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Objective: In recognition of the mixed associations between traditionally scored slow

wave sleep and memory, we sought to explore the relationships between slow wave

sleep, electroencephalographic (EEG) power spectra during sleep and overnight verbal

memory retention in older adults.

Design, Setting, Participants, and Measurements: Participants were 101 adults

without dementia (52% female, mean age 70.3 years). Delayed verbal memory was first

tested in the evening prior to overnight polysomnography (PSG). The following morning,

subjects were asked to recall as many items as possible from the same List (overnight

memory retention; OMR). Partial correlation analyses examined the associations of

delayed verbal memory and OMR with slow wave sleep (SWS) and two physiologic EEG

slow wave activity (SWA) power spectral bands (0.5–1Hz slow oscillations vs. 1–4Hz

delta activity).

Results: In subjects displaying SWS, SWS was associated with enhanced delayed

verbal memory, but not with OMR. Interestingly, among participants that did not show

SWS, OMR was significantly associated with a higher slow oscillation relative power,

during NREM sleep in the first ultradian cycle, with medium effect size.

Conclusions: These findings suggest a complex relationship between SWS and

memory and illustrate that even in the absence of scorable SWS, older adults

demonstrate substantial slow wave activity. Further, these slow oscillations (0.5–1Hz),

in the first ultradian cycle, are positively associated with OMR, but only in those without

SWS. Our findings raise the possibility that precise features of slow wave activity play

key roles in maintaining memory function in healthy aging. Further, our results underscore

that conventional methods of sleep evaluation may not be sufficiently sensitive to detect

associations between SWA and memory in older adults.
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INTRODUCTION

Sleep is profoundly important for optimizing brain function and
cognition. The rapidly advancing age of the global population
highlights the urgent need to understand the dynamics between
aging, sleep, and cognitive performance (Scullin and Bliwise,

2015). Of particular relevance for aging is the relationship
between sleep and memory function (Diekelmann et al., 2009).

As early as 1924, Jenkins et al. demonstrated improved

memory retention of acquired information after sleep compared
to memory retention after an equivalent wake period (Jenkins
and Dallenbach, 1924). Since the publication of these seminal

findings, a growing body of research has demonstrated that
the retention of verbal, visual, motor, and spatial information
is improved after sleep (Plihal and Born, 1997; Walker et al.,
2002, 2003; Tucker et al., 2006; Rasch and Born, 2007; Rasch
et al., 2007; Lahl et al., 2008). The work of Wilson and
McNaughton suggested the potential involvement of slow wave
sleep (SWS) in memory formation (Wilson and McNaughton,
1994) when they observed re-expression of neuronal firing
patterns in hippocampal circuits during SWS, similar to the
hippocampal firing patterns observed during behavioral tasks
preceding sleep (Wilson and McNaughton, 1994). Peigneux
et al. observed positive associations between SWS, hippocampal
activation, and recall performance in humans (Peigneux et al.,
2004). Using functional magnetic resonance imaging, Takashima
and colleagues suggested that the association of SWS with
memory might reflect the transitioning of memories from the
hippocampus to the ventral medial pre-frontal cortex (Takashima
et al., 2006). Rasch et al. cued new memories during sleep by
presenting an odor that had been presented as context during
pre-sleep learning (Rasch et al., 2007) and found that re-exposure
to the odor during SWS improved the retention of declarative
memories (Rasch et al., 2007). The growing literature on SWS
and memory underscores a potential role of SWS as integral
to memory retention across a broad range of memory domains
(Walker, 2009; Walker and Stickgold, 2010; Goerke et al., 2017).

Given that SWS, hippocampal volume, and episodic memory
performance all decrease with age (Hasan and Broughton, 1994;
Albert et al., 2001; Ohayon et al., 2004), the extant literature raises
the question of whether poorer memory performance in older
adults reflects declining SWS. Two important investigations,
albeit with small sample sizes, found sleep to be associated
with poorer memory performance in those at risk for dementia.
Specifically, in amnestic mild cognitive impairment (aMCI),
poorer subjective sleep is found to be associated with poorer
memory performance (Westerberg et al., 2010). Furthering
these findings, Westerberg et al. observed objective, macro-
and microstructural sleep impairments–shorter SWS, as well as
lower delta and theta power–in individuals with MCI, relative to
cognitively normal controls (Westerberg et al., 2012). However,
regardless of the level of cognitive impairment, increased delta
and theta power were positively associated with overnight
memory retention (Westerberg et al., 2012). To date, only a
handful of additional published studies have examined memory
in older adults before and after sleep. Of these publications, four
lacked objective polysomnography (PSG) (Aly and Moscovitch,

2010; Wilson et al., 2012; Gudberg et al., 2015), two only
evaluated the effect of naps on memory retention (Fogel et al.,
2014; Baran et al., 2016), and only three examined nocturnal
PSG and declarative memory (Rauchs et al., 2008; Mander et al.,
2013; Scullin, 2013). A further complication is that while SWS is
generally believed to decline with age (Ohayon et al., 2004), SWS
depends on the manual scoring of sleep stages, and the variation
of scoring interferes with the quantitative comparison between
studies. Despite the advances in our understanding of age-related
reduction of SWS in older adults, the relationships with OMR
remain unclear due to the limited numbers of investigations,
small sample sizes, lack of objective/PSG evaluation, variability
in the memory measure employed and task difficulty, and
physiologically incongruent definitions of SWS.

The consensus conclusion from this developing field is that
associations between SWS and memory retention attenuate with
age. However, Mander et al. identified a significant association
between reduced slow wave activity (SWA) and poorer overnight
memory retention (OMR) in a small sample of 15 older adults,
suggesting a re-evaluation of this canonical framework. They did
not, however, find any significant relationship between SWS and
OMR. In that study, they used the term OMR (Mander et al.,
2013), due to the different protocol design than the classical
sleep-related memory consolidation experiments, in which the
comparison of memory formation separated by wake period vs.
sleep period in the same group was required.

Analyzing temporal characteristics of spectral power in the
slow oscillation/delta range (0.5–4Hz) provides a metric that
more accurately captures the dynamics of the slow wave activity
of sleep. Thus, here we aimed to address several longstanding
issues and examine the polysomnographic features underlying
OMR in older adults. We investigated the relationships between
SWS and also spectral measures of slow wave activity, with pre-
sleep delayed verbal memory performance, post-sleep OMR, and
post-sleep delayed verbal memory on a new, alternate list. This
design permitted us to address a number of prior limitations by
including a large sample size and utilization of both traditional
sleep staging and spectral-specific PSG analyses as they relate
to OMR.

METHODS

Study Design, Subject Characterization,
and Sample Collection
Participants were 101 community-dwelling older adults enrolled
in an investigation of sleep and cognitive function. This was a
voluntary convenience sample recruited through advertisements
and local senior centers from 2005 to 2010. The study protocol
and consent were reviewed and approved by the Institutional
Review Board, and informed consent was obtained from all
participants. Initial evaluation included demographics, self-
reported current and past medical status, the Mini-Mental
State Exam (MMSE) to screen for dementia, and a Structured
Clinical Interview for DSM-IV-TR (SCID-IV-TR) to screen
for Axis I psychiatric disorders. Inclusion criteria were the
following: being 50 years of age or over, the ability to give
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informed consent, and sufficient visual and auditory acuity for
the cognitive testing. Individuals were excluded if they had an
MMSE <26, a diagnosis of possible or probable dementia or
a profile on the cognitive battery indicative of dementia, any
serious medical illness, any Axis I disorder currently, or within
the past 2 years on the SCID-IV-TR. Participants were also
excluded if they were currently using a psychotropic medication,
short-acting anxiolytics, sedative-hypnotics, medications with
significant cholinergic or anticholinergic properties, or any FDA-
approved medications for dementia.

Procedures
Memory Assessment
A list-learning test was performed to examine delayed verbal
memory directly prior to the assessment of PSG (List A).
Participants were required to memorize a list of 16 words (8
abstracts; 8 concrete). We randomly assigned one of four lists,
as designed by Yesavage et al. (1990). Four min of study time was
allowed before the list was collected, and a 5-min, symbol-digit-
distractor task was presented prior to delayed recall (Kraemer
et al., 1983; Yesavage et al., 1990; O’Hara et al., 1998, 2007).
After a delay of 5min, participants were asked to recall and
write down as many of the words as they could remember. The
following morning, after a night of home PSG, participants were
asked to recall and write down as many of the words from the
original word list (List A) that they were asked to memorize the
night before, without any re-presentation of List A. Then, the
participants were randomly assigned one of the three remaining
16-word lists (List B). A similar procedure was employed: 4min
of study time, followed by a 5-min, symbol-digit-distractor task,
and then recall. Every word recalled correctly was scored as
a correct answer. All forms were counterbalanced across all
conditions (Yesavage et al., 1990; O’Hara et al., 2007).

PSG and Sleep-Related Questionnaires
Ambulatory overnight PSG (Safiro Ambulatory PSG System;
Compumedics, Charlotte, NC) was performed on all participants.
Participants went to bed and arose according to their normal
schedule. The contemporary, standard recording montage
included scalp electroencephalography electrodes (C3, C4, O1,
O2, M1, M2), chin electromyography, electro-oculography,
electrocardiography, nasal pressure transducer, and oral
airflow (thermistor), abdominal and thoracic respiratory-
inductance plethysmography, finger pulse oximetry, and snoring
audiography. All data were staged and scored by a registered
polysomnography technologist and were reviewed by a certified
sleep medicine physician. The strict 75 microvolt criterion to
score slow wave sleep (stage 3 and stage 4 combined) were used
following standard scoring guidelines (Rechtschaffen and Kales,
1968).

Sleep-related questionnaires included the Epworth sleepiness
scale (ESS) to measure daytime sleepiness (Johns, 1991), the
Pittsburgh Sleep Quality Index (PSQI) to assess recent sleep
quality (Buysse et al., 1989), the Functional Outcomes of Sleep
Questionnaire (FOSQ) to measure functional status including
the impact of excessive sleepiness on multiple activities of daily
living (Weaver et al., 1997), and the Morningness-Eveningness

Questionnaire (MEQ) to assess chronotypes (Horne andOstberg,
1976).

Quantitative Analysis of the Sleep EEG With an

Automated Pipeline
Due to our prior observation of improved memory in association
with increased Delta Activity at Sleep Onset (Kawai et al.,
2016a,b), because the ratio of SWA is expected to be higher in
the early stages of sleep (Carskadon and Dement, 2017), and
because of variable total sleep times between individuals, the
first ultradian cycle of NREM sleep was specifically examined,
(a) as this is when SWA is most evident and, (b) to ensure
comparability between individuals with respect to sleep duration.
The spectral analysis was performed using the open-source
spectral analysis software pipeline centered around the MATLAB
App, SpectralTrainFig, available on the National Sleep Research
Resource website (https://www.sleepdata.org/). The methods of
artifact detection, additional human-assisted adjudication, and
spectral analysis are described in detail in the recent article
(Mariani et al., 2018). Analyses were performed using MATLAB
R2017a (MathWorks, Inc., Natick, Massachusetts, USA). Using
the developer-recommended analysis pipeline, the raw power
spectrum was calculated on an epoch-by-epoch basis applying
Welch’s method (with ten, overlapping 4-s mini-epochs per 30-
s epoch), with a 50% tapered cosine (Tukey) window (Welch,
1967; Harris, 1978). Power bands were defined as follows: Slow
oscillation: 0.5–1Hz, Delta: 1–4Hz, Theta: 4–8Hz, Alpha: 8–
12Hz, Sigma: 12–15Hz, Slow sigma: 12–13.5Hz, Fast sigma:
13.5–15Hz, Beta: 15–20Hz, and Total: 0–25Hz. Using the
protocols from the Mariani et al. paper, no EDF files were
eliminated when applying these criteria. Any epochs with delta
and beta artifact identified by the MATLAB software were also
excluded from the analysis. There were a number of periods that
were analyzed, all of which excluded any epochs scored as wake
by the technician: (1) The period of sleep from sleep onset (SO)
until the final epoch of sleep, (2) All epochs of NREM (N1, N2,
and N3) sleep, (3) All epochs of REM sleep, and (4) The period
identified as the approximate/aggregate first ultradian cycle of
sleep (i.e., the first 88.5min). Following removal of epochs
visually scored as wake, absolute power (in µV2) and relative
power (ratio of the absolute power in each frequency band over
the absolute power of the total frequency band) were calculated
in each 30-s epoch of sleep, for each of the bands of interest.
Absolute and relative power were then calculated for NREM sleep
period for the whole night and the first ultradian cycle.

Determination of First Ultradian Cycle
In order to define the first ultradian cycle of slow-wave
activity, a generalized additive model was used to generate a
smoothed estimate of the relative slow-wave power (0.5–4Hz
band) progression for each individual over the first 300 epochs
(150min)–a time span well-beyond the upper limit of the first
ultradian cycle (120min). Following this, another generalized
additive model was used to approximate the end of the first
ultradian cycle of slow-wave activity across the whole cohort.
From this cohort-wide model, the epoch at which relative slow-
wave power reached the first post-elevation nadir, 177 epochs
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(88.5min), was defined as the end of the first ultradian cycle
for the entire cohort, as this reflects the period with the greatest
homeostatic sleep drive, as represented by slow-wave activity
(Figure 1). We removed epochs scored as wake or REM during
the first ultradian cycle for the analysis.

Statistical Analysis
The mean and standard deviation of demographic measures,
objective and subjective sleep parameters, memory scores,
and retention rates were calculated and assessed for all
101 participants.

Primary Analysis
We employed partial correlation analyses to examine if
SWS percentage predicted episodic memory performance and
retention on the list-learning task adjusted for age, gender, and
years of education. SWS served as the independent variable
of interest, and performance on our list-learning measures
of delayed verbal recall and overnight memory retention
(OMR) served as dependent variables. Specifically, list-learning
scores were calculated for each of three timepoints (a) pre-
sleep/evening-administration, delayed-recall List A total score;
(b) post-sleep/following-morning, delayed-recall performance
on List A total score, without re-presentation of List A; (c)
post-sleep/morning-administration, delayed-recall performance
of alternate List B total score; and (d) overnight memory
retention rate (OMR), which is defined as (b) divided by (a).
Models were adjusted for age, gender, and years of education. We
applied a Bonferroni correction for multiple comparisons (four
parameters for primary analysis), setting alpha at 0.05/4= 0.0125.

We also performed correlational analyses to examine the
association of age with SWS. We repeated our primary analysis
using spectral measures, specifically, absolute and relative power
measures of slow wave activity as the independent variables
of interest, and performance on our list-learning measures of
delayed verbal recall and OMR as the dependent variables, as
described above. We also performed correlational analyses to
examine the association of age with spectral measures of slow
wave activity.

Secondary Analyses
We noted that many of our participants did not have SWS (or
N3) by the standard criteria (Rechtschaffen and Kales, 1968).
Specifically, 76.4% (n = 78) did not exhibit SWS. Thus, we
examined whole-night differences in spectral power between
those who had SWS [SWS (+) group] and those without any SWS
[SWS (–) group] by using two-tailed t-tests to compare absolute
power and relative power in the frequency bands of interest.
Additional SWS (+) and (–) comparisons were performed
across all frequency bands of interest for the first ultradian
cycle (88.5min of sleep) and for all sleep following this first
ultradian cycle.

Similar to the primary analyses, in the SWS (+) group
and, independently, in the SWS (–) group, we performed
partial correlation analyses (adjusted for age, gender, and years
of education) to examine the association of our list-learning
measures with absolute and relative power during and after the

first 88.5min of sleep. We also performed these analyses without
adjustment for age, gender, or years of education.

For all partial correlation analyses, as interactive effects
were included, all independent variables were centered at the
median to ensure the interpretability of coefficients (Kraemer and
Blasey, 2004). We applied a Bonferroni correction for multiple
comparisons (four parameters for secondary analysis), setting
alpha at 0.05/4= 0.0125.

IBM SPSS Statistics for Macintosh, Version 25, Armonk, NY:
IBM Corp. was used to perform all statistical analyses.

Exploratory Analyses
We performed correlational analyses between sleep measures
or sleep questionnaires and delayed recall performance pre- or
post-sleep or OMR. We also performed correlational analyses
between slow oscillation and delta relative power in each sleep
stage and OMR.

Data Availability
Anonymized data not published within this article can be
made available to qualified investigators upon request to the
corresponding author.

RESULTS

Demographics
Of the 101 participants, 53 (52.4%) were women, and the average
age was 70.4 (SD 7.9 years; range 52–91). This was a generally
well-educated (16.7 ± 2.7 years of education) and non-obese
(BMI 27.7± 4.8 kg/m2) cohort (Table 1).

Sleep Parameters
The mean and SD for total sleep time (TST) (minutes), time
in bed (TIB) (minutes), sleep stages (%), sleep onset latency
(minutes), WASO (minutes), and sleep efficiency (%) are
provided in Table 1. The average distribution of sleep stages was
within the range expected for a single-night sleep study in an
elderly population (Table 1).

Memory Recall and Retention
The mean and SD for the list-learning memory total recall
scores for each of the three memory test times–List A (evening
administration and recall prior to sleep), List A (delayed recall
only of List A the morning after sleep, there was no re-
presentation of List A), and List B (following List A recall the
morning after sleep, List B, an alternate form, was administered
and recall assessed), and OMR are presented in Table 2.

Primary Analyses
We conducted partial correlation analyses using our continuous
measure of technician-scored SWS as our predictor, with total
verbal-memory recall, pre- and post-sleep, and retention as our
dependent measures. We found that SWS was not significantly
associated with pre-sleep/evening, delayed recall on List A,
total delayed-recall performance on List A/post-sleep, nor with
post-sleep/morning-administered, delayed-recall performance
on alternate List B. SWS was not significantly associated with
OMR following Bonferonni correction (Table 2).
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FIGURE 1 | The first ultradian cycle of slow-wave activity (0.5–4Hz band). A generalized additive model was used to generate a smoothed estimate of the relative

slow-wave power (0.5–4Hz band) progression for each individual over the first 300 epochs (150min). The solid vertical line in the graph: The first post-elevation nadir

of relative slow-wave power at 177 epochs (=88.5min) in this cohort-wide model.

Spectral Analysis
In all participants, the partial correlation analysis, covaried
for age, gender, and years of education, found no significant
correlation between OMR and absolute and relative measures
of SWA (0.5–4Hz, combining slow oscillation and the delta
band) during the NREM sleep period for the whole night.
As mentioned previously, since the duration of sleep is
highly variable, to better control for this, we focused on
power spectral analysis of NREM sleep during the first
177 epochs (88.5min) after sleep onset, when participants
finished the first ultradian cycle of SWA (0.5–4Hz, combining
slow oscillation and the delta band). In all participants, the
partial correlation analysis, covaried for age, gender, and
years of education, did not show a significant correlation
between the slow-oscillation relative power during the
first ultradian cycle and OMR after Bonferroni correction
(Supplementary Table 2).

In our cohort, age and SWS were not correlated
by Spearman’s test, and absolute and relative
power measures of SWA were also not correlated
with age.

Secondary Analyses
Groups With or Without SWS
As mentioned above, we noted that many of our participants
did not have SWS scored by the standard criteria (Rechtschaffen
and Kales, 1968). Specifically, 76.2% (n = 77) did not
exhibit SWS. Among the remaining sleep parameters, no
statistically significant difference was found between the SWS
(+) and (–) groups. Post-sleep/following-morning, delayed-
recall performance on List A total was significantly higher
in the SWS (+) group (6.3 ± 3.9 vs. 4.4 ± 3.5, t(99) =

2.27, p = 0.025, d = 0.51) with medium effect size (Table 3).
However, this difference was not significant following Bonferroni
correction. The unadjusted analysis did not change the finding
(Supplementary Table 3).

Despite the apparent lack of scorable SWS, the normal
distribution of slow-oscillation relative power during the first
88.5min of sleep suggests that slow-oscillation relative power
may be an important measure of slow-wave activity in older
adults who don’t exhibit SWS. Thus, we examined the association
of slow-oscillation relative power (0.5–1Hz) and our memory
outcomes in secondary analyses.
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TABLE 1 | Mean and standard deviation of demographic characteristics, PSG

parameters, Sleep questionnaires, and list-learning scores in all 101 participants.

Demographics Gender Women = 53, Men = 48

Age 70.8 ± 7.9 years

Years of Education 16.7 ± 2.7 years

BMI 27.7 ± 4.8 kg/m2

PSG parameters TST 344.3 ± 80.5 min

TIB 509.7 ± 90.6 min

N1 16.8 ± 10.3 %

N2 68.9 ± 11.4 %

N3 (=SWS) 1.4 ± 3.4 %

REM 13 ± 5.9 %

SL 37.8 ± 45.6 min

WASO 125.4 ± 79.9 min

SE 68.6 ± 15.5 %

AHI 11.5 ± 12.9 events/h

AvSpO2 93.1 ± 9.5 %

MinSpO2 79.7 ± 18.9 %

PLMI 8.3 ± 14.4 events/h

Sleep questionnaires ESS 7.4 ± 4.3

PSQI 6.9 ± 3.9

FOSQ 17.9 ± 2.4

MEQ 58.7 ± 8.8

Numbers represent mean ± standard deviation, except gender, which showed the

number of participants. BMI, body mass index (kg/m2 ); TST, total sleep time (minutes);

TIB, time in bed (minutes); N1 to N3, Stage N1 to N3 sleep (%); SWS, slow wave sleep;

REM, rapid eye movement sleep (%); SL, sleep latency (minutes); WASO, wake after

sleep onset (minutes); SE, sleep efficiency (%); AHI, apnea hypopnea index (events/hour);

AvSpO2, average oxygen saturation (%); MinSpO2, minimum oxygen saturation (%);

PLMI, periodic limbmovement index (events/hour); ESS, Epworth Sleepiness Scale; PSQI,

Pittsburgh Sleep Quality Index; FOSQ, Functional Outcomes of Sleep Questionnaire;

MEQ, Morningness-Eveningness Questionnaire.

Thus, we performed spectral analysis of the sleep EEG
signal and compared the absolute and relative power of sleep-
related frequency bands between the SWS (+) and (–) groups
(Figures 2A,B). Absolute and relative power in all power bands
during the NREM sleep period for the whole night did not show
a statistically significant difference (Figures 2A,B).

Then, we compared absolute and relative power for the SWS
(–) group with the SWS (+) group during NREM sleep in
the first ultradian cycle of sleep. In the SWS (–) group only,
partial correlation analyses, adjusting for age, gender, and years
of education, found that slow-oscillation relative power (0.5–
1Hz) during NREM sleep period in the first 88.5min is positively
associated with higher OMR, following Bonferroni correction for
multiple testing (r= 0.335, p= 0.003) (Table 4). Our findings did
not change with unadjusted analysis (Supplementary Table 4).
Homogeneity of correlation tests showed that the difference
of correlation of the slow-oscillation relative power (0.5–1Hz)
during the first 88.5min and OMR is significantly different
between the SWS (–) and (+) groups (Chi-square= 8.28, p
= 0.004) (Figure 3). We also found significantly higher slow
oscillation relative power in SWS (–) group than SWS (+)
(Cohen’s d = 0.72, t(99) = 2.972, p = 0.004) (Figures 4A,B). As

TABLE 2 | Mean, standard deviation, and partial correlation analysis to examine

the association of SWS and list-learning scores covaried for age, gender, and year

of education and correlation coefficient.

All 101 participants, partial correlation with SWS, covaried

for age, gender, years of education

Mean and SD Correlation p

Evening 5-min recall List A 6.7 ± 3.6 0.153 0.132

Overnight morning recall List A 4.8 ± 3.7 0.231 0.023

Morning 5-min recall with alt List B 6.9 ± 3.9 0.168 0.098

OMR 0.7 ± 0.4 0.093 0.37

SD, Standard deviation; SWS, slow wave sleep (%).

Evening 5-min recall List A: Pre-sleep evening delayed recall List A total score prior to PSG.

Overnight morning recall List A: Post-sleep/following-morning, delayed-recall

performance on List A total score.

Morning 5-min recall alt List B: Post-sleep/morning-administered, delayed-recall

performance on alternate List B total score.

OMR: Overnight memory retention, defined as post-sleep/following-morning, delayed-

recall performance on List A total score divided by pre-sleep evening delayed-recall

performance on List A total score.

TABLE 3 | Comparison in list-learning scores between 24 participants with and

78 without any SWS.

SWS (+) n=24 SWS (–) n=77 p Cohen’s d

Evening 5-min recall 7.9 ± 3.6 6.3 ± 3.6 0.066 0.44

Overnight morning recall 6.3 ± 3.9 4.4 ± 3.5 0.025 0.51

Morning 5-min recall with alt list 7.4 ± 4.7 6.8 ± 3.6 0.493 0.14

OMR 0.75 ± 0.2 0.64 ± 0.4 0.245 0.32

SWS, slow wave sleep (%).

Evening 5-min recall List A: Pre-sleep evening delayed recall List A total score prior to PSG.

Overnight morning recall List A: Post-sleep/following-morning, delayed-recall

performance on List A total score.

Morning 5-min recall alt List B: Post-sleep/morning-administered, delayed-recall

performance on alternate List B total score.

OMR: Overnight memory retention, defined as post-sleep/following-morning, delayed-

recall performance on List A total score divided by pre-sleep evening delayed-recall

performance on List A total score.

such, it is notable that, despite the lack of SWS, participants in
the SWS (–) group still have a wide range of normally distributed
relative power in the slow oscillation band during the first
88.5min of sleep.

In comparison to the SWS (–) group, for the SWS (+) group,
the relative power spectrum of slow oscillation (0.5–1Hz) or
delta band (1–4Hz) during the first 88.5min of sleep was not
significantly associated with any memory performance measures.

Additionally, in analyses examining the remainder of the sleep
period following the first ultradian cycle (i.e., all sleep after
the first 88.5min), no frequency bands were associated with
memory performance measures in either the SWS (–) or the SWS
(+) group.

Age does not differ between the SWS (–) and (+) groups by
t-test (t = 1.12, p = 0.267). Further, the findings of a statistically
significant association of SO and OMR in SWS (–) but not in the
full sample nor in the SWS (+) group, did not change when we
covaried by age.
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FIGURE 2 | Comparisons of sleep-related frequency bands over the entire sleep period in individuals with (+) and without (–) slow-wave sleep (SWS).

Box-and-whisker plot of absolute power (A) and relative power (B) during NREM sleep for the whole night. SWS (+): participants with slow wave sleep, SWS (–):

participants without slow wave sleep, S.O.: slow oscillation (0.5–1Hz), δ: delta (1–4Hz), θ: theta (4–8Hz), α: alpha (8–12Hz), σslow: slow sigma (12–13.5Hz), σfast: fast

sigma: (13.5–15Hz), β: beta: (15–20Hz).

TABLE 4 | Partial correlation analysis to examine the association of slow

oscillation (0.5–1Hz) during the first 88.5min of sleep and list-learning scores

covaried for age, gender, and year of education among 90 participants without

SWS and correlation coefficient.

77 participants without SWS, partial correlation with relative

power spectrum of slow oscillaition during the first 88.5min

(177 epochs), covaried for age, gender, years of education

Correlation p

Evening 5-min recall List A 0.092 0.434

Overnight morning recall List A 0.257 0.027

Morning 5-min recall with alt List B 0.032 0.789

OMR 0.335 0.003*

*Statistically significant after Bonferroni correction.

Evening 5-min recall List A: Pre-sleep evening delayed recall List A total score prior to PSG.

Overnight morning recall List A: Post-sleep/following-morning, delayed-recall

performance on List A total score.

Morning 5-min recall alt List B: Post-sleep/morning-administered, delayed-recall

performance on alternate List B total score.

OMR: Overnight memory retention, defined as post-sleep/following-morning, delayed-

recall performance on List A total score divided by pre-sleep evening delayed-recall

performance on List A total score.

Exploratory Analyses
The association of all other sleep parameters with OMR
were examined in exploratory analyses. None of our other
sleep measures or sleep questionnaires were associated with
delayed recall performance pre- or post-sleep or with OMR.
We also did not find any statistically significant correlation
between slow oscillation and delta relative power in each sleep
stage and OMR.

DISCUSSION

Our study, which is one of the largest investigations of

its kind, provides novel insights into the relationship of

objective, overnight sleep EEG, and overnight memory retention
(OMR) in community-dwelling, typically aging, older adults.

In our research, we did not observe any statistically significant
association of OMR with SWS, which is in line with previous

studies (Rauchs et al., 2008; Mander et al., 2013; Scullin,

2013). Backhaus et al., on the other hand, reported a positive
correlation of SWS to OMR (Backhaus et al., 2007), but examined
individuals aged 48–55, who are younger than our own and other
investigations of sleep and OMR in older adults.

With respect to electroencephalographic (EEG) power spectra
during sleep, we found a statistically significant positive
association of slow-oscillation relative power (0.5–1Hz) in the
first ultradian cycle with OMR in the SWS (–) group. This
is in line with another investigation that employed overnight
assessment of slow wave activity. Focusing on the power spectra
of SWA (0.8–4.6Hz), in 15 older adults, Mander et al. found a
reduction of SWA (0.8–4.6Hz) in NREM sleep was associated
with worse declarative memory and poorer overnight retention
(Mander et al., 2013). Similarly, Varga et al. also reported a
positive association between slow wave activity (0.5–4Hz) and a
spatial navigational memory consolidation task in 13 older adults
(Varga et al., 2016). It is noteworthy that similar to our own
investigation, Mander et al. (2013), did not observe a statistically
significant association between SWS and OMR.

In another investigation, Anderson et al. found slow
oscillation (0.5–1Hz) in the first NREM sleep period to be
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FIGURE 3 | Scatter plot showing the association between slow oscillation relative power during NREM sleep in the first 88.5min and overnight memory retention. ◦

represents the SWS (–) group and � SWS (+) group.

associated with non-verbal planning and verbal fluency in 24
older adults with an age range of 61–75, but these cognitive
functions were assessed on a separate day, and the study did not
measure OMR (Anderson and Horne, 2003).

In our study, we also observed that large numbers of sleep
studies showed an absence of SWS, which does not mean there
is a lack of SWA. Indeed, we found those without SWS retained a
normally distributed range of slow oscillation (0.5–1Hz) activity.
Building upon this, in secondary analyses, we found that among
those with no SWS, slow-oscillation (0.5–1Hz) relative power
in the first ultradian cycle was positively associated with OMR.
This is not unexpected, given that the first 88.5min of sleep
approximates the completion of the first ultradian sleep cycle
of slow wave activity calculated from our older-adult cohort.
This is because the first ultradian cycle of sleep is when the
homeostatic sleep drive is most profound and is known to have
more SWA than subsequent ultradian cycles of sleep (Carskadon
and Dement, 2017).

During NREM sleep in the first ultradian cycle, we found
that relative power comparisons demonstrated that the SWS (–)
group actually had significantly higher relative power in the slow
oscillation band (0.5–1Hz) compared to the SWS (+) group.
No significant differences were observed between the two groups
with respect to any other frequency bands during or after the first
88.5min of sleep.

Interestingly, Westerberg et al. (2012), observed increased
delta power to be positively associated with overnight memory
retention in both MCI and healthy participants (Westerberg
et al., 2012); their delta power range (0.5–4.5Hz) includes the
slow oscillation power range (0.5–1Hz) we observed to be
associated with OMR in our study.

Regarding the limitation of SWS as a sleep parameter
predicting memory function in older adults, Scullin et al.
reported a lower percent of SWS in older adults compared to
young adults; however, there was no apparent association of
SWS with OMR (Scullin, 2013). In other studies investigating
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FIGURE 4 | Comparisons of sleep-related frequency bands during NREM sleep in the first ultradian cycle (88.5min) in individuals with (+) and without (–) slow-wave

sleep (SWS). Box-and-whisker plot of absolute power (A) and relative power (B) during the first 88.5min of sleep. SWS (+): participants with slow wave sleep, SWS

(–): participants without slow wave sleep. Centerline, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. S.O.: slow oscillation (0.5–1Hz),

δ: delta (1–4Hz), θ: theta (4–8Hz), α: alpha (8–12Hz), σslow: slow sigma (12–13.5Hz), σfast: fast sigma: (13.5–15Hz), β: beta: (15–20Hz). **p < 0.01 by t-test.

the effect of SWS on the daytime memory function in older
adults, the positive effect of SWS diminishes as well. Spiegel
et al. reported no association between SWS by conventional
scoring and memory measures in older adults (Spiegel et al.,
1999). A larger study of 2,601 community-dwelling older men,
investigating sleep stages and cognitive function, also did not
find an association between SWS and trail making or Mini-
Mental State Examination scores (Song et al., 2015). None of
these investigations employed spectral analyses that capture the
slow wave activity missed by the amplitude cutoffs imposed by
the standard scoring criteria for slow wave sleep. Studies such as
ours, Westerberg, and that of Mander et al. find that such spectral
measures of slow wave activity are associated with memory in
older adults, underscoring the importance of spectral analyses
for understanding sleep’s role in memory function and decline
in the elderly.

With respect to the age-related effect on SWS and SWA,
Redline et al. reported in their cohort, age range, 37–92 that
SWS was significantly lower in those older than 54 compared
with younger individuals (Redline et al., 2004). Sprecher et al.
reported an age-related reduction of SWA in a younger cohort
that encompassed younger, older adults (18–65) (Sprecher et al.,
2016). In our own investigation, which had covered a wide age
range (52–91), contrary to previous reports, we did not find a
significant effect of age on SWS or SWA. The lack of age effect in
our cohort may be because the age-related reduction of SWS and
SWA has already occurred in most participants in our cohort.
Future studies should examine this issue more fully.

Given our lack of statistically significant association between
age, SWS, and SWA, it appears that our main finding of an
association between slow oscillation andOMR in the total sample
and the SWS (–) group is not driven by age.

Our findings suggest that, despite the general attenuation
of readily discernable slow wave activity in the delta band
(1–4Hz), during the period of greatest slow-wave activity–the
first ultradian cycle–there is the preservation of an ultra-low-
frequency oscillator (0.5–1Hz) in older adults, among those with
no SWS. Most importantly, in this SWS (–) group only, we found
a statistically significant positive association of slow-oscillation
relative power (0.5–1Hz) with OMR (Figure 3) with a medium
effect size (Table 4); whereas, this association with OMR was not
evident for relative delta power (1–4Hz) in the SWS (–) group.

Comparatively, we did not see this association for the SWS
(+) group (Figure 3), nor for any frequency band for sleep
after the first 88.5min. This observation that slow oscillation
is associated with OMR is in line with a previous study
demonstrating a positive association of slow oscillation (0.5–
1Hz) in the first NREM sleep period with better daytime frontal
cognitive function in older adults, albeit assessed on a separate
day (Anderson and Horne, 2003).

This leaves the question as to why we observed no impact of
slow oscillation on the memory and OMR of those who had SWS.
It is notable that participants with preserved SWS had better
overall memory performance the morning after sleep, but not
significantly more memory retention than was observed in the
SWS negative group. This may reflect the fact that they have less
opportunity for retention, as they may have already potentially
reached the asymptote of their memory performance. The lack
of a significant correlation between slow oscillation and OMR
could occur because of a ceiling effect in the group with retained
SWS, with low variation in over-night recall performance and
slow-oscillation relative power. Of note, we did not observe this
association in those with both SWS and lower pre-sleep memory
scores, suggesting that a ceiling effect was not at play. However,

Frontiers in Aging Neuroscience | www.frontiersin.org 9 January 2021 | Volume 12 | Article 540424

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Kawai et al. Sleep, Memory Retention, and Aging

we cannot completely exclude this possibility due to the lack of
power from a reduced sample size in this subgroup analysis.

OMR could also vary with the amount of learning pre-sleep, in
that very low rates of evening learning might not yield memories
strong enough to result in OMR. To examine this possibility,
we conducted post-hoc analyses, examining the correlation of
OMR with SWS after covarying out the level of performance on
the evening test. We also performed the analysis using a higher
and lower evening score group by a median split to see if SWS
was positively correlated with OMR in the higher recall group.
Neither analysis yield statistically significant results.

Another possibility is that subjects who are more sleep-
deprived may do poorly at evening recall but then have more
SWS because of their sleep deprivation, thus doing better on the
recall test in the morning due to being well-rested.We performed
a post-hoc correlational analysis with ESS, which was obtained in
the evening before the sleep study, with OMR, evening scores,
and SWS. No statistically significant correlations were found,
suggesting that this explanation does not account for the lack of
the observed association of slow oscillation on the memory and
OMR in the SWS (+) group.

The mechanism by which slow oscillation may contribute to
enhanced memory retention in older adults is largely unknown.
However, it is reported that slow oscillation is generated and
sustained by the cerebral cortex in cats (Steriade et al., 1993;
Timofeev and Steriade, 1996; Timofeev et al., 2000) and in
vitro (Shu et al., 2003) and is disrupted by disconnection of
intracortical synaptic linkages in cats (Amzica and Steriade,
1995). Helfrich et al. reported a positive association of the
coupling between slow oscillation and the sleep spindle with
OMR (Helfrich et al., 2018). They reported this coupling to be
more impaired in older than younger adults (Helfrich et al.,
2018). In this investigation, we did not have access to sleep
spindles but will examine this issue in our future investigations.

High-density EEG recording indicates that slow oscillations
provide a fundamental blueprint of cortical excitability and
connectivity during sleep (Massimini et al., 2004). Potential
explanations for our observation of a positive association of slow
oscillation with OMR, which occurred only in individuals lacking
SWS, include: (1) a potential compensatory mechanism of slow
oscillations, in the setting of age-related reductions of SWS; (2)
a residual slow oscillation component of vanishing SWS, and
(3) breach of the fundamental pacemaker rhythm representing
diffuse cortical connectivity.

Recently, interventions with acoustic stimulation, transcranial
direct current stimulation (tDCS), and pharmacological
interventions have aimed to enhance slow wave activity during
sleep (Zhang and Gruber, 2019). tDCS showed improvement in
SWA and overnight memory retention in young adults (Marshall
et al., 2004, 2006). Some studies demonstrated enhanced
slow oscillation (<1Hz) with improved memory (Westerberg
et al., 2015; Ladenbauer et al., 2016). Studies utilizing acoustic
stimulation methods during sleep can increase SWA, especially
slow oscillation (<1Hz), and improve sleep-dependent memory
retention both in young (Ngo et al., 2013, 2015; Kawai et al.,
2016a; Leminen et al., 2017; Papalambros et al., 2017; Ong
et al., 2018) and older adults (Papalambros et al., 2017).

Pharmacological trials with sodium oxybate show mixed results
on cognitive function. Walsh et al. reported that sodium oxybate
increased slow wave activity and better psychomotor vigilance
test in healthy young adults (Walsh et al., 2010). On the other
hand, Vienne et al. reported that an increased level of delta power
after administration of sodium oxybate did not improve memory
retention in the nap study (Vienne et al., 2012).

Together these studies suggest that slow oscillations likely play
a role in memory retention and, for the most part, are in line with
the finding of our study in older adults. Our findings suggest the
involvement of more precise features of sleep, which can guide
future stimulation investigations, in terms of both the temporal
and frequency domains that can be targeted in order to optimize
improvements in sleep-associated cognitive function. Further,
future investigations should investigate the relationship of slow
oscillations to a broader range of cognitive functions and examine
if any associated improvements are maintained over time.

To further investigate the mechanism of the effect of slow
oscillation on memory, future studies should also consider
integrating K-complex or sleep spindle coupling to examine
if the effect of slow oscillation on OMR is independent of
these components.

Further, there is tremendous variability across studies of sleep
andOMR, in terms of thememorymeasure employed, with some
investigations using neuropsychological measures, some utilizing
paired-associate tests, and others measuring memory recognition
and not recall. There is also variability among these studies
with respect to the difficulty of the memory measures assessed.
Future studies in this field should consider a broader range of
memory tasks when examining sleep and OMR to determine if
this relationship varies according to the memory task employed.

Limitations of our study include: (1) the cross-sectional
design, which limits the ability to explore mediational
relationships of SWS or slow oscillations on cognitive decline or
OMR decline in older adults, (2) a lack of frontal EEG electrodes,
due to utilizing traditional PSG montage before the issuance
of the 2007 AASM polysomnography guidelines (Ruehland
et al., 2011), (3) a lack of comparison of the memory retention
effect with an intervening period of the wake in the daytime
and possible circadian confound, (4) the OMR measure was
obtained through a division calculation with two measures
(evening and morning scores), which may have magnified
variability due to extraneous factors, even though we believe the
alternative calculation of the subtraction of two numbers (pre,
and post-sleep) is inaccurate, especially in those who scored low
in pre-sleep test, (5) a lack of data collection over two nights
to avoid first-night effects or sufficient information regarding
habitual sleep duration, (6) utilizing a single memory measure
for the memory domain of interest, (7) the lack of young,
comparison group, and (8) lack of neuroimaging or high-density
EEG recording to examine the topographical associations of
the slow-oscillatory activity. To mitigate the limitations listed
above, we tried several approaches including, (1) analyzing
relative power of SWA to minimize the disadvantage of lack of
frontal EEG electrodes, (2) using the term of OMR to clarify the
difference from consolidation research, (3) measuring delayed
memory recall from list B in the morning to investigate the
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circadian effect on memory, and (4) using ambulatory PSG at
home instead of in-lab PSG to minimize the first-night effect.

In summary, our findings suggest a complex relationship
between SWS, SWA, and OMR, with increased levels of SWS
associated with better delayed recall performance overall, but
not with overnight memory retention. Similarly, spectral power
across the full night period was also not associated with overnight
memory retention. However, our investigation found that slow
oscillation (0.5–1Hz) during the first ultradian sleep cycle of
slow wave activity is key for overnight memory retention in
older adults, specifically in those lacking SWS, even though there
is still uncertainty regarding the exact mechanism subserving
this finding. Further, our findings demonstrate the potential
importance of temporal and frequency features of sleep for OMR.
Finally, our study underscores that conventional methods of
sleep evaluation, such as scoring of N3 sleep/SWS, may not be
sufficient or sensitive enough for detecting the association of slow
wave activity and memory in older adults.
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