancer, in that cell proliferation is mainly derived from inflammatory molecules.

TNF-α promotes the activation, differentiation, survival, or death of cancer cells under
specific conditions. It also controls immune and inflammatory responses [73]. TNF-α is
rarely detected in healthy women’s serum, while it exists in high levels in breast cancer
patients [74,75]. The main cell sources for TNF-α are T cells and macrophages. When
93 breast carcinoma samples were analyzed, 97% of samples were positive for TNF-α.
Among them, 61% were considered to be high-grade TNF-α. There was no correlation
between TNF-α positivity and relapse-free or overall survival [76]. Anti-TNF-α treatment
using a monoclonal antibody (infliximab) against a TNF receptor appears to repress tumor
growth, induce tumor degeneration, and inhibit bone metastases in breast cancer-induced
mice [77]. TGF-β1 is considered as a prognosis marker for breast cancer. It is mainly
produced by T cells and macrophages. Breast cancer patients with high TGF-β1 plasma
levels had significantly worse overall and disease-free survival rates [78]. Elevated TGF-β1
levels in metastatic axillary lymph node tissue were associated with metastatic axillary
lymph node numbers and tumor size [79]. In breast cancer mouse models, blocking
TGF-β signaling was effective in decreasing tumor growth and metastasis [80]. IL-6 was
suggested to be another prognostic biomarker of breast cancer. In a study with 87 patients
who had hormone-refractory metastatic breast cancer, high levels of IL-6 were notably
related to poor survival [81]. IL-12 controls the immunity and inflammatory reactions that
mediate cancer progression. It has pro-inflammatory functions via activating cytotoxic
immune cells [82]. A phase II clinical study (NCT04095689) using chemotherapy and
pembrolizumab plus IL-12 gene therapy with triple-negative breast cancer is ongoing. The
combination of chemotherapy and pembrolizumab was proven to enhance the anti-tumor
efficacy. In addition, IL-12 gene therapy stimulates the anti-tumor immune response [83].
Gene therapy based on GM-CSF has been proven for its efficacy and safety through clinical
trials. In the phase I study, various cancers, including breast cancer, were treated with
oncolytic herpes simplex virus expressing GM-CSF. The anti-tumor immune response and
tumor necrosis were observed as having a safe profile [84].

2.4. Gastric Cancer

The incidence and mortality rates of gastric cancer have been constantly declining.
However, it is still the fifth most common cancer and the fourth leading cause of deaths
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related to cancer [71]. Among the many factors influencing gastric cancer, chronic atrophic
gastritis is most closely related to the occurrence of gastric cancer [85]. Gastric inflammation
is commonly caused by Helicobacter pylori and autoimmune gastritis. Gastric inflammation
leads to atrophic gastritis, metaplasia, dysplasia, and adenocarcinoma [86,87]. In addition,
chronic gastric inflammation increases the risk of gastric cancer. Various cytokines secreted
from immune and epithelial cells in chronic inflammation are identified, and they are
expected to be potential targets for gastric cancer treatment.

In a clinical study with gastric ulcer patients, IL-17 was proved to be important in
the inflammatory response to Helicobacter pylori. Moreover, IL-17 also affects the Heli-
cobacter pylori-associated diseases. IFN-γ showed increased levels in gastric mucosa after
Helicobacter pylori infection. IFN-γ upregulates NF- κB signaling so that carcinogenesis
occurs [88]. Accordingly, inhibition of IFN-γ can be a key treatment for gastric cancer.
IL-6 is a pro-inflammatory cytokine that promotes the growth and progression of gastric
cancer. It was identified that IL-6 is overexpressed in the stromal portion of gastric cancer
and the elevated IL-6 stimulates the Jak1-STAT3 pathway in gastric cancer via paracrine
signaling. This leads to the development of stroma-induced chemoresistance. To overcome
the resistance to chemotherapy by targeting IL-6, tocilizumab (anti-IL-6 receptor mono-
clonal antibody) was used in treatment and it effectively enhanced the anti-tumor effect
of chemotherapy in gastric cancer [89]. Several inflammatory cytokines were evaluated to
determine whether they may be applied as prognostic biomarkers. Gastric cancer patients
with high-IL-17-serum concentrations showed significantly lower 5-year survival rates
compared with patients with low IL-17 rates [90]. The expression of IL-22 receptors in
gastric cancer appears to be associated with lymphatic invasion and poor prognosis [91].
Furthermore, high levels of IL-6 were also related to poor prognosis with recurrence and
the overall survival rates of gastric cancer patients [92]. In a clinical trial, gene therapy
using GM-CSF has been proven useful for its efficacy and safety against gastric cancer [84].
Currently, PD-1/programmed death ligand-1 (PD-L1) immune checkpoint inhibitors (ICIs)
are often selected for cancer treatment. ICIs inhibit the immunosuppressive mechanisms
of tumor cells. ICIs utilize host autoimmune functions for antitumor activity while anti-
cancer agents attack the cancer cells directly. However, unfortunately, only a few selected
cancer patients responded to this immunotherapy due to different PD-1/PD-L1 expres-
sion levels. Infiltrated macrophage and PD-L1 expression in gastric cancer showed high
correlation. IL-6 and TNF-α from macrophages induce PD-L1 via the NF-κB and STAT3
signaling pathways. Elevated PD-L1 levels in gastric cancer cells promote the proliferation
of gastric cancer cells [93]. IL-6, TNF-α, and PD-L1 may be attractive targets for gastric
cancer treatment.

2.5. Lung Cancer

Lung cancer remains a major public health issue worldwide with both high incidence
and mortality rates [71]. Most lung cancers do not cause any typical symptoms, such
as cough, chest pain, shortness of breath, and hoarseness, at an early stage. Delayed
diagnosis may lead to poor survival rates in lung cancer patients [94]. According to
the American Cancer Society’s report, the 5-year relative survival rates of patients with a
distant metastasis of lung cancer are 8% and 3% for non-small cell lung cancer (NSCLC) and
small-cell lung cancer (SCLC), respectively [14]. Understanding the specific inflammatory
cytokines from the lung cancer will help for early diagnosis and novel treatment strategies.

From previous pre-clinical studies, the correlation between inflammatory cytokines
and lung cancer progression has been suggested. TNF-α acts as either a tumor suppressor
or promoter in lung cancer. As a tumor suppressor, TNF-α played an essential role in CD8 T
cell-mediated lung cancer cell elimination in vivo. The tumor regression from a lung cancer
mouse model using CD8 T cell epitope was dependent on TNF-α levels [95]. On the other
hand, as a tumor promoter, TNF-α attenuated Fas-induced A549 human lung carcinoma
cell death. This anti-cancer cell death effect was affected by NF-κB, phoshatidylinositole-3
kinase (PI3-K), and mitogen-activated protein kinase (MAPK) pathways, in addition to
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increased anti-apoptotic protein and FLICE-like inhibitory protein long (FLIPL) [96]. In
addition, TNF-α was proved to stimulate tumor growth and metastasis in lung cancer-
bearing mice. The tumor promoting effect of TNF-α was dependent on the activity of
NF-κB, which induces anti-apoptotic proteins, such as B-cell lymphoma-extra large (Bcl-
XL), cellular inhibitor of apoptosis protein (cIAP)1, and cIAP2 [97]. In these cases, the
anti-TNF-α drugs were suggested to reduce inflammation-induced tumor progression. IL-4
receptors were also expressed in lung cancer, and when the IL-4 receptor-targeted agent was
administered, high cytotoxicity was observed in lung cancer cells and lung cancer-induced
mice. IL-4 cytotoxin was proposed as a novel therapeutic approach for lung cancer [98].
VEGF is another overexpressed inflammatory cytokine in lung cancer. A combination
of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) and anti-
VEGF enhanced the anti-tumor efficacy to overcome the EGFR TKI resistance in lung
cancer-induced mice [99]. The VEGF inhibitors bevacizumab and ramucirumab have been
approved for NSCLC treatment in combination with chemotherapy [100]. Evidence from
clinical studies also proved the correlation between inflammatory cytokines and lung cancer
prognosis. Song et al. enrolled 48 NSCLC patients and 40 healthy controls to evaluate the
relationship between inflammatory cytokines and NSCLC. The levels of TNF-α, IL-6, IL-8,
and VEGF in serum were significantly higher in NSCLC patients compared with the healthy
control group. Furthermore, TNF-α, IL-8, and VEGF levels were increased in accordance
with the advanced stages of NSCLC [101]. Brenner’s team conducted a case–control study
with 807 lung cancer patients and 807 smoking-matched controls. Lung cancer patients
showed increased IL-6 and IL-8 levels in the serum, and the association was stronger among
former and current smokers. In the study, it was also found that IL-6 and IL-8 levels are
increased many years before the diagnosis of lung cancer [102]. From another clinical study,
IL-10 and TGF-β1 from NSCLC patients showed significantly higher serum levels than both
the healthy control and benign tumor groups. Down-regulated DNA methyltransferases
increased forkhead box protein P3 (Foxp3) genes, and consequently these Foxp3+ T cells
induced the immunosuppressive cytokines IL-10 and TGF-β1. The immunosuppressive
microenvironment led to the tumor progression of NSCLC [103]. Inflammatory cytokines
were also applied to predict the ICI treatment response from NSCLC patients. IL-10 and
IL-10 receptors were found in lung cancer tissue from NSCLC patients and lung cancer cell
line cultures. A positive correlation was discovered between IL-10 level and tumor size,
which resulted in poor prognosis. IL-10 counteracted IFN-γ effects on the PD-1/PD-L1
pathway, which induced tumor resistance to ICIs. In this manner, IL-10 may be used
to predict ICI treatment success forecasts in NSCLC before ICI treatment. Patients with
lower IL-10 will show better ICI response and prognosis [104]. From another recent study,
125 NSCLC patients who received a PD-1/PD-L1 inhibitor were enrolled to investigate
whether baseline serum IL-6 levels may predict ICI treatment efficacy. The subjects with
low IL-6 (<13.1 pg/mL) showed significantly higher objective response and disease control
rates than those with high IL-6 levels. In addition, the median progression-free and overall
survival rates were significantly longer in the low-IL-6 group compared with the high-IL-6
group. In this study, the IL-6 levels in serum were suggested as a potential biomarker to
predict the efficacy of ICI treatment in NSCLC [105].

2.6. Prostate Cancer

Prostate cancer is one of the most challenging cancer types among men. Cancer pro-
gression and therapeutic resistance often lead to high mortality rates [106]. Prostate cancer
ranks as the second leading cause of cancer-related deaths among American men [107].
Well-known risk factors for prostate cancer include older age [108], black race [109,110],
BRCA mutations [111,112], and family history [113]. Interest in the linkages between
inflammation and prostate cancer has increased. Chronic inflammatory disease, such as
prostatitis, was proved to increase the risk of prostate cancer [114,115]. On the other hand,
some negative associations between chronic inflammation and prostate cancer have also
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been reported [116,117]. Knowledge of the role of inflammatory cytokines in prostate
cancer progression may provide an optimized targeted-therapy strategy.

IL-30 overexpression by prostate cancer stem-like cells (PCSLC) promoted tumor onset
and progression in vivo. IL-30 also played a critical role in PCSLC spread to lymph nodes
and bone marrow by increasing the CXCR5/CXCL13 axis and lung metastasis through
the CXCR4/CXCL12 axis. In this study, suppressing PCSLC by the proper targeting of
upstream drivers was suggested as a potential treatment against prostate cancer progression
and recurrence [118]. Interestingly, TGF-β1 shows double-faced functions in prostate cancer
progression. At early stages, it acts as a cancer growth inhibitor, while at advanced stages, it
promotes cancer development [119,120]. Park et al. reported that TGF-β1 activates IL-6 in
human prostate cancer cells via synergistic signaling pathways, which are Smad2, p38-NF-
κB, JNK, and Ras. IL-6 accelerates cancer cell proliferation and survival, which influence
the progression and metastasis of prostate cancer. In addition, elevated IL-6 may contribute
to the conversion of TGF-β1′s role as a prostate cancer promoter. Anti-IL-6 neutralizing
antibody or antisense IL-6 effectively inactivated IL-6 signaling, leading to TGF-β-mediated
apoptosis [121]. Various clinical trials also showed the association between inflammatory
cytokines and prostate cancer prognosis. First, IL-6 levels in serum are increased in patients
with prostate cancer, and it significantly correlated with cancer prognosis. A clinical study
from Nakashima’s team measured IL-6 levels in serum samples from stages B, C, and D
prostate cancer patients. In this study, high serum IL-6 levels were associated with the
advanced stages of prostate cancer and poor survival rate [122]. IL-6 has been reported to
increase erythrocyte sedimentation rate [123], which was proved to be a prognostic factor in
the survival of advanced prostate cancer patients [124]. Another study from Michalaki et al.
reported elevated IL-6 and TNF-α serum levels in prostate cancer patients compared with
healthy controls. These increased inflammatory cytokines were correlated with advanced
stages, metastasis, and poor overall survival in patients with prostate cancer [125]. TNF-α
was also suggested to play an important role in the development of cachexia from prostate
cancer patients. The patients with high-TNF-α serum levels showed higher performance
status and mortality rates than the patients with undetectable TNF-α serum levels [126].
IL-17 is another inflammatory cytokine overexpressed in prostate cancer. Steiner et al.
performed a screening of inflammatory cytokines from normal, benign hyperplastic, and
malignant prostate tissues. IL-17 was rarely expressed in the normal prostate, whereas its
expression was increased in benign hyperplastic and malignant prostates. In addition, a
significant correlation was monitored between IL-17 level and both IL-6 and IL-8 levels in
malignant prostate specimens [127].

3. Conclusions

In this review, representative inflammatory cytokines in colorectal, pancreatic, breast,
gastric, lung, and prostate cancers were discussed. From the preclinical studies using cancer
cell lines and cancer-induced animal models, some potential treatment strategies targeting
inflammatory cytokines were suggested (Table 1). In addition, from the clinical trials, the
associations between inflammatory cytokines and cancer prognosis were evaluated (Table 2
and Figure 1). Taken all together, by understanding the biological roles of inflammatory
cytokines toward the cancers, we may modulate the inflammatory tumor microenvironment
to find ideal cancer-targeted treatment.
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Table 1. The suggested treatment strategies from preclinical studies according to inflammatory
cytokines in cancers.

Cancer
Type

Inflammatory
Cytokine Treatment Strategy Reference

Colorectal

TNF-α TNF-α inhibitor [29–31,33]

GM-CSF combination of anti-PD-1 and GM-CSF [34]

IL-6 inhibition of IL-6 or its receptor [11,35]

IL-1β IL-1β inhibitor [36,37]

IL-1 IL-1 receptor antagonist [38]

Pancreatic

IL-6 IL-6 signaling inhibitor [55]

IL-8 anti-IL-8 neutralizing antibody [56,57]

TNF-α TNF-α inhibitor [61]

Breast
TNF-α anti-TNF-α monoclonal antibody [77]

TGF-β blocking TGF-β signaling [80]

Gastric
IFN-γ IFN-γ inhibitor [88]

IL-6 anti-IL-6 receptor monoclonal antibody [89]

Lung
TNF-α TNF-α inhibitor [96,97]

IL-4R IL-4 cytotoxin [98]

VEGF combination of VEGF inhibitor and EGFR TKI [99]

Prostate
IL-30 suppressing PCSLC [118]

TGF-β1 and IL-6 anti-IL-6 neutralizing antibody or antisense IL-6 [121]
TNF: tumor necrosis factor; GM-CSF: granulocyte–macrophage colony-stimulating factor; PD-1: programmed
death-1; IL: interleukin; TGF: transforming growth factor; IL-4R: interleukin-4 receptor; VEGF: vascular endothelial
growth factor; EGFR: epidermal growth factor receptor; TKI: tyrosine kinase inhibitor; PCSLC: prostate cancer
stem-like cells.
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Table 2. The association between inflammatory cytokines in cancers and prognosis from
clinical studies.

Cancer Type Inflammatory Cytokine Source Prognosis Reference

Colorectal

GM-CSF tissue high GM-CSF level had better OS [34]

IL-6 serum high IL-6 level had poor OS and DFS [39]

IL-8, IL-1RA and IL-6 serum high IL-8, IL-1RA and IL-6 levels had advanced stages [40]

Pancreatic

IL-8 serum IL-8 positive had poor survival [58]

IL-6 and IL-10 serum high IL-6 and IL-10 levels had poor survival

[59]
IL-1RA serum low IL-1RA level had

poor survival

IL-6, IL-10 and IL-8 serum high IL-6, IL-10 and IL-8 levels had poor performance
status and/or weight loss

Breast

TNF-α tissue no correlation between TNF-α positivity and RFS or OS [76]

TGF-β1
serum high TGF-β1 level had poor OS and DFS [78]

tissue high TGF-β1 level had more metastatic axillary lymph
nodes and increased tumor size [79]

IL-6 serum high IL-6 level had poor survival [81]

Gastric

IL-17 serum high IL-17 level had poor 5-year survival [90]

IL-22 tissue high IL-22 receptors had more lymphatic invasion and
poor prognosis [91]

IL-6 serum high IL-6 level had poor recurrence and OS [92]

Lung

TNF-α, IL-6, IL-8 and VEGF serum high TNF-α, IL-8 and VEGF levels had advanced stages [101]

IL-6 and IL-8 serum high IL-6 and IL-8 had high lung cancer risk [102]

IL-10 and TGF-β1 serum high IL-10 and TGF-β1 levels had high lung cancer risk [103]

IL-10 and IL-10R tissue high IL-10 level had increased tumor size, resistance to
ICI and poor prognosis [104]

IL-6 serum low IL-6 level had increased ORR, DCR, PFS and OS in
ICI treated patients [105]

Prostate

IL-6 serum high IL-6 level had advanced stages and poor survival [122]

IL-6 and TNF-α serum high IL-6 and TNF-α levels had advanced stages,
metastasis and poor OS [125]

TNF-α serum high TNF-α level had poor performance status, poor
mortality rate and cachexia development [126]

IL-17, IL-6 and IL-8 tissue high IL-17, IL-6 and IL-8 levels had advanced stages [127]

GM-CSF: granulocyte–macrophage colony-stimulating factor; IL: interleukin; IL-1RA: IL-1 receptor antagonist;
TNF-α: tumor necrosis factor-α; MIF: macrophage migration inhibitory factor; TGF: transforming growth factor;
VEGF: vascular endothelial growth factor; IL-10R: interleukin-10 receptor; ICI: immune checkpoint inhibitor;
DFS: disease-free survival; RFS: relapse-free survival; ORR: objective response rate; DCR: disease control rate;
PFS: progression-free survival; OS: overall survival.

Author Contributions: Conceptualization, H.-M.L. and J.-E.C.; writing—original draft preparation,
H.-M.L., H.-J.L. and J.-E.C.; writing—review and editing, H.-M.L., H.-J.L. and J.-E.C.; visualization,
H.-M.L. and J.-E.C.; supervision, J.-E.C.; funding acquisition, J.-E.C. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No. 2022R1F1A1065569).

Conflicts of Interest: The authors declare no conflict of interest.



Biomedicines 2022, 10, 2116 10 of 15

Abbreviations

TME tumor microenvironment
NF-κB nuclear factor-κB
TGF transforming growth factor
IL interleukin
DC dendritic cell
MDSC myeloid-derived suppressor cell
TNF tumor necrosis factor
IFN interferon
CRC colorectal cancer
CAC colitis-associated colon cancer
5-FU 5-fluorouracil
GM-CSF granulocyte–macrophage colony-stimulating factor
IL-1RA IL-1 receptor antagonist
VEGF vascular endothelial growth factor
MIF migration-inhibitory factor
PD-1 programmed death-1
PD-L1 programmed death ligand-1
ICI immune checkpoint inhibitor
NSCLC non-small-cell lung cancer
SCLC small-cell lung cancer
PI3-K phoshatidylinositole-3 kinase
MAPK mitogen-activated protein kinase
FLIPL FLICE-like inhibitory protein long
Bcl-XL B-cell lymphoma-extra large
cIAP cellular inhibitor of apoptosis protein
EGFR epidermal growth factor receptor
TKI tyrosine kinase inhibitor
Foxp3 forkhead box protein P3
PCSLC prostate cancer stem-like cells
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