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Abstract: Many researchers have focused on the oligomeric form of proanthocyanidins 

with a lower level of polymerization found in foodstuffs such as grape seeds and 

blackberries. The present study indicated that the oral administration of oligomers isolated 

from persimmon fruits extended the lifespan of senescence-accelerated mouse prone/8 

(SAMP8), a murine model of accelerated senescence. On the other hand, oligomer-treated 

SAMP8 did not show stereotypical behavior. We also revealed that the oral administration 

of oligomers improved spatial and object recognition memory in SAMP8. The density of 

axons in the hippocampal CA1 was significantly increased by oligomer administration. 

Moreover, the administration of oligomers increased the phosphorylation of vascular 

endothelial growth factor receptor (VEGFR)-2 in the hippocampal CA3, hypothalamus, 

and choroid plexus. We speculate that memory improvement accompanied by histological 

changes may be induced directly in the hippocampus and indirectly in the hypothalamus 

and choroid plexus through VEGFR-2 signaling. In the present study, we elucidated the 

protective effect of oligomers against memory impairment with aging. VEGFR-2 signaling 

may provide a new insight into ways to protect against memory deficit in the aging brain. 
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1. Introduction 

Proanthocyanidins are known as condensed tannins, members of a specific group of polyphenolic 

compounds, and they have been reported to exhibit powerful antioxidant activity [1,2]. Although 

proanthocyanidin is the most abundant dietary polyphenol, its high-level polymerization results in 

limited absorption in vivo [3]. We previously isolated oligomeric proanthocyanidins from persimmon 

peel, which is usually discarded even though it is rich in phenolic compounds [4]. The amount of 

proanthocyanidin in the peel is higher than in the rest of the fruit. It was reported that oligomeric 

proanthocyanidins (oligomers) isolated from persimmon peel increased the expression of silent 

information regulator two ortholog 1 (Sirt1), which is recognized as an essential factor in lifespan 

extension, in an H2O2-induced cellular senescence model. Oligomer treatment also decreased the 

expression level of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidation in the model [5]. 

In the present study, we investigated the possibility of oligomers extending the lifespan of 

senescence-accelerated mouse (SAM) prone/8 (SAMP8). Since dietary restriction extends the lifespan 

of rodents, we compared food-restricted with oligomer-treated mice regarding longevity and 

behavioral characters. Moreover, we hypothesized that the oligomeric form of proanthocyanidins 

exerts a beneficial effect on memory dysfunction and neuroprotection in the aged brain. Using the 

SAMP8 model, we investigated the effect of oligomers on spatial and object recognition memory, and 

the densities of axons, dendrites, and synapses were observed. Furthermore, to evaluate the 

neuroprotective effect, vascular endothelial growth factor receptor (VEGFR)-2 as a possible modifier 

of motor neuron degeneration and its phosphorylation were also investigated. 

2. Fractionation of Oligomeric Proanthocyanidins of Persimmon Fruits 

As described previously [6], a mixture of freshly crushed persimmon fruits (unripened, 5–7 cm in 

diameter, 1 kg) and dried green tea leaves (150 g) in water containing 1% citric acid (2 L) was boiled 

for 3 h. At this stage, nucleophillic substitution at the C-4 positions of polymeric proanthocyanidins 

with monomeric tea catechins occurred, and, consequently, the polymeric molecules were converted 

into oligomers. After cooling, insoluble materials were removed by filtration, and the filtrate was 

directly applied to a Sephabeads SP 825 column (10 cm i.d. × 45 cm, Mitsubishi Chemical Co., Japan). 

Elution with water (4 L) washed out non-phenolic compounds consisting of citric acid, sugars, 

minerals, amino acids, etc. Further elution with water containing increasing amounts of methanol 

(0%–100% methanol, 20% stepwise elution, 4 L each) yielded a mixture of oligomeric 

proanthocyanidins and tea catechins (40.3 g). The mixture was subsequently subjected to Sephadex 

LH-20 column chromatography with ethanol. The monomeric tea catechins were eluted out with 

ethanol, and oligomers were yielded (21.7 g) (Figure 1). The degree of oligomeric polymerization was 

estimated to be 3.3 by quantitative HPLC analysis of thiol degradation products [7], while the 

proportions of epigallocatechin (EGC), epicatechin (EC), epigallocatechin 3-O-gallate (EGCg), and 

epicatechin 3-O-gallate (ECg) in oligomers were determined to be 47, 15, 31, and 6%, respectively. 
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Figure 1. Fractionation of persimmon oligomeric proanthocyanidins. 

 

3. Oligomeric Proanthocyanidins Extend Lifespan of SAMP8 

Increased longevity is one of the most common desires of human beings. Therefore, anti-aging 

research is ultimately focused on lifespan extension. However, no convincing strategy based on 

scientific evidence has been suggested, except for dietary restriction [8]. Lifespan extension by dietary 

restriction has been observed over the years in many species, including rats, mice, hamsters, dogs, fish, 

invertebrates, and yeast. Despite these very encouraging results, clinical application is complex and 

limited. Regarding this point, although various dietary restriction mimetics, such as glycolytic 

inhibitors and antioxidants, have been suggested, scientific evidence must be accumulated to support 

their application [8]. For this reason, the search for novel anti-aging agents to elicit the same beneficial 

effects as caloric restriction without side effects and toxicity has attracted much attention. 

The lifespan of SAMP8 mice were significantly decreased compared to control strain 

SAM-resistance/1 (SAMR1, as controls), whereas, the administration of oligomers extended the 

lifespan, as shown in Figure 2. However, the lifespan does not extend in response to an increase in the 

oral dose of oligomers. The bioactivity of catechin derivatives is related to their structural phenolic 

groups. The increase in the level of polymerization means a rise in phenolic group contents. Previously, 

we demonstrated that proanthocyanidins showed strong antioxidative activities accompanying with 

monomeric catechin derivatives in vitro [9]. Many researchers have suggested that antioxidative 

activities are associated with a delay in the aging process and extension of the lifespan in various 

organisms [10]. Actually, we demonstrated that oligomers increased Sirt1 expression, a related protein 

of longevity extension, in a cellular senescence model [5]. Therefore, we expected oligomeric 

proanthocyanidins to exert a powerful activity to extend the lifespan due in part to antioxidative effects. 
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Figure 2. Effects of oligomers on lifespan of SAM. Forty-five or forty-six-week-old 

SAMP8 mice were administered vehicle (Veh, water p.o., n = 10), while another two 

groups were administered oligomers orally at doses of 1 or 10 mg/kg body weight/day (n = 10) 

using a stomach tube until death. For the remaining group of mice, the mean food intake 

was restricted to 60% until death (n = 10). SAMR1 mice (45–46 weeks old, n = 10) were 

used as a control group. (A) Effects of oligomers on survival of SAMP8. (B) Lifespan 

index based on survival data. Open circle: SAMR1; closed circle: SAMP8 (Veh); open 

triangle: SAMP8 (oligomers at 1 mg/kg B.W./day); closed triangle: SAMP8 (oligomers at 

10 mg/kg B.W./day); gray square: SAMP8 (60% food restriction). 
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To elucidate the related mechanisms, the expression of Sirt1 was observed. Sir2 is an 

NAD
+
-dependent deacetylase implicated in the regulation of lifespan in species as diverse as yeast, 

worms, and flies [11]. Yeast Sir2 is a heterochromatin component that silences transcription at the 

silent mating loci, telomeres, and ribosomal DNA [12]. In addition, it suppresses recombination in 

ribosomal DNA and modulates the longevity of most organisms, including mammals [13,14]. 

Therefore, the enzymatic activity of Sir2 may indicate its usefulness as an effective caloric restriction 

mimetic [15]. Among the seven mammalian homologs of Sir2, Sirt1 is the human ortholog of yeast 

Sir2 and the best-characterized member of mammalian sirtuins. Recently, we showed that pretreatment 

with oligomers significantly increased Sirt1 expression in a cellular senescence model [5]. Therefore, 

in the present study, we investigated the effect of oligomers on the expression of Sirt1 in the SAM model. 
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Resveratrol has been reported to promote the fitness and survival of simple organisms such as 

Saccharomyces cerevisiae [16,17] as well as mice fed high-calorie diets [18,19] by activation of Sirt1. 

Moreover, we previously clarified that oligomers increased Sirt1 expression in a cellular senescence 

model [5]. Therefore, the effect of oligomers on Sirt1 was compared with resveratrol in vivo. We 

expected the administration of oligomers to increase the expression and activation of Sirt1 in the brain 

and to slow aging-related deteriorations of SAMP8. In this study, the administration of oligomers 

slightly elevated Sirt1 expression in the brain of SAMP8, but not significant (Figure 3). The treatment 

of resveratrol did not have any effect on Sirt1. 

Figure 3. Effects of oligomers on Sirt1 expression in the brain of SAM. 

Forty-five-week-old SAMP8 were administered vehicle (Veh, water p.o., n = 5), oligomers 

(O (50), 50 mg/kg B.W./day, p.o., n = 5), or resveratrol (Res (90), 90 mmol/kg B.W./ day, 

p.o., n = 5). After 5 weeks of administration, brain lysates were immunoblotted with 

antibodies for Sirt1. Sirt 1 expression intensities were divided by -actin expression. 

SAMR1 mice were used as a control (Cont, n = 4). 

 

Dietary restriction as an effective method for the extension of longevity has also been reported to 

induce stereotypical behaviors such as rearing and jumping independent of the lifespan [20]. In 

behavioral analyses, we showed that rearing, jumping, and hanging from the lid of the cage in 60% 

food-restricted SAMP8 markedly increased compared with vehicle-treated SAMP8. Surprisingly, 

oligomer-treated SAMP8 did not show an increase in these stereotypical behaviors (Figure 4). 

Moreover, in inclined plane and voluntary running tests performed to observe differences in motor 

function, we found no significant difference in the motor function among all SAMP8 groups (Figure 5). 

These results indicate that stereotypical behaviors shown in the 60% food-restricted group have no 

relationship with motor function. It has been reported that dietary restriction may induce anxiety-like 

behavior by the down-regulation of corticotrophin-releasing factor [21]. Diet-restricted rats showed 

stereotypy by an increase of dopamine receptor signaling. Chen et al. [20] demonstrated that 

stereotypical behaviors brought about by caloric restriction were eliminated in Sirt1-knockout mice, 

indicating that Sirt1 activation may cause stereotypical behaviors on dietary restriction. In our study, 

although the lifespan was extended by oligomers as well as 60% food restriction, mice administered 

oligomers did not show stereotypical behaviors, like Sirt1-knockout mice undergoing food restriction. 
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Figure 4. Effects of oligomers on stereotypical behaviors. Forty-five or forty-six-week-old 

SAMP8 mice were administered vehicle (Veh, water p.o., n = 4), while another two groups 

were administered oligomers orally at doses of 10 mg/kg body weight/day (O (10), n = 4) 

using a stomach tube until death. For the remaining group of mice, the mean food intake 

was restricted to 60% until death (FR, n = 4). SAMR1 mice (Cont, 45–46 weeks old, n = 4) 

were used as a control group. One hundred and thirty-nine days after the start of 

administration, actions of rearing up on the hindlimbs and jumping from the bottom of the 

cage were counted for 15 min (A, B). The time spent hanging from the lid was measured 

for 10 min (C). Administration was continued during the tests. 
a
 p = 0.0034 (Student’s 

t-test); * p < 0.05 (One-way ANOVA, post-hoc Bonferroni’s test). 
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Figure 5. Effects of oligomers on motor function. Forty-five or six-week-old SAMP8 mice 

were administered vehicle (Veh, water p.o., n = 4), while another two groups were 

administered oligomers orally at doses of 10 mg/kg body weight/day (O (10), n = 4) using 

a stomach tube until death. For the remaining group of mice, the mean food intake was 

restricted to 60% until death (FR, n = 4). SAMR1 mice (Cont, 45-46 weeks old, n = 4) 

were used as a control group. One hundred and thirty-nine days after the start of 

administration, the time spent on the inclined surface without dropping was measured (A). 

The number of rotations measured for 30 min (B). Administration was continued during 

the tests. 
a
 p = 0.0159 (A: Student’s t-test). 
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4. Oligomeric Proanthocyanidins Improve Memory and Enhance Phosphorylation of VEGFR-2 

in SAMP8 

SAMP8 developed age-related cognitive deficit at as early as 4 months and had a short  

lifespan relative to SAM-resistance/1 (SAMR1). SAMP8 show a decrease in the release of 

acetylcholine and noradrenaline in comparison with age-matched SAMR1 [22,23]. Many 

age-dependent alterations in various brain regions such as the cerebral cortex and hippocampus at an 

early stage in SAMP8 have been suggested as causes of memory deficit [24,25]. In the hippocampus, 

there was a greater increase of glial fibrillary acidic protein as an astrocyte marker in CA1-3 regions of 

SAMP8 compared with age-matched SAMR1, indicating enhanced reactive gliosis in aged SAMP8 [26]. 

Tanaka et al. [27] reported the severe loss of oligodendrocytes in the hippocampal CA1 of SAMP8. 

Moreover, neuronal loss and lower-level expressions of glial cell line-derived neurotrophic factor in 

the hippocampal CA1 associated with memory impairment of SAMP8 were reported [28]. Therefore, 

hippocampal dysfunctions of SAMP8 have been considered to be a major cause of age-dependent 

memory impairment. Various candidate therapeutic agents for memory dysfunction in SAMP8 have 

been reported, such as acetyl-L-carnitine, α-lipoic acid, and Choto-san (a herbal formula medicine), as 

well as caloric restriction [29–32]. In those studies, oxidative stress was focused on as a cause of 

memory impairment in SAMP8, although the change of oxidative stress was limited in the cerebral 

cortex. Additionally, neuronal morphological evaluations were insufficient in those studies. 

In our study, oligomers improved spatial memory and object recognition memory in SAMP8. The 

memory improvements seen in 18- and 38-week-old SAMP8 led to memory levels almost the same as 

those of SAMR1 (Figures 6 and 7). To investigate the neurological changes brought about by the oral 

administration of oligomers, we carried out immunohistological analysis of the brain of 59-week-old 

SAMP8. Figure 8 shows the effect of oligomers on axons, dendrites, and synapses in the oriens and 

radiatum of hippocampal CA1; oriens, lucidem and radiatum of hippocampal CA3; and molecular 

layer and hilus of the dendate gyrus (DG). The expression levels of neurofilament-H (p-NF-H; axon 

marker) were increased in oligomer-administered compared with vehicle-treated mice. The expression 

levels of microtubule-associated proteins (MAP) 2a and 2b (MAP2; dendrite marker) and 

synaptophysin were slightly increased in oligomer-administered mice. In particular, the expression of 

p-NF-H significantly increased in the hippocampal CA1 by oligomer administration. p-NF-H is used 

as a marker of axons, since the phosphorylated form of NF-H is translocated into axons [33]. In the 

hippocampus of aged mice, fragments of degenerated axons were also increased, although reductions 

of neuronal numbers are small in this region [34]. Axonal termination to the spine is a necessary step 

for synaptogenesis. Considering synaptic losses in the hippocampal CA1 and CA3 and the parietal 

cortex in SAMP8 [35], as well as in the hippocampal CA1, CA3, and DG in aged rats [36], axonal 

regeneration is important for improving the hippocampal function. Therefore, the increased density of 

axons in the hippocampal CA1 was suggested to have a protective role against memory loss  

with aging. 
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Figure 6. Effects of oligomers on spatial memory deficit in SAMP8. Eighteen-week-old 

SAMP8 were administered vehicle (Veh, water p.o., n = 6; closed circles) or oligomers  

(10 mg/kg body weight/day, p.o., n = 6; open squares or 100 mg/kg body weight/day, p.o., 

n = 5; closed squares) for 5 weeks. SAMR1 were used as a control (Cont, n = 5; open 

circles). Fifteen days after the start of administration, memory acquisition tests were 

continued for 6 days in a Morris water maze. Administration was continued during the 

tests. Escape latencies to a hidden platform were measured (A). The swimming velocities 

of mice in the memory acquisition test are shown (B). Thirty-eight-week-old SAMP8 were 

administered vehicle (Veh, water p.o., n = 7) or oligomers (O (10), 10 mg/kg body 

weight/day, p.o., n = 7 or O (50), 50 mg/kg body weight/day, p.o., n = 7). Age-matched 

SAMR1 were used as a control (Cont, n = 7). Twenty-eight days after administration 

started, an object location test was performed. The preference index was defined as the 

number of times a mouse made contact with any one of the objects (training session) or the 

moved object (test session) out of the total number of times the mouse made contact with 

both objects (%) (C). * p < 0.05 vs. Veh. (A and B: Repeated measures two-way ANOVA 

followed by Dunnett’s or Bonferroni’s post-hoc test); * p < 0.05 (C: One-way ANOVA 

followed by Bonferroni’s post-hoc test); 
a 
p = 0.0005;

 b
 p = 0.0213 (C: paired t-test). 
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Figure 7. Effects of oligomers on object recognition memory deficit in SAMP8. 

Eighteen-week-old SAMP8 were administered vehicle (Veh, water p.o., n = 6) or oligomers 

(O (10), 10 mg/kg body weight/day, p.o., n = 6 or O (100), 100 mg/kg body weight/day, 

p.o., n = 5). Age-matched SAMR1 were used as a control (Cont, n = 5). Twenty-four days 

after the start of administration, a novel object recognition test was performed (A). 

Thirty-eight-week-old SAMP8 were administered vehicle (Veh, water p.o., n = 7) or oligomers 

(O (10), 10 mg/kg body weight/day, p.o., n = 7 or O (50), 50 mg/kg body weight/day, p.o., 

n = 7). Age-matched SAMR1 were used as a control (Cont, n = 7). Twenty-three days after 

the start of administration, a novel object recognition test was performed (B). The 

preference index was defined as the number of times a mouse made contact with any one 

of the objects (training session) or the novel object (test session) out of the total number of 

times the mouse made contact with both objects (%). * p < 0.05 (One-way ANOVA 

followed by Bonferroni’s post-hoc test); 
a
 p = 0.0174; 

b
 p = 0.0014 (paired t-test). 
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Figure 8. Effects of oligomers on the decrease of axons, dendrites, and synapses in the 

hippocampus. Fifty-nine-week-old SAMP8 were administered vehicle (Veh, water p.o.,  

n = 3) or oligomers (O (50), 50 mg/kg body weight/day, p.o., n = 3). After seven days of 

administration, brain slices were immunostained with p-NF-H (A), MAP2 (B), and 

synaptophysin antibodies (C). The intensities of immuno-positive areas in the hippocampus 

were quantified. 
a
 p = 0.0243; 

b
 p = 0.0344 (Student’s t-test). 
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Previous studies suggested that oxidative stress is a major cause of memory impairment in SAMP8. 

Hippocampus-specific modulation by oligomers is not explained by an anti-oxidative effect, since only 

the cerebral cortex is susceptible to oxidative stress in SAMP8 and not the hippocampus [37]. 

Therefore, to investigate target molecules by the oral administration of oligomers in the brain of 

SAMP8, we performed a receptor tyrosine kinase phosphorylation antibody array, and clarified that 

oligomer treatment increased the phosphorylation of VEGFR-2, as shown in Figure 9. In addition, the 

effect of oligomers on the expression in various brain regions was also investigated (Figure 10). 

Increased expressions of p-VEGFR-2 were observed in the cerebral cortex, hypothalamus, choroid 

plexus, and hippocampal CA3 layer of SAMP8 (Figure 11A). In particular, the p-VEGFR-2 level in the 

hypothalamus of oligomer-treated SAMP8 was significantly increased compared with that in 

vehicle-treated mice. On the other hand, expression levels of VEGFR-2 in an SAMP8 group administered 

oligomers did not show significant changes compared with vehicle-administered mice in all brain regions 

observed (Figure 11B). In neurons, stimulation by VEGFR-2 among protein tyrosine kinase receptors of 

VEGF is linked to Akt/PKB activation and neuronal protection in hypoxic preconditioning [38]. Moreover, 

VEGFR-2 mediated a protective effect through phosphatidylinositol-3-kinase/Akt- and mitogen-activated 

protein/extracellular signal-regulated kinase-signaling pathways in glutamate-induced toxicity [39]. In 

particular, memory enhancement in recombinant adeno-associated viral vectors expressing human 

VEGF-injected mice was inhibited by the injection of dominant-negative mutant VEGFR-2 [40]. This 

indicates that VEGF/VEGFR-2 is directly associated with neuronal signaling. VEGF also exerts 

indirect effects on neurons. Moreover, the topical administration of VEGF to the surface of the brain 

reduces the infarct size, and intraventricular VEGF enhanced the survival of newly generated neurons 

in the dentate gyrus and subventicular zones after focal cerebral ischemia [41]. In this study, we firstly 

showed that memory enhancement through oligomer treatment was eliminated by SU1498, an 

inhibitor of VEGFR-2 (Figure 12). Considering that VEGF-E-induced memory was also inhibited by 

SU1498, oligomers or their metabolites may regulate memory by the activation of VEGFR-2. 

We found that the administration of oligomers increased the phosphorylation of VEGFR-2 in the 

hippocampal CA3 region, suggesting that oligomeric metabolites directly affect the hippocampus, like 

the VEGFR-2 ligand. It has been reported that Ca
2+

 influx and synaptic transmission by VEGF in the 

hippocampus influences the generation of long-term changes in synaptic efficacy [42]. VEGF also 

stimulates neurite outgrowth via Rho/ROK signaling in cerebral cortical neurons [43]. Interestingly, 

changes in the synapes and neurites induced by VEGF are caused by the activation of VEGFR-2 rather 

than VEGFR-1. Therefore, we speculated that the phosphorylation of VEGFR-2 induced by the 

administration of oligomers within the hippocampus may be related to an increase in the densities on 

neurites and synapses in the hippocampus. 

The administration of oligomers increased the phosphorylation of VEGFR-2 in the hypothalamus 

and choroid plexus as well as the hippocampus. The hypothalamus is contained in the Papez circuit. 

The Papez circuit is a sensory circuit involving the thalamus, sensory cortex (especially the cingulate 

region), hippocampus, and mammillary body of the hypothalamus [44]. It has been reported that 

lesions in the Papez circuit are associated with amnesia and the impairment of recognition memory [45]. 

Therefore, we speculate that the hypothalamus is activated by the phosphorylation of VEGFR-2, which 

may affect the hippocampus through the Papez circuit. 
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The choroid plexus is made up of numerous villi which project into the ventricles of the brain. Each 

villus is composed of a single layer of epithelial cells overlying a core of connective tissues and blood 

capillaries [46]. The choroid plexus is involved in the most basic aspects of neural function, including 

maintaining the extracellular milieu of the brain by actively modulating chemical exchange between 

the cerebrospinal fluid and brain parenchyma, surveying the chemical and immunological status of the 

brain, detoxifying the brain, secreting a nutritive cocktail of polypeptides, and participating in repair 

processes following trauma. This diversity of functions may mean that even modest changes in the 

choroid plexus can have far-reaching effects [47]. Actually, a host of growth factors and other 

neuroprotective agents given via the cerebrospinal fluid can minimize the adverse effects of stroke on 

the rat hippocampus. Multiple functional failures including a decrease of cerebrospinal fluid as well as 

the atrophy of choroidal epithelial cells shown in normal aging as well as advanced Alzheimer’s 

disease indicate that the maintenance of cerebrospinal fluid through the choroid plexus may have 

beneficial effects against neurodegenerative diseases [48]. Moreover, it was reported that the 

intracerebroventicular injection of nerve growth factor or insulin-like growth factor-1 improved 

memory deficit and hippocampal deterioration [49,50]. Therefore, we speculate that oligomers may 

induce the secretion of some peptides after the phosphorylation of VEGFR-2 in the choroid plexus, 

and then this peptide may induce changes in the hipppocampus. 

Figure 9. Effects of oligomers on phosphorylated VEGFR-2 (p-VEGFR-2) and VEGFR-2 

expressions. Fifty-nine-week-old SAMP8 were administered vehicle (Veh, water p.o.) or 

oligomers (O (50), 50 mg/kg body weight/day, p.o.). After seven days of administration, 

brain lysates were immunoblotted with antibodies for p-VEGFR-2 (A) or VEGFR-2 (B). 

Expression intensities were divided by -actin expressions to calculate ratios. 
a
 p = 0.0481 

vs. O (50) (Student’s t-test). 
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Figure 10. Effects of oligomers on p-VEGFR-2 and VEGFR-2 expression in various brain 

regions. Fifty-nine-week-old SAMP8 were administered vehicle (Veh, water p.o., n = 3) or 

oligomers (O (50), 50 mg/kg B.W./day, p.o., n = 3). After seven days of administration, 

brain slices were immunostained with p-VEGFR-2 (A) and VEGFR-2 (B) antibodies. 
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Figure 11. Intensities of p-VEGFR-2- (A) and VEGFR-2 (B)-positive areas were 

quantified in the cerebral cortex, hypothalamus and choroid plexus, and the CA1, CA3, 

and DG of the hippocampus. 
a
 p = 0.0429 vs. O (50) (Student’s t-test). 
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5. Acute Toxicity Studies 

We carried out an investigation of the side effects or toxicity of oligomers. The results showed 

normal ranges of biochemical parameters such as alanine aminotransaminase, aspartate 

aminotransaminase, and blood urea nitrogen as well as changes in body and tissue weights, although 

the maximum concentration for oral administration was higher (500 mg/kg body weight/day) than the 

average dietary intake of proanthocyanidins of 58 mg/day of humans in the United States [51]. 

Therefore, we suggest that oligomeric proanthocyanidins are safe and novel anti-aging agents 

associated with life span extension. 
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Figure 12. Effects of oligomers and VEGFR-2 on memory. Male ddY mice (6 weeks old) 

were administered oligomers (O (50), 50 mg/kg body weight/day, p.o., n = 4) for 7 days. 

Then, the vehicle (Veh, 5% DMSO in 0.9% NaCl) was injected intracerebroventricularly at 

60 min after the final administration of oligomers. Five days after vehicle injection, SU1498 

(5 nmol/μL, solution is 5% DMSO in 0.9% NaCl) was injected intracerebroventricularly at 

60 min after the final administration of oligomers. 
a
 p = 0.0392 (Student’s t-test). 
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6. Closing Remarks 

We previously revealed that oligomers consisted of various combinations of 4 types of monomer: 

EGC, EC, EGCg, and ECg. Oligomers containing dimers, trimers, and tetramers of EGC, EC, EGCg, 

and ECg are considered to exert a stronger activity than polymers. Several researches suggest that 

absorption and utilization of oligomers to prevent age-dependent changes depends on their structure 

and/or polymerization [52–54]. Therefore, the next study must be elucidated that the similarities and 

differences in activities and functional mechanisms between oligomers and metabolites including 

monomers in vivo. 

In summary, oligomer administration exerted its effect on extension of the lifespan with a tendency 

of increased Sirt1 expression of brain tissue and without stereotypical behavior in SAMP8. Moreover, 

the density of axon in the hippocampal CA1 and the phosphorylation of VEGFR-2 in the hippocampal 

CA3, hypothalamus, and choroid plexus were increased by oligomers, which influenced on the 

memory improvement directly or indirectly. Therefore oligomeric forms of proanthocyanidins could 

act as a potential therapeutic agent against neurodegenerative disease in the brain. 

Acknowledgments 

This work was supported in part by Grants-in-Aid (C) from the Ministry of Education, Culture, 

Sports, Science, and Technology, Japan (No. 19500661 to T.Y.). 



Molecules 2014, 19 6723 

 

Author Contributions 

T.Y. Designed the experiment and wrote the manucript, all autors have read, commented on and 

approvd the submitted version. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Dixon, R.A.; Xie, D.Y.; Sharma, S.B. Proanthocyanidins—A final frontier in flavonoid research? 

New Phytol. 2005, 165, 9–28. 

2. Xie, D.Y.; Dixon, R.A. Proanthocyanidin biosynthesis—Still more questions than answers? 

Phytochemistry 2005, 66, 2127–2144. 

3. Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy 

of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 

230S–242S. 

4. Gorinstein, S.; Zachwieja, Z.; Folta, M.; Barton, H.; Piotrowicz, J.; Zemser, M.; Weisz, M.; 

Trakhtenberg, S.; Màrtìn-Belloso, O. Comparative contents of dietary fiber, total phenolics, and 

minerals in persimmons and apples. J. Agric. Food Chem. 2001, 49, 952–957. 

5. Lee, Y.A.; Cho, E.J.; Yokozawa, T. Protective Effect of persimmon (Diospyros kaki) peel 

Proanthocyanidin against oxidative damage under H2O2-induced cellular senescence. Biol. Pharm. 

Bull. 2008, 31, 1265–1269. 

6. Lee, Y.A.; Kim, Y.J.; Cho, E.J.; Yokozawa, T. Ameliorative effects of proanthocyanidin on 

oxidative stress and inflammation in streptozotocin-induced diabetic rats. J. Agric. Food Chem. 

2007, 55, 9395–9400. 

7. Tanaka, T.; Takahashi, R.; Kouno, I.; Nonaka, G.I. Chemical evidence for the de-astringency 

(insolubilization of tannins) of persimmon fruit. J. Chem. Soc. Perkin Trans. 1994, I, 3013–3022. 

8. Roth, G.S.; Lane, M.A.; Ingram, D.K. Caloric restriction mimetics: The next phase. Ann. N. Y. 

Acad. Sci. 2005, 1057, 365–371. 

9. Nakagawa, T.; Yokozawa, T. Direct scavenging of nitric oxide and superoxide by green tea.  

Food Chem. Toxicol. 2002, 40, 1745–1750. 

10. Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 

239–247. 

11. Sasaki, T.; Maier, B.; Koclega, K.D.; Chruszcz, M.; Gluba, W.; Stukenberg, P.T.; Minor, W.; 

Scrable, H. Phosphorylation regulates SIRT1 function. PLoS One 2008, 3, e4020. 

12. Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional silencing and longevity 

protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403, 795–800. 

13. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000, 14, 

1021–1026. 

14. Michan, S.; Sinclair, D. Sirtuins in mammals: Insights into their biological function. Biochem. J. 

2007, 404, 1–13. 

http://www.ncbi.nlm.nih.gov/pubmed/16399906?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Michan%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Sinclair%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus


Molecules 2014, 19 6724 

 

15. Chen, D.; Guarente, L. SIR2: A potential target for calorie restriction mimetics. Trends Mol. Med. 

2007, 13, 64–71. 

16. Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; 

Chung, P.; Kisielewski, A.; Zhang, L.L.; Scherer, B.; Sinclair, D.A. Small molecule activators of 

sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003, 425, 191–196. 

17. Wood, J.G.; Rogina, B.; Lavu, S.; Howitz, K.; Helfand, S.L.; Tatar, M.; Sinclair, D. Sirtuin 

activators mimic caloric restriction and delay ageing in metazoans. Nature 2004, 430, 686–689. 

18. Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, 

J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol improves health and survival of mice on a 

high-calorie diet. Nature 2006, 444, 337–342. 

19. Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; 

Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects 

against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006, 127, 1109–1122. 

20. Chen, D.; Steele, A.D.; Lindquist, S.; Guarente, L. Increase in activity during calorie restriction 

requires Sirt1. Science 2005, 310, 1641. 

21. Levay, E.A.; Govic, A.; Penman, J.; Paolini, A.G.; Kent, S. Effects of adult-onset calorie 

restriction on anxiety-like behavior in rats. Physiol. Behav. 2007, 92, 889–896. 

22. Zhao, X.H.; Nomura, Y. Age-related changes in uptake and release on L-[
3
H]noradrenaline in 

brain slices of senescence accelerated mouse. Int. J. Dev. Neurosci. 1990, 8, 267–272. 

23. Zhao, X.H.; Kitamura, Y.; Nomura, Y. Age-related changes in NMDA-induced [
3
H]acetylcholine 

release from brain slices of senescence-accelerated mouse. Int. J. Dev. Neurosci. 1992, 10, 

121–129. 

24. Kawamata, T.; Akiguchi, I.; Maeda, K.; Tanaka, C.; Higuchi, K.; Hosokawa, M.; Takeda, T. 

Age-related changes in the brains of senescence-accelerated mice (SAM): Association with glial 

and endothelial reactions. Microsc. Res. Tech. 1998, 43, 59–67. 

25. Sureda, F.X.; Gutierrez-Cuesta, J.; Romeu, M.; Mulero, M.; Canudas, A.M.; Camins, A.; Mallol, 

J.; Pallàs, M. Changes in oxidative stress parameters and neurodegeneration markers in the brain 

of the senescence-accelerated mice SAMP-8. Exp. Gerontol. 2006, 41, 360–367. 

26. Wu, Y.; Zhang, A.Q.; Yew, D.T. Age related changes of various markers of astrocytes in 

senescence-accelerated mice hippocampus. Neurochem. Int. 2005, 46, 565–574. 

27. Tanaka, J.; Okuma, Y.; Tomobe, K.; Nomura, Y. The age-related degeneration of oligodendrocytes 

in the hippocampus of the senescence-accelerated mouse (SAM) P8: A quantitative 

immunohistochemical study. Biol. Pharm. Bull. 2005, 28, 615–618. 

28. Miyazaki, H.; Okuma, Y.; Nomura, J.; Nagashima, K.; Nomura, Y. Age-related alterations in the 

expression of glial cell line-derived neurotrophic factor in the senescence-accelerated mouse brain. 

J. Pharmacol. Sci. 2003, 92, 28–34. 

29. Yasui, F.; Matsugo, S.; Ishibashi, M.; Kajita, T.; Ezashi, Y.; Oomura, Y.; Kojo, S.; Sasaki, K. 

Effects of chronic acetyl-L-carnitine treatment on brain lipid hydroperoxide level and passive 

avoidance learning in senescence-accelerated mice. Neurosci. Lett. 2002, 334, 177–180. 

30. Farr, S.A.; Poon, H.F.; Dogrukol-Ak, D.; Drake, J.; Banks, W.A.; Eyerman, E.; Butterfield, D.A.; 

Morley, J.E. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment 

and brain oxidative stress in aged SAMP8 mice. J. Neurochem. 2003, 84, 1173–1183. 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Howitz%20KT%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bitterman%20KJ%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Cohen%20HY%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Lamming%20DW%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Lavu%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Wood%20JG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Zipkin%20RE%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Chung%20P%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kisielewski%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Zhang%20LL%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Scherer%20B%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Sinclair%20DA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'Nature.');
javascript:AL_get(this,%20'jour',%20'Nature.');
javascript:AL_get(this,%20'jour',%20'Nature.');
javascript:AL_get(this,%20'jour',%20'Cell.');
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Chen%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Steele%20AD%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Lindquist%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Guarente%20L%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'Science.');
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Levay%20EA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Govic%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Penman%20J%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Paolini%20AG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kent%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus


Molecules 2014, 19 6725 

 

31. Komatsu, T.; Chiba, T.; Yamaza, H.; Yamashita, K.; Shimada, A.; Hoshiyama, Y.; Henmi, T.; 

Ohtani, H.; Higami, Y.; de Cabo, R.; et al. Manipulation of caloric content but not diet 

composition, attenuates the deficit in learning and memory of senescence-accelerated mouse 

strain P8. Exp. Gerontol. 2008, 43, 339–346. 

32. Mizushima, Y.; Kan, S.; Yoshida, S.; Irie, Y.; Urata, Y. Effect of Choto-san, a Kampo medicine, on 

impairment of passive avoidance performance in senescence accelerated mouse (SAM). Phytother. 

Res. 2003, 17, 542–545. 

33. Dahl, D.; Labkovsky, B.; Bignami, A. Neurofilament phosphorylation in axons and perikarya: 

Immunofluorescence study of the rat spinal cord and dorsal root ganglia with monoclonal 

antibodies. J. Comp. Neurol. 1988, 271, 445–450. 

34. von Bohlen und Halbach, O.; Unsicker, K. Morphological alterations in the amygdala and 

hippocampus of mice during ageing. Eur. J. Neurosci. 2002, 16, 2434–2440. 

35. Yamamoto, T.; Hirayama, A. Effects of soft-diet feeding on synaptic density in the hippocampus 

and parietal cortex of senescence-accelerated mice. Brain Res. 2001, 902, 255–263. 

36. Smith, T.D.; Adams, M.M.; Gallagher, M.; Morrison, J.H.; Rapp, P.R. Circuit-specific alterations 

in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. 

J. Neurosci. 2000, 20, 6587–6593. 

37. Sato, E.; Kurokawa, T.; Oda, N.; Ishibashi, S. Early appearance of abnormality of microperoxisomal 

enzymes in the cerebral cortex of senescence-accelerated mouse. Mech. Ageing Dev. 1996, 92, 

175–184. 

38. Wick, A.; Wick, W.; Waltenberger, J.; Weller, M.; Dichgans, J.; Schulz, J.B. Neuroprotection by 

hypoxic preconditioning requires sequential activation of vascular endothelial growth factor 

receptor and Akt. J. Neurosci. 2002, 22, 6401–6407. 

39. Matsuzaki, H.; Tamatani, M.; Yamaguchi, A.; Namikawa, K.; Kiyama, H.; Vitek, M.P.; Mitsuda, 

N.; Tohyama, M. Vascular endothelial growth factor rescues hippocampal neurons from 

glutamate-induced toxicity: Signal transduction cascades. FASEB J. 2001, 15, 1218–1220. 

40. Cao, L.; Jiao, X.; Zuzga, D.S.; Liu, Y.; Fong, D.M.; Young, D.; During, M.J. VEGF links 

hippocampal activity with neurogenesis, learning and memory. Nat. Genet. 2004, 36, 827–835. 

41. Sun, Y.; Jin, K.; Xie, L.; Childs, J.; Mao, X.O.; Logvinova, A.; Greenberg, D.A. VEGF-induced 

neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 

2003, 111, 1843–1851. 

42. Kim, B.W.; Choi, M.; Kim, Y.S.; Park, H.; Lee, H.R.; Yun, C.O.; Kim, E.J.; Choi, J.S.; Kim, S.; 

Rhim, H.; Kaang, B.K.; Son, H. Vascular endothelial growth factor (VEGF) signaling regulates 

hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin 

protein kinase II and mammalian target of rapamycin. Cell Signal. 2008, 20, 714–725. 

43. Jin, K.; Mao, X.O.; Greenberg, D.A. Vascular endothelial growth factor stimulates neurite 

outgrowth from cerebral cortical neurons via Rho kinase signaling. J. Neurobiol. 2006, 66, 

236–242. 

44. Dalgleish, T. The emotional brain. Nat. Rev. Neurosci. 2004, 5, 583–589. 

45. Aggleton, J.P.; Shaw, C. Amnesia and recognition memory: A re-analysis of psychometric data. 

Neuropsychologia 1996, 34, 51–62. 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Dahl%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Labkovsky%20B%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bignami%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Wick%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Wick%20W%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Waltenberger%20J%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Weller%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Dichgans%20J%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Schulz%20JB%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Cao%20L%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Zuzga%20DS%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Liu%20Y%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Fong%20DM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Young%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22During%20MJ%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Choi%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kim%20YS%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Park%20H%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Lee%20HR%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Yun%20CO%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kim%20EJ%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Choi%20JS%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kim%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Rhim%20H%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kaang%20BK%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Son%20H%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus


Molecules 2014, 19 6726 

 

46. Brown, P.D.; Davies, S.L.; Speake, T.; Millar, I.D. Molecular mechanisms of cerebrospinal fluid 

production. Neuroscience 2004, 129, 957–970. 

47. Emerich, D.F.; Skinner, S.J.; Borlongan, C.V.; Vasconcellos, A.V.; Thanos, C.G. The choroid 

plexus in the rise, fall and repair of the brain. Bioessays 2005, 27, 262–274. 

48. Johanson, C.E.; Duncan, J.A.; Stopa, E.G.; Baird, A. Enhanced prospects for drug delivery and 

brain targeting by the choroid plexus-CSF route. Pharm. Res. 2005, 22, 1011–1037. 

49. Jakubowska-Doğru, E.; Gümüşbaş, U. Chronic intracerebroventricular NGF administration 

improves working memory in young adult memory deficient rats. Neurosci. Lett. 2005, 382, 

45–50. 

50. Shi, L.; Linville, M.C.; Tucker, E.W.; Sonntag, W.E.; Brunso-Bechtold, J.K. Differential effects of 

aging and insulin-like growth factor-1 on synapses in CA1 of rat hippocampus. Cereb. Cortex 

2005, 15, 571–577. 

51. Erdman, J.W., Jr.; Balentine, D.; Arab, L.; Beecher, G.; Dwyer, J.T.; Folts, J.; Harnly, J.; Hollman, P.; 

Keen, C.L.; Mazza, G.; et al. Flavonoids and heart health: Proceedings of the ILSI North America 

Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. J. Nutr. 2007, 137, 718S–737S. 

52. De Boer, V.C.; de Goffau, M.C.; Arts, I.C.; Hollman, P.C.; Keijer, J. SIRT1 stimulation by 

polyphenols is affected by their stability and metabolism. Mech. Ageing Dev. 2006, 127, 618–627. 

53. Bagchi, D.; Bagchi, M.; Stohs, S.J.; Das, D.K.; Ray, S.D.; Kuszynski, C.A.; Joshi, S.S.; Pruess, H.G. 

Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease 

prevention. Toxicology 2000, 148, 187–197. 

54. Weinreb, O.; Mandel, S.; Amit, T.; Youdim, M.B. Neurological mechanisms of green tea 

polyphenols in Alzheimer’s and Parkinson’s diseases. J. Nutr. Biochem. 2004, 15, 506–516. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Stopa%20EG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Baird%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22G%C3%BCm%C3%BC%C5%9Fba%C5%9F%20U%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10962138&query_hl=88&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Amit%20T%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Youdim%20MB%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus

