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The emergence of recent SARS-CoV-2 has become a global health issue. This single-stranded positive-
sense RNA virus is continuously spreading with increasing morbidities and mortalities. The proteome
of this virus contains four structural and sixteen nonstructural proteins that ensure the replication of
the virus in the host cell. However, the role of phosphoprotein (N) in RNA recognition, replicating, tran-
scribing the viral genome, and modulating the host immune response is indispensable. Recently, the NMR
structure of the N-terminal domain of the Nucleocapsid Phosphoprotein has been reported, but its precise
structural mechanism of how the ssRNA interacts with it is not reported yet. Therefore, here, we have
used an integrated computational pipeline to identify the key residues, which play an essential role in
RNA recognition. We generated multiple variants by using an alanine scanning strategy and performed
an extensive simulation for each system to signify the role of each interfacial residue. Our analyses sug-
gest that residues T57A, H59A, S105A, R107A, F171A, and Y172A significantly affected the dynamics and
binding of RNA. Furthermore, per-residue energy decomposition analysis suggests that residues T57, H59,
S105 and R107 are the key hotspots for drug discovery. Thus, these residues may be useful as potential
pharmacophores in drug designing.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

SARS-CoV-2 belongs to the single-stranded positive-sense RNA
family. This virus family has a large genome (30 kb RNA genome)
that encodes four structural proteins, small envelope (E), matrix
(M), nucleocapsid phosphoprotein (N), spike (S), and sixteen non-
structural proteins (nsp1-16) that together, ensure replication of
the virus in the host cell [1]. The non-structural proteins, mostly
associated with RNA replication, carry out the enzymatic function
required for viral replication. The genome of SARS-CoV-2 also
encodes for nsp7, nsp8, and nsp12 that together form a complex
called RNA-dependent RNA-polymerase, nsp10, nsp13, nsp14,
and 16 complexes called RNA capping machinery, and nsp3,
3PLpro, and nsp5 known as proteases that impede innate immu-
nity and also essential for cleaving viral polyproteins [2,3].

The first 66.66% part (two-thirds) of SARS-CoV-2 genome is
known as ORF1a/b region and encodes for the non-structural
proteins, whereas the remaining one-third part of genome encodes
the accessory proteins and four structural proteins [4]. In recent
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antiviral drug and vaccine designing investigations spike proteins
(S) and proteases were targeted. However, the mutations in spike
protein would be helpful to evade the effect of these drugs. On
other hand the use of protease inhibitors can harm the homologous
cellular proteases [5,6]. Therefore, it is essential to investigate
novel targets and devise comprehensive strategies for the protec-
tion of human against all sort of viral encroachment including
acute respiratory infection caused SAR-CoV-2.

In corona viruses the multifunctional N protein is essential for
transcription as well as replication. N protein binds to the viral
genome and contributes in packing it to get long helical nucleocap-
sid structure [7–9]. Previous studies indicated the involvement of
N protein in host-pathogen interactions by regulating apoptosis,
actin reorganization and host cell cycle progression [10,11]. The
highly immunogenic nature and most expressed protein during
infection make N protein a valuable novel target for devising novel
strategies to combat respiratory infections caused by CoV. The
recent studies suggested that the N proteins (homologous in differ-
ent coronaviruses) is composed of five different domains and parts:
the N terminal flexible arm, the N terminal domain (NTD), the cen-
tral disordered region (LKR, (Ser/Arg (SR)-rich linker), the C termi-
nal domain (CTD) and the C terminal flexible tail [3]. The three
intrinsically disordered proteins or regions (IDPs or IDRs), the N
terminal flexible arm), the central disordered region (LKR, (Ser/
Arg (SR)-rich linker) and the C terminal flexible tail are flexible
[3]. These IDRs plays vital role in macromolecules interactions
[3]. Diverse studies highlighted the involvement of NTD in RNA
binding, (SR)-rich linker in primary phosphorylation and CTD in
oligomerization respectively [11].In N terminal of coronavirus N
protein several residues associated with RNA binding and infectiv-
ity has been identified [12–14]. However, N protein of SAR-CoV-2
required further investigation to confirm the previous findings in
other corona viruses. The N-terminal RNA binding domain (N-
NTD) captures the RNA genome [15–17]. In contrast, the C-
terminal domain anchors the ribonucleoprotein complex to the
viral membrane via its interaction with the M protein [18]. The
four structural proteins, together with the viral + RNA genome
and the envelope, constitute the complete virion [16,17,19]. Both
of these domains have the RNA binding affinity, while the CTD
binds the M protein, establishing the physical linkage between
the envelope and +RNA. The SARS N proteins also play regulatory
roles in the viral life cycle through the host intracellular machin-
ery. A more recent study shows the structure of N protein, right
hand-like fold, composed of a b-sheet core with an extended cen-
tral loop. The core region adopts a five-stranded U-shaped right-
handed antiparallelb-sheet platform with the topology b4-b2-b3-
b1-b5, flanked by two short a-helices. A prominent feature of the
structure is a large extending loop between b2-b3 that forms a long
basic b-hairpin (b20 and b30) [15].

Since the role of Nucleocapsid Phosphoprotein to recognize the
RNA is crucial [9]. It binds the viral RNA genome and packs them
into a complex of ribonucleoprotein (RNP). This RNP complex is
critical for retaining highly ordered RNA conformation apt for
replicating and transcribing the viral genome [3]. This complex is
also being required for host-pathogen interactions regulation, a
highly immunogenic and abundantly expressed protein during
infection [8].

The NMR structure of the SARS-CoV-2N-terminal and C-
terminal domains of nucleocapsid phosphoprotein has recently
been reported but the role of N-terminal domain in recognizing
the RNA is not clear [15]. The N-terminal domain reported is a
monomer structure and does not contain the interacting RNA.
Since it is important to understand the interaction mechanism to
provide a way in the treatment of recent pneumonia. Herein, we
combined multiple computational approaches to understand how
the RNA interacts with this nucleocapsid phosphoprotein. We used
computational docking approaches to understand the role of criti-
cal residues in interaction with RNA. Furthermore, we used the in-
silico mutagenesis strategy to determine the impact of each resi-
due taking part in the interaction. We also performed molecular
dynamics simulation, binding free energy calculations, Dynamics
cross-correlation analysis, principal component analysis, and Free
energy landscape to deeply understand the role RNA recognition
mechanism by the nucleocapsid phosphoprotein. The findings of
this research can be useful and will provide a better understanding
of rapid drug designing to control the global epidemic of SARS-
CoV-2.
2. Methods

2.1. Nucleocapsid phosphoprotein retrieval and preparation

For docking studies, the recently submitted the solution NMR
structure of the SARs-CoV-2 nucleocapsid phosphoprotein (PDB
ID: 6YI3) was extracted from Protein Data Bank [20]. The structure
was subjected to preparation by Protein Preparation Wizard in
Molecular Operating Environment (MOE) [21]. The missing hydro-
gens were added, and partial charges were assigned. The structure
was also analyzed for structural breaks and unknown residues.

2.2. Docking of nucleocapsid phosphoprotein and RNA

Prior to docking, the 3D structure of RNA was constructed by
using the sequences reported by a recent study [15]. The structure
was generated and analyzed for topology defects. All the grooves
were carefully examined before the docking. The NMR structure
of the N-terminal nucleocapsid phosphoprotein was retrieved from
RCSB databank. For the docking, we used multiple algorithms.
HADDOCK (High Ambiguity Driven protein–protein Docking) [22]
that makes use of biochemical and biophysical interaction data
such as chemical shift perturbation data resulting from NMR titra-
tion experiments or mutagenesis data and Ambiguous Interaction
Restraints (AIRs) to drive the docking process. We used the Guru
interface to predict the docking poses, which is considered as the
best interface among all the four interfaces owned by the HAD-
DOCK server. Guru interface has all the available (approximately
500) features for protein-RNA/DNA docking. The best structural
complex was obtained based on the default parameter (lowest
intermolecular energies). To get the best results, we also per-
formed the docking of RNA with Nucleocapsid Phosphoprotein
using NPDock [23], which is an online server for protein-nucleic
acid docking. NPDock uses scoring of poses, clustering of the
best-scored models, and refinement of the most promising solu-
tions to give the best results. The best scoring complex was
retrieved from NPDock and analyzed. A comparative analysis of
the best complexes was performed to process the best compounds
for further analyses. For interaction analysis, DNAproDB [24] was
used, which provides an automated structure-processing pipeline
to extract structural features from DNA-nucleic acid complexes.

2.3. Alanine scanning (mutagenesis)

Alanine scanning is a site-directed mutagenesis method used to
identify whether a particular residue contributes to the stability or
function of a specific protein. Alanine is used owing to its chemi-
cally inert, non-bulky, methyl functional group that nevertheless
imitates the secondary structure preferences that certain other
amino acids exhibit. This strategy also can be used to discern if
the side chain of a particular residue plays an important role in
bioactivity or not [25,26]. Mutagenesis [27] was performed using
MOE (Molecular Operating Environment) [21]that computes the
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particular amino acid residue impact upon replacing by alanine.
The complete procedure of alanine scanning mutagenesis has been
given in the previous study [28]. Two parameters dAffinity and
dStability were considered while calculating the impact of alanine
substitutions. High positive dAffinity and dStability means highly
significant substitution. Furthermore, we also used mCSM-NA an
online server, to determine the impact of alanine substitution on
the structure and affinity of nucleocapsid phosphoprotein-RNA
complex. mCSM–NA [29] uses the graph-based signature concept,
which combines a pharmacophore modeling and information of
nucleic acid properties to predict and characterize the effect of a
single point missense mutation on protein-nucleic acid binding.
To further validate our results, we also used DrugScorePPI [30]
an online webserver based on the knowledge-based scoring func-
tion to predict changes in the binding free energy upon alanine
mutations. Combining these three methods predicted the most sig-
nificant substitutions for RNA interaction with the binding protein.

2.4. Molecular dynamics (MD) simulation

The WT and mutant type complex were subjected to molecular
dynamics (MD) simulation studies using the Amber package [31].
The TIP3P water model was used, and the system was neutralized
by Na+ counter ions addition. The OL3 force field was used for RNA.
The system was energy minimized by using the steepest descent
algorithm. Restraining simulation of the position was employed
to equilibrate the system and solvent around the protein before
the actual simulation. In a constant number of atoms, volume,
pressure, and temperature (NPT and NVT), ensembles were applied
to the system for the MD simulation studies. Particle Mesh Ewald
(PME) SHAKE algorithm was used for hydrogen interactions [32].
A total of 400 ns of MD simulation for each system was performed
and repeated three times. CPPTRAJ and PYTRAJ [33] was used for
RMSD, RMSF, and other analysis of the MD trajectories. Pymol
was used for visualization [34]. Furthermore, we also calculated
the total energies of all the systems including wild type and
mutants.

2.5. Unsupervised clustering of MD trajectories and free energy
landscape

Principal Component Analysis (PCA) [35,36] was used to obtain
the internal motion of the system. A CPPTRAJ package in Amber
was used for this function. The positional covariance matrix for
eigenvectors and its atomic coordinates were calculated. The diag-
onal matrix of eigenvalues was obtained by diagonalizing the
matrix with the help of orthogonal coordinate transformation.
The principal components were obtained based on eigenvalues
and eigenvectors, which highlighted the motion of trajectories dur-
ing simulation [37,38]. The first two principal components, known
as PC1 and PC2, were used to calculate the free energy landscape
(FEL) in the following equation.

DG Xð Þ ¼ �KBTlnP Xð Þ
where X indicates the response of the two principal components, KB
is Boltzmann constant, and P(X) is the dispersion of the framework’s
likelihood on the first two principal components.

2.6. Dynamic cross-correlation

A time subordinate movements of Ca atoms was obtained by
using dynamics cross-correlation maps (DCCM) approach [39].
Thus to understand the correlated and anti-correlated motions of
C-a atoms of all the systems residues, correlation matrix was
obtained. The following equation was used for DCCM calculations.
Cij ¼ hDri � Drji= hDr2i ihDr2j i
� �2

The matrix (Cij) represents the time-correlated data of protein
between the i and j atoms. Ca atoms from the 20,000 snapshots
were chosen to construct the matrix at 0.002 ns intervals. In the
plot, the positive values specify correlated motions, whereas nega-
tive values indicate anti-correlated motion during the simulation.
2.7. Binding free energy calculations

The MMGBSA method was used to calculate the free energy of
binding between WT and MTs complexes [40]. A total of 20,000
conformations extracted from the 400 ns trajectories of 0.2 ns time
intervals were used in the calculation. Mechanics Poisson–Boltz-
mann surface area (MM/PBSA) and Molecular Mechanics/General-
ized Born Surface Area (MM/GBSA) are two efficient approaches to
analyze the free energy. The values of MM/PBSA are significantly in
correlation with experimental approaches [41]. MM/PBSA has been
extensively applied in protein–protein interaction and protein–li-
gand binding. Here, we used both MMPBSA and MMGBSA
approaches to calculate the binding free energy.

For Free Energy calculation the following equation was used:

DGðbindÞ ¼ DGðcomplexÞ � ½DGðreceptorÞ þ DGðligandÞ�
Each component of the total free energy was estimated using

the following equation:

G ¼ Gbond þ Gele þ GvdW þ Gpol þ Gnpol � TS

where Gbond, Gele, and GvdW denotes bonded, electrostatic, and van
der Waals interactions, respectively. G-pol and Gnpol are polar and
nonpolar solvated free energies. The Gpol and Gnpol are calculated
by the generalized Born (GB) implicit solvent method with the
solvent-accessible surface area SASA term. Furthermore, we also
performed per-residues energy decomposition analysis to under-
stand the energy contribution of each residue to the whole energy.
3. Results

3.1. Interaction of nucleocapsid phosphoprotein with RNA

A recently reported NMR structure of the N-terminal domain of
the SARS-CoV-2 nucleocapsid phosphoprotein was retrieved from
RCSB using the PDB ID: 6YI3 reported by Dinesh et al. [15]. The
obtained NMR structure and the modeled RNA was submitted to
HADDOCK and NPDock for molecular docking. Protein-RNA dock-
ing by HADDOCK and NPDock ranked the best conformation of
nucleocapsid phosphoprotein-RNA complex (Fig. 1(A)). The total
binding affinity �108.0 kcal/mol was reported for the best confor-
mation. To understand the interaction pattern, these complexes
were subjected to the DNAproDB server. This server mapped the
interactions, and the results are shown in Fig. 1(B). Results from
these analyses revealed that residues Thr57, His59, Lys61,
Lys102, Asp103, Leu104, Ser105, Arg107, Lys169, Gly170, Phe171,
Tyr172, Ala173, Gly175, Ser176, and Arg177 was detected, inter-
acting with the RNA of SAR-CoV-2. Ribose sugar of Adenine (A),
uracil (U), and Guanine (G) formed interactions with His59,
Lys61, and Tyr172. The majority of the residues were interacting
with the phosphate (P) group of nucleotides (Arg107, Ala173,
Gly175, Ser176, Arg177, Lys169, Gly170, and Phe171). These inter-
actions were detected with U, A, G, C, and U from 50 end on the left
side and Lys61 from the right side.



Fig. 1. (A) Nucleocapsid phosphoprotein-RNA complex. The magenta color shows the N-terminal of Nucleocapsid phosphoprotein, while the ladder shape shows the RNA
bound to the Nucleocapsid phosphoprotein of SAR-COV-2. (B) Showing the interaction of RNA with the Nucleocapsid phosphoprotein N-terminal. Thr57, His59, Ser105,
Arg107, Gly170, Phe171, Tyr172 were reported to be high binding residues. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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3.2. In-silico mutagenesis of interfacial residues

A computational mutagenesis approach was used to determine
the impact of each alanine substitution. Alanine substitution
defines the role of a specific residue to the stability or function of
a given protein. Due to its distinguishing features like chemically
inert, non-bulky, and methyl functional group attachment, alanine
is considered as the best choice to calculate the impact of each resi-
due. Herein, using multiple algorithms, the significance of each
interacting residue was determined. Among the total 19 interac-
tions, utilizing the dStability, dAffinity, and change in the binding
affinity, ten substitutions were reported to increase the stability.
While using the defined criteria, nine substitutions including
T51A, H59A, K61A, S105A, R107A, K169A, G170A, F171A, and
Y172A, was found to reduce the stability and binding affinity upon
substitution. However, substitutions reported by all three tools,
including MOE, DrugScorePPI, and mCSM-NA, were selected for
further analysis. Using this criterion, two substitutions K61A and
K169A, were excluded. The remaining seven substitutions signifi-
cantly affected the binding and stability of the Protein-RNA com-
plex. Among these four substitutions, T57A, H59A, G170A, and
F171Achanged the protein-RNA in the greater fold. While the other
substitutions such as S105A, R107A and Y172A were reported to
affect the protein-RNA complex comparatively in the lower fold.
As shown in Table 1, the seven substitutions, which reduce the sta-
bility, were selected for molecular dynamics simulation and post-
simulation analysis to understand the dynamics of these
substitutions.

Molecular dynamics simulation of wild and seven mutant sys-
tems was performed. Different analysis such as RMSDs for stability,
RMSF for residual flexibility, Total energy, Principle component
Analysis for protein motions, Free energy landscape for protein
states transition, DCCM for residues correlated and anti-
correlated while binding free energy for the affinity of RNA toward
the protein was performed. These analyses significantly increased
the understanding of RNA-protein interaction.
3.3. Convergence of wild and mutant systems

A comparative study of MD properties on variants and the WT
protein complexes was performed to check the stability of MTs
during the simulation period. We repeated each simulation run
three times. The trajectory was analyzed, and RMSDs were calcu-
lated after 400 ns. As given in Fig. 2, the wild type system remained
stable during the course of simulation except for friction between
150 and 160 ns time period. It can be seen that the wild type sys-
tem after this acceptable fluctuation has gained the stability and
onward till 400 ns a straight graph is formed, which reports the
stable behavior of the wild type system. In the case of the T57A
mutant, the RMSD increased for the first 80 ns but remained stable
for the rest of simulation time. On the other hand, H59A, which
form multiple interactions with an RNA molecule, has significantly
affected the overall stability of the system. From the figure, it can
be explained that major convergence at different intervals
occurred. Time periods between 80–100 ns, 180–200 ns, and
330–380 ns showed significant deviation during the simulation.
In addition, the system S105A showed a stable graph till the
180 ns except for a substantial convergence at 180 ns time period
and the RMSD increased substantially. Soon after increasing the
RMSD no convergence was observed. In the case of R107A, the sys-
tem showed significant deviation during the course of the simula-
tion. Specifically, the system, R107A, showed significant
convergence in the stability till the end of the simulation. Signifi-
cant convergence at different intervals was observed. However,
G170A, with the major stability drift between 100 and 120 ns dur-
ing simulation, a continuous increase in the RMSD value was also
observed. Stability fluctuation between 320 and 340 ns was also
observed. In the case of F171A, the impact of alanine substitution
did not favor the stability change. However, substitution Y172A
significantly affected the system. The stability shifts at different
intervals 50–80, 280–300 and 320–350 ns significantly affected
the system’s stability. Altogether, these results show that the vari-
ants T57A, H59A, S105A, R107A, G170A, F171A, and Y172 attained



Table 1
The table contains a list of interacting residues. Based on the dAffinity, dStability, and Predicted DDG was used to understand the impact of each substitution when changed to
alanine. The significant substitutions which reduce the binding affinity and stability of the Protein-RNA complex are given in bold.

Index Residue Position dAffinity dStability Predicted DDG Outcome

1 D103A �0.218208126 0.7058154 5.07 Increased affinity
2 E174A �0.627432562 1.099226294 4.5735 Increased affinity
3 F171A 0.131910418 2.094553371 �8.7225 Reduced affinity
4 G170A 0.799354909 0.041698953 �5.559 Reduced affinity
5 G175A �0.632812623 0.687884896 6.7065 Increased affinity
6 G178A �1.332230401 0.668020025 9.135 Increased affinity
7 G60A �0.655284048 0.079444368 0.4935 Increased affinity
8 H59A 3.80850533 0.429009885 �8.3685 Reduced affinity
9 K102A 1.651298071 0.815469681 1.0365 Increased affinity
10 K169A 1.957372005 �0.315900659 �1.6425 Reduced affinity
11 K61A 2.456900907 �0.43984319 �2.547 Reduced affinity
12 L104A 3.159796329 1.738786997 5.541 Increased affinity
13 P168A 0.064328214 1.125976312 0.3195 Increased affinity
14 R107A 0.831868936 1.887304986 �1.0755 Reduced affinity
15 R177A 6.054382342 0.310284166 4.212 Increased affinity
16 S105A 0.957764581 0.470427697 �1.6065 Reduced affinity
17 S176A 0.304609561 0.649918458 1.368 Increased affinity
18 T57A 0.936589745 1.111603419 �7.2075 Reduced affinity
19 Y172A 6.632200002 2.154790282 �0.438 Reduced affinity

Molecular Dynamics Simulation.

Fig. 2. RMSDs of all the systems, including wild type and mutants. The average RMSD was reported 3.5 Å for wild type. Compare to the wild type, the average RMSD for the
mutant systems were above the 4 Å.
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more deviation when compared with WT protein. MTs G170A,
F171A, and Y172A were seemed unstable even at the end of the
simulation period and reached a maximum RMSDs, 6 Å, 5 Å, and
4.9 Å, respectively when compared with wild type using the red
line threshold. The RMSD results from the three replicates are
given in Supplementary Fig. S1. It can be seen that no major differ-
ences were observed and all the simulation results are significant.

3.4. Root mean square fluctuation (RMSF)

The residual flexibility was calculated by mean of RMSF. It can
be seen that the wild type and mutant systems exhibit more sim-
ilar pattern of flexibility. The average RMSF for all the systems was
observed to be 2.8 Å. As given the WT, H59, T57, S105 and R107
showed similar pattern of flexibility while the G170, F171 and
Y172 possess lower flexibility than the others. The increased flex-
ibility at different regions is due to the loops in the structure. In
case of the lower flexibility shown by G170, F171 and Y172 is
due to the differential dynamics upon the binding of RNA. The sec-
ondary structure given above the RMSF graph justifies the residual
flexibility. Overall the residues fluctuation among MTs was
detected in difference when compared with WT (Fig. 3).

The total energies of all the mutants revealed a more similar
pattern ranging from �80,800 kcal/mol to �82,600 kcal/mol. On
the other hand, the wild type exhibited different total energy as
given in Fig. 4.

3.5. Clustering of proteins motion trajectories

The impact of predicted mutations on N-NTD dynamics could
be observed in Fig. 5. PCA (Principal component Analysis) was used
to understand the structural changes with amplitude in each sys-
tem levied by specific substitution. As given in Fig. 5, it can be seen
that significant dominant motions were observed in the first three
eigenvectors while the rest showed localized fluctuation. It can be
seen that the first three eigenvectors contributed a total of 52%
variances to the total observed motions in the wild type system.
Unlikely the wild type, in mutants different behaviour of motion



Fig. 3. RMSF of WT and MTs. (A): WT exhibited the RMSF between 2.3 and 3.4 Å (B):
T57A (C): H59A attained the highest RMSF value at the end. (D): S105A (E): R107A
demonstrated RMSF between 1.1 and 2.5 Å. (F): G170F (G): F171A (H) Y17A.

Fig. 5. Fraction of the first 10 eigenvectors. The (%) contribution of each eigenvector
obtained from covariance matrix plotted against the corresponding eigenvector
indices constructed from the MD trajectory.
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was observed. For each mutant 41% (T57A), 58% (H59A), 58%
(S105A), 31% (R107A), 72% (G170A), 68% (F171A) while 48%
(Y172A) total motion was observed. This behavior may explain
the structural rearrangement due to the RNA binding.

Furthermore, to obtain conceivable attributed motions, the first
two eigenvectors were plotted against each other. The depiction of
the blue to red color indicates the flipping over of conformations
during the simulation period. Each dot starting from blue and ends
at red represent specific frame. Trajectories have been mapped into
a two-dimensional subspace using PC1 and PC2 to grasp the com-
plexes conformational transformations. It can be seen that all the
complexes attained two conformational states on the subspace dif-
ferently colored (blue and red) Fig. 6. These two conformational
states could be easily separated from each other as the energeti-
cally unstable conformational state blue neared convergence and
attaining a stable conformational state red color. Consequently,
different periodic jumps are required for the transition of different
conformations in mutants.
3.6. Transition pathway from metastable to native states

The free energy landscape (FEL) depicts the transition states. To
understand the transition mechanism of MTs and WT complexes
from metastable to native states, the first two eigenvectors were
considered for computing and plotting the FEL of trajectory time.
For better understanding the structural evolution, low energy
states have been mined. WT demonstrated a significant difference
Fig. 4. The figure shows the total energy differences between the wild and mutant syste
energy in kcal/mol.
in FEL when compared with MTs, as shown by colors in the plot
(Fig. 7). The color red is more prevalent in MTs (T57A, H59A,
S105A, R107A, G170A, F171A, and Y172A), seems unstable com-
pared to WT. The highest transition states have been observed in
H59A, S105A, R107A, and F171A, showing the impact of these resi-
dues’ mutation on RNA bindings. WT exhibited two states and sep-
arated by an energy barrier. It can also be seen that the WT
remained in one energy state for most of the time. G170A and
Y172A also attained a more intermediate state (yellow). However,
the difference is evident between WT and MTs, depicting the
impact of these mutations on FEL. The result specifies the more
conformational transition in the MTs compared to WT. Multiple
metastable states have been observed in MTs during their struc-
tural evolution. These have been separated by low and high-
energy barriers. The changes in different structural ensemble at
different time nanosecond are given in cartoon structures while
the critical regions are shaded. The x and y coordinates, their
respective frame number and time (ns) is given in Supplementary
Table S5.
3.7. Dynamical cross-correlated map analysis for wild & mutant
systems

To investigate the functional displacements of the interaction
protein atoms as a function of time, we constructed and analyzed
a dynamics cross-correlation matrix (DCCM). During the simula-
ms. The x-axis is showing the time in picoseconds while the y-axis shows the total



Fig. 6. Principal component analysis (PCA) of WT and MTs N-NTD of SARS-CoV-2. (A) WT (B) T57A (C) H59A (D) S105A (E) R107A (F) G170A (G) F171A (H) Y172A. The first
PC1 and second PC2 from the PCA of the backbone carbon were used.
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tion time (400 ns) wild type showed a more positive correlated
motion with a negative strand correlation of loop (!2). All mutants
demonstrated variation in correlated motions where the maximum
of the residues exhibited positive correlations than wild type com-
plex. All the correlation plots are given in Fig. 8.

It can be seen that overall the motions are dominated by the
correlated motions. In case of the T57A when compared to the wild
type the loop (!1) showed a negative correlation while the b3, !5
and !6 showed a positive correlation. On the other hand, H59A
showed a positive correlation at !5 region. Here a weak negative
correlation at b3 site was observed. S105A possess strong negative
Fig. 7. Free energy landscape (FEL) of Wild type and Mutants. High and low energy state
the dark colour represent each minimal energy structural ensemble. Red shows a high en
the conformational transition states in MTs, T57A, H59A, S105A, R107A, G170A, F171A,
reader is referred to the web version of this article.)
correlation except the regions !5 and !6, which showed a positive
correlation when compared to the wild type. R107A showed posi-
tive correlation at regions b4 and !2 while the rest a similar pat-
tern was observed. Furthermore, G170A showed a weak negative
correlation at regions where the wild type showed strong negative
correlation. The region !6 was reported to possess positive corre-
lation. In case of F171A and Y172A a more similar pattern of corre-
lation was observed where the region !6 showed strong positive
correlation while the other regions showed strong negative corre-
lation. Thus, the substitutions affect the internal dynamics of the
interacting proteins and ultimately the biology of binding with
has been represented by a different color in the plot. The contour scale is given and
ergy state. Yellow shows an intermediate energy state (A, B, C, D, E, F, G, H) represent
and Y172A. (For interpretation of the references to color in this figure legend, the



Fig. 8. Dynamic cross-correlation (DCCM) plot of WT and MTs. The colors show the positive and negative correlated motions of residues in WT and MTs complexes. The color
code at the right represents the quantity of positive and negative correlation. A more reddish represents negatively correlated motion among residues. The color inclines
characterize a gradual decrease in the correlation motion.
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the RNA. These results signify that the substitution has brought
conformational and dynamical variability and, therefore discloses
the structure–function relationship specifically the affinity for
binding the RNA molecule.
3.8. Binding free energy calculations

Free energy computation and analysis were performed to com-
pare the interaction changes in wild type and mutant systems
quantitatively. To compute the total free energy, we used 20,000
snapshots from the last 400 ns of the MD simulation trajectory.
Both MMGBSA and MMPBSA for each run (three replicates) were
calculated. Each contributing term such as van der Waals (vdW),
electrostatic, polar solvation, and solvent accessible surface area
(SASA) energies were calculated and are given in Table 2
(MMGBSA) and Table 3 (MMPBSA). The MMGBSA and MMPBSA
results for replicate 2 and replicate 3 are given in Supplementary
Table S1–S4.

The MM-GBSA results (Table 2) also reveals variation in ener-
gies among WT and MTs. In majority, this effect is high in terms
of total and electrostatic energies. WT exhibited the DvdW
(�1186.03 ± 19.85 kj/mol) Delec (9421.01 ± 124.93 kj/mol) Dps
(�3486.63 ± 117.85 kj/mol) DSASA (73.67 ± 1.90), and DG Total
energies (�6426.5 ± 42.2) which have been found in variation with
MTs except R107A, G170A, and F171A The vdW energy was in less
variation between WT �1186.03 ± 19.85 kJ/mol) and MTs, T57A,
H59A, S105A, R107A, G170A, F171A, and Y172A (Table 2). While
Table 2
MM-GBSA of wild type and mutant systems.

Complex Name MMGBSA (kJ/mol)

DvdW Delec

Wild Type �1186.03 ± 19.85 �9421.01 ± 124.93
T57A �1190.13 ± 19.07 �9232.48 ± 203.81
H59A �1184.39 ± 25.84 �9142.96 ± 141.49
S105A �1193.50 ± 19.23 �9163.89 ± 133.27
R107A �1175.41 ± 17.86 �8995.88 ± 191.93
G170A �1181.64 ± 19.94 �9208.50 ± 127.29
F171A �1156.73 ± 21.58 �8968.67 ± 125.18
Y172A �1189.97 ± 17.84 �9068.05 ± 109.49
differences in electrostatic energies between WT and MTs com-
plexes is significantly high., suggesting that these locations might
be essential for binding RNA through electrostatic interactions
with N-NTD of SARS-CoV-2. SASA energy of WT has not been
observed in significant variations except R107A, G170A, and
F171A (74.39 ± 1.88kj/mol, 74.18 ± 2.31kj/mol, and 77.14 ± 2.31k
j/mol) where the SASA energy is higher than that WT, suggesting
the impact of alanine mutations on binding with virus RNA and
N-NTD SASA energy.

The MM/PBSA results shows that WT-RNA complex exhibited
the highest binding energy 41.54 ± 12.30), as compared to the
MTs complexes (Table 3). The highest impact on the total binding
energy was found in F171A and R107A, �27.56 ± 14.28 and �31.
88 ± 9.36 (kJ/mol). The vdW of WT and MTs has been found in vari-
ation where the WT attained the lowest energy state (�51.99 ± 11.
23 kj/mol) when compared with MTs. The lowest electrostatic
energy has been attained by WT (�1601.34 ± 102.01 kj/mol), how-
ever, MTs H59A, R107 also attained a good Delec energy as shown
in Table 1. Potential energy has been found in significant difference
except, signifying the effect of mutations on structure and interac-
tion with RNA.
3.9. Per-residue energy decomposition analysis

Furthermore, to understand the impact of each residue on the
binding of RNA we calculated the energy contribution from each
residue to the total energy. Our analysis suggests that among the
Dps DSASA DG Total

�3486.63 ± 117.85 73.67 ± 1.90 �6426.53 ± 42.24
�3367.82 ± 197.96 72.21 ± 2.25 �6007.59 ± 49.09
�3450.93 ± 126.22 72.83 ± 3.16 �5924.87 ± 44.57
�3391.34 ± 114.43 72.88 ± 1.63 �5969.11 ± 39.57
�3600.40 ± 191.60 74.39 ± 1.88 �5904.09 ± 42.92
�3416.87 ± 10.22 74.18 ± 2.31 �5812.52 ± 53.52
�3719.97 ± 124.34 77.14 ± 2.31 �5311.79 ± 46.67
�3503.93 ± 96.30 73.08 ± 1.97 �5985.77 ± 38.43



Table 3
MMPBSA of wild type and mutant systems.

Complex Name MMPBSA (kJ/mol)

DvdW Delec Dps DG Total

Wild �51.99 ± 11.23 �1601.34 ± 102.01 1668.063 ± 108.13 �41.54 ± 12.30
T57A �31.28 ± 12.66 �1317.27 ± 94.28 1227.43 ± 169.48 �35.59 ± 38.21
H59A �47.58 ± 16.14 �1405.26 ± 201.36 1180.23 ± 98.691 �33.22 ± 15.38
S105A �53.56 ± 11.63 �1215.61 ± 121.15 1512.22 ± 83.58 �32.41 ± 11.20
R107A �49.53 ± 10.03 �1447.19 ± 132.12 1407.13 ± 101.02 �31.88 ± 9.36
G170A �32.41 ± 12.32 �1367.22 ± 142.24 1347.06 ± 131.78 �32.85 ± 11.69
F171A �51.02 ± 12.57 �1321.45 ± 121.47 1212.21 ± 86.63 �27.56 ± 14.28
Y172A �57.28 ± 12.21 �1127.54 ± 104.15 1107.18 ± 29.65 �33.93 ± 10.06

Elec = electrostatic energy; G-Total = total binding free energy; Ps = polar solvation energy; SASA = solvent-accessible surface area energy; DvdW = van der Waals energy;
MMGBSA = Molecular Mechanics/Generalized Born Surface Area.
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seven residues T57, H59, S105 and R107 contributes more to the
total energy. As given in Fig. 9, it can be seen that H59 con-
tributes the most followed by R107, S105 and T57. Hence these
results confirm that while designing small molecule inhibitors
these residues should be the primary targets. We speculate the
blocking these residues could help to block the SARs-CoV-2
pathogenicity.
Fig. 9. Per-residue energy decomposition analysis of the ess
4. Discussion

The nucleocapsid phosphoprotein (N) is playing a role in linking
the viral + RNA to the membrane. There are two domains, N-
terminal RNA binding domain (N-NTD) that binds the RNA. In con-
trast, the C-terminal domain (CTD), after interaction with the M
protein, is involved in anchoring the ribonucleoprotein to the viral
ential residues contributes to the total binding energy.
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membrane [42]. Although the previous study [15] unveil that RNA
binding to N-NTD and its interaction with RNA, however, the
mechanism and the impact of mutation has not been yet investi-
gated. Here in the current investigation, we performed comprehen-
sive MD simulation to unveil the binding mechanism, types of
interactions, and the impact of mutations on N proteins’ dynamic
behavior. Residues T57, H59, S105A, R107A, G170, F171, Y172 have
been found, playing a significant role in interaction with RNA. A
more recent study also reported that amino acid residues A50,
T57, H59, R92, I94, S105, R107, R149, Y172 are essential in the
establishment of interactions with SARS-CoV-2 RNA (Dinesh
et al. 2020). The molecular mechanisms to recognize RNA binding
N protein and the establishment of interactions will increase our
understating to design future inhibitors. Our protein model dock-
ing, and simulation analysis exposed that N-NTD recognizes and
establishing contacts in a shape-specific manner by with RNA.
The same results have been described earlier, where stem-loop
mRNA is recognized by adenosine deaminase RNA specific 2
(ADAR2) [43]. Previous studies demonstrated that residues S105
and R107 are conserved among all SARS-CoV N-NTD (SARS-CoV-
2, SARS-CoV, MERS-CoV, and HCoV-OC43) [4]. Mutating S105 and
R107 results in the incapability of p4a of blocking IFN production
in cells infected within MERS-CoV (Siu et al. 2014). Remarkably,
we detected that S105 and R107 residues retained contacts with
RNA when subjected to 400 ns MD simulations. Mutating these
residues in alanine scanning results in a significant impact on N-
NTD structure dynamic behavior and interactions with RNA bind-
ing. These findings further support the results of previous reports
and propose to design inhibitors against these residues playing a
vital role in N-NTD-RNA interaction in SARS-CoV-2 that may be
helpful for better management of COVID-19 infections. To validate
the role of residues involved in an interaction with RNA, Rigorous
in silico alanine scanning and MD simulations was performed for a
period of 400 ns to pinpoint the role these residues and their
impact on dynamics and free energy calculations where residues
T57A, H59A, S105A, R107A, G170A, F171A, and Y172A were found,
influencing the binding affinity between SARS-CoV-2N-NTD and
RNA binding. Inhibitors may be designed to block the RNA interac-
tions site. Alanine scanning is a reliable approach in predicting
residues at protein interfaces that might be involved in binding
with ligands with potential for modulation [44]. Binding of drugs
or other biomolecules at protein interfaces is mostly controlled
by some specific residues contributing disproportionately to the
Gibbs free energy of binding, DG, and dynamics of proteins, which
are good targets for drug designing and discovery. The trajectory
investigation through RMSD, RMSF, and essential dynamics
showed that variants created, displayed variations in the 3D struc-
ture of SARS-CoV-2N-NTD that might affect the affinity towards
RNA. These variants exhibited marked significant impact in RMSD,
RMSF, DCCM, and PCA. All the alanine variants established a dis-
crete pattern of structural dynamics and very interesting because
point mutations have been created in the same crystal structure
(WT) and compared during the whole investigation. In simulated
or natural conditions, the substitution with alanine is sufficient
to cause variations in protein structural dynamics, affecting bind-
ing capability. The binding free energy demonstrated that N-NTD
exhibited a decreased affinity toward RNA in MTs T57, H59,
S105A, R107A, G170, F171, and Y172. Since these methods are
widely used by different studies to understand the impact of muta-
tions [45,46].

In conclusion, residues T57, H59, S105, R107, G170, F171, and
Y172 are playing a significant role in binding with RNA of SARS-
CoV-2. Alanine scanning further supported the role of these resi-
dues when subjected to comprehensive MD simulation. The overall
structural dynamics, including RMSD, RMSF, DCCM, and PCA, have
been found, influenced by alanine MTs. Binding free energy further
supported that these residues might have a role in binding with
RNA. Drug development and screening against these residues
may be useful for better management of SARS-CoV-2 infections.
The fluctuations and changes observed in the longer and repeated
simulation could provide better understanding. The observed vari-
ations in different replicas are significantly correlated and could
aid to design small molecule inhibitors which could target the N-
terminal domain of SARs-CoV-2N-NTD protein and may halt the
RNA recognition to aid the treatment process.
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[32] Martoňák R, Laio A, Parrinello M. Predicting crystal structures: the Parrinello-
Rahman method revisited. Phys Rev Lett 2003;90(7):075503.

[33] Salomon-Ferrer R et al. Routine microsecond molecular dynamics simulations
with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory
Comput 2013;9(9):3878–88.

[34] DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter
on Protein Crystallography, 2002. 40(1): p. 82-92.

[35] Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics
Intell Lab Syst 1987;2(1–3):37–52.

[36] Pearson K. LIII. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 1901. 2(11): p. 559-572.

[37] Balsera MA et al. Principal component analysis and long time protein
dynamics. The Journal of Physical Chemistry 1996;100(7):2567–72.

[38] Ernst M, Sittel F, Stock G. Contact-and distance-based principal component
analysis of protein dynamics. J Chem Phys, 2015; 143(24): 12B640_1.

[39] Gosu V, Choi S. Structural dynamic analysis of apo and ATP-bound IRAK4
kinase. Sci Rep 2014;4(1):1–13.

[40] Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate
ligand-binding affinities. Expert Opin Drug Discov 2015;10(5):449–61.
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