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Abstract: Glutamate neurotransmission and metabolism are finely modulated by the retinal network,
where the efficient processing of visual information is shaped by the differential distribution and
composition of glutamate receptors and transporters. However, disturbances in glutamate home-
ostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative
diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating
degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of
RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common
neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to
glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to
this. In particular, we focus on the N-methyl-D-aspartate (NMDA) receptor as the major effector of
glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis,
changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of
endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA
receptor signalling, novel neuroprotective strategies may be on the horizon.

Keywords: retina; retinal ganglion cell; glutamate; excitotoxicity; neuronal vulnerability; NMDA
receptor

1. Retinal Network Integration Requires Glutamate Neurotransmission

Glutamate is the dominant neurotransmitter of the retinal network, where glutamater-
gic synapses connect the fundamental functional ‘columnar unit’ of the retina, involving
photoreceptors (PCs), bipolar cells (BCs) and retinal ganglion cells (RGCs) [1]. Through
the ensheathment of this column by Müller glia, glutamate homeostasis and metabolism
are finely modulated to enable temporal and spatial control of transmission [2]. This is
achieved through the release by Müller glia of glutamate receptor co-agonists such as D-
serine [3] and glutamate itself [4], their expression of glutamate and gamma-aminobutyric
acid (GABA) transporters [5–7], and other roles in the re-uptake, recycling and de novo syn-
thesis of glutamate precursors [8]. Further modulation is achieved through the function of
inhibitory interneurons of the retina, horizontal cells and amacrine cells, which help shape
glutamatergic neurotransmission through lateral interactions with retinal neurons [9–11].
The retinal network is essential to vision since any impairment of this intricate, functional
unit inevitably leads to the inability to process visual input.

The ability for the complex information involved in vision to be transmitted using
primarily a single neurotransmitter is made possible by several factors. Firstly, multiple
types of glutamate receptors are involved, including both ionotropic and metabotropic
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glutamate receptors (iGluRs and mGluRs) which, in the case of iGluRs, can exist as further
variants arising from their existence as co-assemblies of different subunits. The involvement
of diverse glutamate receptors can thus determine the differential processing of various
components of visual information and has been shown to form the basis of different retinal
pathways. As shown in Figure 1, these include pathways responsible for scotopic and
photopic vision processed by the rod and cone pathways [12] as well as the processing of
light increments and decrements by the ON and OFF pathways [13]. The difference in ON
and OFF pathway signals arises primarily from the different glutamate receptors present
on ON and OFF BCs. Both rod and cone PCs are depolarized and release glutamate under
dark conditions and undergo hyperpolarisation after illumination followed by the reduced
release of glutamate [14]. At the next layer, BCs can react in two different ways to changes
in photoreceptor activity. OFF cone BCs express ionotropic α-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid (AMPA)/kainate receptors, which permit the entry of depolarising
sodium in response to glutamate binding. They are therefore depolarized in the dark
(high glutamate release from photoreceptors) and hyperpolarized following light stimuli
(reduced glutamate release from photoreceptors), giving rise to a strong signal under dark
conditions, contrary to intuition for a sensory system [15,16]. In contrast, ON cone and rod
BCs express the metabotropic glutamate receptor mGluR6, which responds to glutamate
binding by activating a G-protein coupled signalling cascade leading to the inhibition
of inward currents. As a result, the cell is hyperpolarized under dark conditions (high
glutamate release) and depolarized under light conditions (low glutamate release). This
is termed a sign-inverting synapse since depolarisation of the PCs under dark conditions
results in the hyperpolarisation of these BCs and vice versa [16,17].
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Figure 1. Schematic representation of the retinal network and its different pathways for the pro-
cessing of visual information. Visual information is processed by the ‘columnar unit’, which in-
cludes photoreceptors, bipolar cells, and retinal ganglion cells. Müller glia ensheath the entire ‘co-
lumnar unit’ of neurons providing fundamental metabolic and functional support. Horizontal cells 
and amacrine cells modulate the synaptic signalling between photoreceptors and bipolar cells and 
between bipolar cells and retinal ganglion cells, respectively. The retinal neuronal layers can be dis-
tinguished based on the location of the main cell bodies (photoreceptor layer, PL; inner nuclear 
layer, INL; ganglion cell layer, GCL) and of the synaptic connections between neurons (outer plex-
iform layer, OPL; inner plexiform layer, IPL). Retinal ganglion cell axons initially form bundles of 
unmyelinated fibres at the retinal nerve fibre layer (RNFL), which will then exit the eye and form 
the myelinated optic nerve. Rod and cone photoreceptors mediate two distinct pathways of light 

Figure 1. Schematic representation of the retinal network and its different pathways for the processing
of visual information. Visual information is processed by the ‘columnar unit’, which includes
photoreceptors, bipolar cells, and retinal ganglion cells. Müller glia ensheath the entire ‘columnar
unit’ of neurons providing fundamental metabolic and functional support. Horizontal cells and
amacrine cells modulate the synaptic signalling between photoreceptors and bipolar cells and between
bipolar cells and retinal ganglion cells, respectively. The retinal neuronal layers can be distinguished
based on the location of the main cell bodies (photoreceptor layer, PL; inner nuclear layer, INL;
ganglion cell layer, GCL) and of the synaptic connections between neurons (outer plexiform layer,
OPL; inner plexiform layer, IPL). Retinal ganglion cell axons initially form bundles of unmyelinated
fibres at the retinal nerve fibre layer (RNFL), which will then exit the eye and form the myelinated
optic nerve. Rod and cone photoreceptors mediate two distinct pathways of light responses: scotopic
and photopic vision. In particular, the cone pathway can be additionally distinguished according to
ON and OFF, which are interconnected and differentially modulated by glutamate neurotransmission.
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While the mGluR6 (a metabotropic glutamate receptor) mediates the sign-inverting synapse re-
sulting in rod and ON cone bipolar cell hyperpolarisation in response to glutamate release, the
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptor mediates the
sign-conserving synapse in OFF cone bipolar cells, which depolarise in response to glutamate release
under dark conditions.

Secondly, glutamate neurotransmission is finely shaped by the influence of inhibitory
and modulatory neurotransmitters such as GABA, glycine, acetylcholine, dopamine, serine,
substance P and other neuropeptides [18]. Hence, the glutamatergic retinal network
efficiently communicates with the assistance of other neurotransmitters to ensure the best
tuning of the visual information.

Furthermore, the existence of ribbon synapses in the retina supports a sustained high
basal rate of glutamate release [19]. These synapses are defined by the presence of large
proteinaceous ‘ribbons’ at the presynapse, which tether numerous synaptic vesicles to the
vicinity of the active zone. This allows their release to be regulated, allowing for both slow,
continuous, and fast stimulus-synchronous neurotransmitter release [20]. In addition, a
ribbon presynapse can communicate to multiple postsynapses (termed ‘dyads’ and ‘triads’),
which due to differential expression of glutamate receptors at the postsynaptic densities,
allow the glutamate response to be further tuned [21].

2. Distribution of Glutamate Receptors and Transporters in the Retinas

In previous years, several studies implemented different immunohistochemical and
electrophysiological techniques in order to map the distribution of glutamate receptors and
transporters in the mammalian retina [22–25]. Table 1 summarises the complex pattern
of receptor subunits and transporter subtypes in different retinal cells, which mirrors the
intricate mechanisms involved in retinal glutamatergic neurotransmission. Additional and
more recent investigations shed light on the genomic and transcriptomic expression of
different receptor subunits which appear to be similar in rodent and primate retinas [26,27].
Hence, the following paragraphs aim to depict a general and up-to-date picture of glutamate
receptor and transporter distribution according to studies conducted on either rodent or
primate retinas.

Table 1. Distribution of the different subunits of ionotropic and metabotropic glutamate receptors
(iGluRs and mGluRs) and glutamate transporters within the rodent and primate retinal network
including (in order from the outer layers to the inner layers of the retina) photoreceptors, horizontal
cells, bipolar cells, amacrine cells and retinal ganglion cells. The expression profile of Müller glia,
since relevant to transmission modulation, has been included as well. iGluRs are distinguished as
AMPA (four subunits, GluA1-4), kainate (five subunits, GluK1-5), GluD (two subunits, GluD1-2) and
N-methyl-D-aspartate (NMDA) (seven subunits, GluN1, 2A-D, 3A-B) receptors. mGluRs are classified
as three subgroups (I-III) and comprise 8 subunits (mGluR1-8); they are all expressed (except for
mGluR3) throughout the retina in different combinations and locations, and here only subunits with
relevant and well-studied functions in the retina are mentioned. Glutamate transporters include the
sodium-dependent excitatory amino acid transporters classified into five subtypes (EAAT1-5) and the
chloride-dependent cysteine-glutamate transporter (xCT). * hinted at by pharmacological blockade,
but immunocytochemical evidence is lacking.

Ionotropic Glutamate Receptors Metabotropic
Glutamate Receptors

Glutamate
Transporters

AMPA
Receptors (GluA1-2)

Kainate
Receptors (GluK1-5)

NMDA Receptors
(GluN1, 2A-D, 3A-B)

Group I-III
Metabotropic

Receptors (mGluR1-8)

EAAT1-5
xCT

Photoreceptors - GluK5 only
presynaptic [28]

GluN1, 2B only
presynaptic [29,30] mGluR8 [31] EAAT2 [24,32]

EAAT5 [33]
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Table 1. Cont.

Ionotropic Glutamate Receptors Metabotropic
Glutamate Receptors

Glutamate
Transporters

AMPA
Receptors (GluA1-2)

Kainate
Receptors (GluK1-5)

NMDA Receptors
(GluN1, 2A-D, 3A-B)

Group I-III
Metabotropic

Receptors (mGluR1-8)

EAAT1-5
xCT

Horizontal cells GluA2-4 [26] -
GluN1 [29,34]/

additional subunits
unknown

- EAAT3 [32,35]

Bipolar cells GluA1-4 [22] GluK1 (OFF-BCs) [36]
GluK1-3 [22,37]

GluN1,2C-D [23,37]
GluN2D only

presynaptic in rod
BCs [29,38]

mGluR6 (ON-BCs) [17]
mGluR8 [39,40]

mGluR7 presynaptic [40,41]

EAAT2 [24,32]
EAAT3 [32,35]

EAAT5 [33]

Amacrine cells GluA1-4 [22,26] GluK2-5 [22,26,37]
GluD1-2 [42] GluN1,2A-C [29,37]

mGluR1 [22]
mGluR2 [43]
mGluR5 [44]

mGluR7 postsynaptic [40,41]

EAAT2 [24,32]
EAAT3 [32,35]

Retinal
ganglion cells GluA1-4 [22,26] GluK2-5 [22,26,37]

GluN1,2-C
[23,26,29,37]
GluN3A [45]

mGluR1 [22] EAAT3 [32,35]

Müllerglia
AMPA receptor
(in vitro) [46] *

GluA4 [22]
- NMDA receptor

(in vitro) [47,48] * -
EAAT1 [24,32,48]

EAAT4 [49]
xCT [50]

2.1. Ionotropic Receptors

N-methyl-D-aspartate (NMDA) receptors are calcium-permeable ion channels which
form tetrameric complexes through the combination of two GluN1 with two additional
GluN2 or, in some cases, a combination of GluN2 and GluN3 subunits. Due to the di-
verse combinations of GluN2 (A-D) or GluN3 (A-B) subunits possible, the array of variant
NMDA receptors with different functional properties is large [51]. Heterogeneity is further
increased by the expression of different splice variants of GluN1. Physiological properties
of the ionotropic channel vary in the affinity of their glutamate and glycine-binding sites, de-
activation decay time, strength of magnesium blockade, and the desensitization elicited by
glycine and calcium. Conventional NMDA receptors contain GluN2 subunits, which have
different carboxy–terminal domains that determine the anchoring and trafficking properties
of the receptors, such as their membrane localization and downstream signalling [52,53].
Non-conventional NMDA receptors containing a GluN3 (A-B) subunit are subsequently
less permeable to calcium, less sensitive to magnesium block, and have emerging roles in
developmental synaptic pruning and plasticity [54]. Taken together, the permeability to
calcium and the relatively slow decay kinetics of NMDA receptors are key contributors to
learning and memory consolidation in the central nervous system (CNS) [55] and temporal
resolution in the sensory neurons of the retina [56].

AMPA receptors form heterotetrameric complexes of GluA1-4 subunits [57]. Similar
to NMDA receptors, the combination of different subunits determines their heterogeneous
physiological properties. Moreover, AMPA receptors are able to interact with many auxil-
iary subunits which affect their functional diversity, trafficking, and pre- and post-synaptic
anchoring [57]. More prone to desensitisation and depression than NMDA receptors [58],
AMPA receptors are mainly involved in fast transmission and synaptic plasticity [59] as
well as in the spatio-temporal modulation of retinal glutamatergic waves [56,60]. Notably,
the GluA2 subunit is typically expressed in neurons and undergoes post-transcriptional
editing resulting in a substitution of an arginine (R) residue in place of a glutamine (Q)
in the transmembrane portion of the channel. This results in the calcium impermeability
characteristic of the GluA2-containing AMPA receptors [61]. However, some atypical
AMPA receptors either lack GluA2 or can potentially contain non-edited GluA2 and are
subsequently permeable to calcium. These receptors are reportedly expressed only in a
few neurons, or under transient conditions, and are interesting for their involvement in
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development as well as in physiological neuronal plasticity [62] as has been described
for retinal neurons [63–65]. For a review of physiological functions of calcium-permeable
(CP)-AMPA receptors in horizontal, amacrine and retinal ganglion cells, see Diamond,
2011 [65]. Due to the degenerative pathways activated by calcium, CP-AMPA receptors are
also particularly relevant under pathophysiological conditions as will be discussed later.

Further ionotropic receptors found in the retina include both kainate receptors and
GluD glutamate receptors. Kainate receptors form tetrameric complexes of five subunits
(GluK1-5) and, even though their function is not completely understood, they are thought
to mediate both the pre- and postsynaptic neuronal responses to glutamate [66]. GluD
receptors are formed from GluD1 or GluD2 subunits and were originally characterised as
‘orphan’ receptors with previously unknown endogenous ligands and functions. However,
it is now understood that their mutations are strongly associated with cognitive disor-
ders [67]. Although they do not bind glutamate itself, instead being activated by D-serine
and cerebellin 1 precursor protein (Cbln1) family members, they exert influence on other
glutamate receptors, such as the induction of AMPA receptor internalisation [67,68].

iGluRs are differentially expressed throughout the retina [22,26,29]. PCs express
GluN1, GluN2B and GluK5 subunits at their presynaptic terminals [29,30]. Their precise
role is not fully understood, although GluK5 has been described to exert a neuromodulatory
function as an autoreceptor in rod PCs [28].

Although little is known about glutamatergic responses of horizontal cells, they are
thought to be mediated preferentially through AMPA receptors [34,69] (in particular, GluA2-
4 subunits), but they do not express any functional kainate receptors [26]. In addition,
GluN1 has been shown to be expressed in horizontal cells but, to date, no functional
evidence of this NMDA receptor subunit has been reported [29,34].

BCs express both AMPA (GluA2-4) and kainate (GluK1-3) receptors [22,37] in different
proportions and combinations depending on the functional pathway in which the cell
subtype is involved. Notably, a distinct expression of kainate receptors (GluK1) has been
described for the OFF-BCs [36]. While BCs express NMDA receptors (GluN1,2C-D) [23,37],
their activity has been associated with the rod but not the cone pathway [70]. In particular,
presynaptic terminals of rod BCs selectively express the NMDA receptor subunit GluN2D
with a potential neuromodulating role of NMDA receptors within the inner plexiform layer
(IPL) [38].

Amacrine cells express more or less the wide repertoire of iGluRs to different degrees
across their over sixty cell subtypes [71]. For example, amacrine cell subtypes AII and AI at
the dyad synapse with rod BCs have been shown to express different AMPA and kainate
receptors—in particular, the former express GluA2-4 AMPA receptor subunits, whilst the
latter express GluD1-2 subunits in combination with GluK2-3 kainate receptor subunits [42].
Amacrine cells also express NMDA receptor subunits (GluN1,2A-C) [29,37], though the
differential distribution of GluN2A and GluN2B subunits within the IPL indicate their
involvement in different retinal circuits [29]. For instance, glutamatergic amacrine cells
show predominant expression of the GluN2A subunit, whereas cholinergic amacrine cells
express GluN2B [26]. Extrasynaptic GluN2B-containing NMDA receptors are found also to
modulate the glycinergic AII amacrine cell response in the cone pathway, whereas GABAer-
gic A17 amacrine cells express GluN2A-containing NMDA receptors which mediate rod
pathway neurotransmission [72].

RGCs show predominant expression of NMDA (GluN1,2A-C), AMPA (GluA1-4)
and kainate receptors (GluK2-5) [22,26,29,37] with differential synaptic and extrasynaptic
localization. In particular, non-NMDA receptors are believed to be the main responders to
the synaptic quantal release of glutamate [73–75], whereas NMDA receptors are mainly
located at peri- and extrasynaptic sites, where they react to ambient glutamate levels
and, hence, their activity is enhanced by reductions in glutamate uptake [76,77]. In any
case, NMDA receptor activity is shown to contribute to the baseline noise and conducting
properties of RGCs under resting conditions [78]. The NMDA receptor subunits are also
associated with different scaffolding proteins. For example, GluN2A and GluN2B have



Life 2022, 12, 638 6 of 33

been shown to interact with postsynaptic density-95 (PSD-95) at the postsynapses of OFF-
RGCs and with synapse-associated protein 102 (SAP102) at perisynaptic sites of ON-RGCs,
respectively [79]. In addition, RGCs express the GluN3A subunit in rodents which has been
shown to reduce NMDA receptor-induced calcium rises in neurons and to shape small
components of the light response [45].

Interestingly, in addition to neurons, ionotropic glutamate receptors are also ex-
pressed by retinal glia, with Müller glia expressing AMPA receptors [46] and NMDA
receptors [46,47]. However, this expression has mainly been inferred from functional
studies of in vitro cultured Müller glia, with immunocytochemical evidence (except for
the expression of GluA4 [22]) still lacking. Nevertheless, iGluR expression appears to
confer glutamate sensitivity to Müller glia, allowing them to respond to neuronal activity,
and to actively participate in retinal glutamatergic transmission. Indeed, not only in vitro
stimulation of iGluRs on Müller glia promotes glutamate reuptake [46], but also modulates
neuronal excitability by coupling intracellular calcium waves between Müller glia and
retinal neurons in both rat [4] and zebrafish [80] studies.

2.2. Metabotropic Receptors

mGluRs are members of the family of G protein-coupled heptahelical membrane pro-
teins, associated with either the inhibition or activation of different downstream signalling
pathways [81]. According to sequence homology and function, they are classified into three
subclasses: Group I (mGluR1,5), Group II (mGluR2,3) and Group III (mGluR4,6,7,8) [81].
In general, their activation is thought to modulate the glutamate feedforward neurotrans-
mission of the retinal network [27]. Retinal neurons can each express multiple members of
the metabotropic receptor family, with the exception of mGluR3 [23,27].

mGluRs are expressed as autoreceptors in the presynaptic terminals of PCs, BCs,
horizontal and amacrine cells and at postsynaptic terminals of BCs, RGCs, horizontal and
amacrine cells. mGluRs are thought to play a fundamental role as glutamate sensors at
the ribbon synapse, where their activation leads to a decrease in presynaptic terminal
calcium levels, and subsequently a reduction in glutamate release [23,31]. Group III
receptors (in particular, mGluR8) are expressed on PC and BC presynaptic terminals and
amacrine cells and are likely to shape different aspects of the light response, including the
light processing differentiation of the ON and OFF pathways [31,39,40,82]. As mentioned
earlier, mGluR6 mediates the sign-inverting response at postsynaptic terminals of ON-BCs
coupling glutamate release in dark conditions with the hyperpolarisation of ON-BCs [17,27].
At the ‘dyad’ ribbon synapse between a BC presynaptic terminal and RGC and amacrine cell
postsynaptic terminals, the differential expression of glutamate receptors asymmetrically
modulates the glutamate release and response. Indeed, different amacrine cells express a
different repertoire of mGluRs, which finely tunes the glutamate response giving rise to
a specific translational component of the visual information [83]. For instance, mGluR2
expressed by starburst amacrine cells shapes the directional sensitivity of the light response
by modulating GABA and glycine release at their synapses with RGCs [43]. Group I and
Group III receptors are also expressed by amacrine cells, but very little is known about
their specific signalling cascades.

Although RGC function is dominated by iGluRs, they also express all the mGluRs
(except for mGluR3) at their postsynaptic terminals in different numbers and combinations
depending on their developmental stage and the RGC subtype [23,84]. Of note, there is not
much overlap in the expression of different mGluRs at the IPL, where the dendrites of the
ganglion cells are located, suggesting their discrete roles in shaping different processing
of the visual input [23,40,82]. For instance, the sustained versus the transient response to
light by RGCs originates at the BC synapse and is partially defined by the different kinetics
of the mGluRs expressed at BC presynaptic sites located in the different sublaminae of
the IPL [85].
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2.3. Glutamate Transporters

In addition to glutamate receptors, glutamate transporters also play an important role
in shaping glutamate-mediated transmission by modulating temporal and spatial aspects
of glutamate signalling and by regulating its clearance from the extracellular space. The
sodium-coupled excitatory amino acid transporters (EAATs) can be distinguished into five
subtypes (EAAT1-5) relevant for both neuronal and glial glutamate reuptake [86], which
display different glutamate transportation rates and are differentially expressed across
the retina.

EAAT1 (or GLAST) is solely expressed by Müller glia, displaying a strong immunore-
activity within the whole retinal tissue where the glial cells ensheath all retinal neu-
rons [24,32,48]. Interestingly, EAAT1 has also been shown to be expressed on the endothelial
cell membrane of retinal capillaries which contributes to glutamate reuptake in the inner
retina [87]. EAAT2 (or GLT-1) is expressed by PCs and by different subtypes of BCs and
amacrine cells [24,32]. EAAT3 (or EAAC1) is found on RGCs, horizontal cells as well as
various BCs and amacrine cells [32,35]. The expression of EAAT4 colocalizes with EAAT1
in retinal astrocytes [49]. Interestingly, EAAT5, which is only expressed at very low levels
in the CNS, is much more predominant in the retina (in rod PCs and BCs [33]). Genetic
ablation of EAAT1 in the retina, as well as pharmacological inhibition of EAAT1 and EAAT2,
leads to both a significant increase in extracellular glutamate and RGC death, with only
insufficient compensatory activity of the other transporters [88,89], indicating that the glu-
tamate reuptake dynamics and the specific localization of these transporters are critical for
spatio-temporally efficient glutamate clearance. Indeed, while EAAT1-3 have relatively fast
reuptake kinetics, ensuring a rapid glutamate turnover rate [90], both EAAT4 and EAAT5
display reduced glutamate transporter activity compared to the other family members. In
addition to the coupled sodium conductance, EAATs display uncoupled chloride conduc-
tance [91], and in particular, EAAT4 and EAAT5 have a high chloride conductance which
suggests their potential roles as inhibitory modulators [92–94]. Indeed, recent findings
have shown that EAAT5 functions as an inhibitory autoreceptor in rod PCs [95,96], and
electrophysiological analysis of EAAT5 knock-out retina revealed its role in shaping the
temporal resolution of the light response [97,98]. In addition to EAATs, Müller glia also
express the cysteine-glutamate transporter (xCT) [50] which is particularly involved in the
response to oxidative stress.

The combined elements of different glutamate receptors and transporters function in a
complex overlay to mediate and modulate glutamate transmission in the retina. However,
as outlined below, the visual system is also vulnerable to disease and injury, where a
perturbation in glutamate signalling is increasingly understood to be a contributing factor.

3. Vulnerability of the Retina and RGCs to Disease

The visual system is vulnerable to many different pathophysiological conditions
with evidence of retinal degeneration occurring as a result of glaucoma [99,100], diabetic
retinopathy [101,102], retinal ischemia [103], and optic neuritis [104,105]. In addition, retinal
degeneration is also reported in other neurodegenerative diseases, traditionally affecting
other CNS regions, such as multiple sclerosis (including in the absence of associated
optic neuritis) [106–108], Alzheimer’s [109,110], and Parkinson’s [111,112], diseases, giving
rise to the concept that the retina can serve as ‘diagnostic window into the brain’ and
giving insight into neurodegenerative processes occurring elsewhere [113]. In humans,
thinning of the retinal nerve fibre layer (RNFL) containing RGC axons has been used as a
diagnostic indicator of retinal, and particularly RGC, degeneration (as well as testing of
neuroprotective therapies) since this region is particularly vulnerable in glaucoma [114],
diabetic retinopathy [115], retinal ischemia [116] and in optic neuritis [104] as well as in
multiple sclerosis [117], Alzheimer’s [118,119] and Parkinson’s [120,121] diseases.

This vulnerability may, in part, reflect the unique anatomical structure of the retina.
For example, the optic nerve head (ONH), where RGC axons exit the retina to form the
optic nerve, is highly exposed to biomechanical stress due to the intrinsic flexibility of this
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area which allows eye mobility in the orbit [122]. In addition, this area also has an atypical
blood–brain barrier [123,124] which may be more permeable to early circulating factors
that lead to degeneration. RGC axons, which connect the retina to the higher visual regions
of the CNS, pass through the RNFL towards the optic disc, where they make an abrupt
90-degree turn before passing through the lamina cribrosa, from where they make long
projections along the optic nerve to the brain. Although the optic nerve is a myelinated tract,
most RGC axons remain unmyelinated within the RNFL, which allows light to penetrate
through this layer to the photoreceptor layer. This lack of myelin, however, results in a
high energy demand for fast transmission of action potentials [125,126], which in turn
may render RGCs more susceptible to mitochondrial dysfunction and oxidative stress, as
has been described for other diseases [127]. Collectively, these architectural peculiarities
contribute to the vulnerable position of RGCs, which have been described as the ‘most
vulnerable of all neuronal cell types’ [125].

In addition to this anatomical exposure, the intrinsic properties of RGCs may also
explain their high susceptibility to degenerative processes. This is reflected by the differ-
ential susceptibility of RGC subtypes to various diseases. Given the complexity of the
retinal network, around thirty subtypes of RGCs have been classified based on their mor-
phology (such as soma size and dendritic arborisation), the functional pathways in which
they are involved, and their molecular signatures [128]. RGC synaptic loss and dendritic
shrinkage following injury have been shown to be subtype-specific [129,130]. For instance,
in glaucoma, a reduced density of ribbon synapses occurred specifically in OFF-RGCs
accompanied by a loss of their dendritic arborisation and spontaneous synaptic activ-
ity [131–133]. In particular, αRGCs and direction-selective RGCs appear to be selectively
vulnerable, whereas intrinsically photosensitive RGCs (ipRGCs; a distinct type of retinal
neurons mediating adaptive light responses) display some resilience in the glaucomatous
optic nerve crush disease model [134,135]. αRGCs have a larger soma size than other RGC
subtypes [136] and may be particularly vulnerable to NMDA-induced degeneration, as
suggested by a study reporting this to affect predominantly the larger RGCs [137]. How-
ever, in contrast, another study suggested that smaller RGCs located in the retinal centre
were more vulnerable to NMDA [138] and other studies identify αRGCs as a more resistant
cell type following axotomy [139]. Collectively, these data emphasise the importance of
considering both the precise kind of insult to—as well as the retinal location of—RGCs in
order to appreciate the vulnerability of the different subtypes.

Amongst the αRGCs, αOFF-RGCs were reported to be more vulnerable to degenera-
tion in models of both glaucoma [133] and optic neuritis [140], compared to αON-RGCs.
Reasons for this may reflect their pacemaker-like electrophysiological characteristics, aris-
ing from the higher sodium and calcium membrane conductance of αOFF-RGCs under
resting conditions in comparison to the αON-subtype [141,142]. In glaucoma, αOFF-RGCs
also express higher numbers of GluA2-lacking CP-AMPA receptors, which may make
them more prone to detrimental high calcium influx [143,144]. Moreover, their dendrites
extend into the outer OFF sublamina, which is actually more exposed to blood capillaries
distributed at the interface between the inner nuclear layer and the IPL [145]. This may
underlie their differential vulnerability to systemic excitotoxic insults. Conversely, in hy-
perglycaemic conditions, it has been shown that αRGCs and melanopsin-positive ipRGCs
that stratify to the inner ON sublamina undergo remodelling of their dendritic arbour as a
possible result of adaptive neuroprotection [146,147].

Despite the different disease conditions (including both retinal and non-retinal patholo-
gies), which can lead to degeneration of the retina in general, and RGCs in particular, they
may be connected by a common mechanism involving glutamate excitotoxicity [148,149]
that either initiates or leads to an exacerbation of retinal degeneration.

4. Glutamate Excitotoxicity in the Retina

Although glutamate signalling and homeostasis are essential for the transmission and
modulation of visual signals across the retina, their dysregulation has also been linked to
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degenerative processes in several retinal pathologies such as glaucoma [99,100], diabetic
retinopathy [101,102], retinal ischemia [103], and optic neuritis [105]. The first reports
that glutamate can cause neurodegeneration are in fact derived from studies of the retina
following subcutaneous injection in mice [150] and intravitreal injection in rats [151]. It has
since been shown that the application of glutamate can mimic the pathophysiology of dif-
ferent retinal diseases. However, increases in extracellular glutamate have not consistently
been detected in retinal pathologies, such as in glaucoma, where no reliable evidence of
glutamate increases has been seen [152]. Reasons for this may involve spatially restricted
glutamate elevations which do not occur at the global level but may also result from alter-
ations in glutamate receptors affecting neuronal sensitivity to glutamate or imbalances in
the protective and degenerative signalling pathways elicited.

4.1. Impairment in Glutamate Clearance and the Role of Müller Glia

Evidence that deficient glutamate clearance is involved in glutamate-mediated exci-
totoxicity includes observations that exogenous application of glutamate alone does not
elicit the same degree of retinal degeneration as that observed in disease models with an
equivalent level of glutamate elevation [153]. Similarly, the application of NMDA, which is
impervious to endogenous clearance mechanisms, results in greater degeneration [154,155].
Further evidence of the role of glutamate transporters includes the reduction or loss of
function of glutamate transporters in several retinal diseases, such as diabetic retinopa-
thy [156,157], glaucoma [158,159], and retinal ischemia [160]. Conversely, an increased
expression of glutamate transporters has been described in other conditions such as optic
neuritis [161], where glutamate excitotoxicity is linked to neuroinflammation. This may
represent a compensatory mechanism occurring also in other brain areas in multiple scle-
rosis [162,163], though it may ultimately fail since increased retinal glutamate levels have
been reported in multiple sclerosis [164].

A further indicator of the role of glutamate transporters is the ubiquitous involvement
of Müller glia, which provide metabolic support to neurons and are primarily responsible
for neurotransmitter homeostasis. The health of both neurons and the retinal vasculature
depend upon efficient Müller glial function [165]. In turn, Müller glial malfunction is one of
the major initiating and contributing factors that lead to impaired glutamate homeostasis
and, as a result of ensuing increases in endogenous glutamate, to a collapse of retinal func-
tion [166]. Although in some instances, Müller glia can exert a neuroprotective influence
during initial disease phases, at later stages, their gliotic reaction can lead to an imbalance
in glutamate homeostasis exacerbating neurodegeneration [166–169].

Mechanisms leading to impaired glutamate clearance can be manifold. One mecha-
nism is a collapse in the sodium gradient required for sodium-dependent glutamate trans-
portation. This gradient is maintained by the activity of the sodium/potassium-ATPase
which is, of course, sensitive to ATP depletion upon impairment in energy metabolism.
This can occur, for example, due to a lack of oxygen in retinal ischemia, or as a result of
mitochondrial damage in glaucoma [170,171]. Mechanisms to protect against this include
‘metabolic symbiosis’ between RGCs and Müller glia, whereby they can exchange lactate
as a substitute for glucose as an oxidative mitochondrial metabolic substrate during con-
ditions of hypoglycaemic and oxidative stress [172]. However, prolonged starvation can
override this protective mechanism, resulting in the increased susceptibility of Müller glia
to oxidative stress, which results in mitochondrial failure and downregulation of glutamate
transporters [173]. In particular, oxidative stress induces downregulation of GLAST and an
upregulation of xCT, which has a fundamental role in releasing glutathione, an important
antioxidant molecule [174–176].

In addition to glutamate clearance, Müller glia are also involved in mediating the
interface between the retinal vasculature and retinal neurons [177]. They not only facilitate
the importation of circulating nourishing factors, but they also secrete different growth
factors—such as vascular endothelial growth factor (VEGF)—and cytokines—including
interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α)—in response to vascular and
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neuronal changes [178]. These molecules are described to have dual effects by enhancing
either protective or detrimental pathways. For instance, VEGF release, particularly the
isoform VEGFA [179,180], in combination with reactive oxygen species (ROS) production
in diabetic retinopathy has been shown to enhance retinal degeneration [181], whereas
VEGFD is protective for RGCs and the retinal vasculature [182]. In addition, the secretion
of TNF-α has been shown to exert early neuroprotective effects [183] but to ultimately
induce Müller cell gliosis and RGC death in the glaucomatous retina [184]. Upon a neu-
roinflammatory insult, the quiescent and neuroprotective Müller glia undergo reactive,
proliferating gliosis [185], which in turn enhances pathological angiogenesis [186,187] and
increases RGC vulnerability to retinal injury [169]. Interestingly, treatment with dexametha-
sone, which lowers levels of IL-1β and TNF-α, is protective against hyperglycaemia for
RGCs but not for the Müller glia [188], suggesting that once gliosis occurs, it is not easily
reversed. Therefore, Müller glia have a critical role at the neurovascular interface, and the
pathological and potentially irreversible changes occurring during reactive gliosis have
been shown to lead to severe impairment of glutamate clearance by inducing changes in
glial glutamate metabolism and their expression of glutamate transporters [159,161,189].

4.2. Glutamate Receptor-Induced RGC Degeneration

Toxic glutamate effects are mediated by glutamate receptors, which in the retina, as
discussed below in this review, predominantly involve NMDA receptors. However, there
is some evidence that non-NMDA receptors can also mediate glutamate excitotoxicity. For
instance, a general increase in expression of both NMDA (GluN1) and AMPA (GluA2-3) re-
ceptor subunits has been shown in hypoxic-ischemic retinas [190]. Furthermore, prolonged
activation of AMPA/kainate receptors can lead to amacrine and RGC degeneration in the
chick retinal embryo [191]. As mentioned earlier, retinal neurons can express both calcium-
permeable and calcium-impermeable AMPA receptors, and this balance may influence their
susceptibility to degeneration. For example, it has been shown that modelling of glaucoma
through increased pressure leads to an increase in the expression of CP-AMPA receptors
in RGCs both in vitro [143] and in vivo [144]. This latter study also suggested a role for
Müller glial-derived TNF-α in driving this expression and demonstrated the degenerative
contribution of these CP-AMPA receptors through the application of selective blockers.
This same mechanism may even underlie NMDA receptor toxicity since the application
of NMDA also promoted Müller glial production of TNF-α, resulting in an increase in
CP-AMPA receptors [144,192]. Metabotropic receptors might also be involved in mediating
glutamate excitotoxicity since the systemic application of a blocker of mGluR1 was able to
block this, also supported by the lack of RGC degeneration following glutamate application
in mice lacking mGluR1 [193].

Nevertheless, the majority of studies have implicated the NMDA receptor as the
main mediator of glutamate excitotoxicity in the retina, such as in glaucoma [194–196],
ischemic [190,197,198], and diabetic retinopathy [101,199,200], as well as optic neuritis [105].
This receptor, however, can also activate survival pathways, which may promote neuro-
protective mechanisms; therefore, attempts at resolving this discrepancy depend upon
the elucidation of the divergent downstream pathways activated under different condi-
tions [201].

4.3. Factors Affecting NMDA Receptor-Mediated Degeneration

It has become increasingly clear that the concept of NMDA receptor over-activation
does not adequately explain the initiation of neurodegeneration. Rather, the localisation
and subunit composition of these receptors play an important role in determining the
neuronal fate and must be considered. NMDA receptors can exist both within the postsy-
naptic density, as well as in perisynaptic and extrasynaptic locations. Several studies have
demonstrated that activation of extrasynaptic NMDA receptors can initiate degenerative
cascades, whereas it is the activity of synaptic NMDA receptors that leads to the promotion
of neuroprotective mechanisms [201]. However, how distinct signalling cascades are acti-
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vated is currently unclear, though it may involve differential coupling of incoming calcium
with cellular organelles, such as mitochondria and endoplasmic reticulum (ER), which are
located near these calcium hotspots. Alternatively, NMDA receptors may interact with
different scaffolding or downstream signalling proteins depending upon their location,
as has recently been described for transient receptor potential cation channel subfamily
M, member 4 (TRPM4) [202]. This location-dependent interaction may reflect different
protein compositions associated with synaptic and extrasynaptic regions, or, alternatively,
may reflect different NMDA receptor subunit compositions in these regions. Interestingly,
GluN2A and GluN2B have been proposed to be associated with synaptic and extrasynaptic
locations of NMDA receptors, respectively, and therefore may couple NMDA receptor
activation with different downstream factors resulting in different cell fates [203,204]. In
RGCs, extrasynaptic NMDA receptor activation may explain some of their vulnerability
to degeneration since they have been reported to contain large pools of extrasynaptic
NMDA receptors [77], which in hippocampal neurons were associated with degenera-
tive processes [205]. In addition, pharmacological inhibition of the extrasynaptic NMDA
receptor subunit GluN2B (as well as GluN2D) has been reported to be neuroprotective
against retinal glutamate excitotoxicity [206]. GluN2B has also been implicated in RGC
degeneration in glaucoma since its expression is enhanced in this disease [207].

Of note, pathological NMDA receptor activation affects Müller glial function and
retinal vasculature permeability to immune cell infiltration. Several studies have reported
that endogenous glutamate clearance and synthesis, when impaired, lead to severe damage
to the inner layers of the retina mainly through NMDA receptor-mediated intracellular
calcium increases [208–210]. Conversely, NMDA receptor stimulation increases the uptake
activity of glutamate transporters on Müller glia [46], indicating that there is bidirectional
communication between retinal neurons and Müller glia. Additionally, NMDA receptors
have been described to be an important link between glutamate excitotoxicity and neu-
roinflammation in neurodegenerative diseases [148]. For example, endothelial cells have
been reported to express functional NMDA receptors that, if overstimulated by a glutamate
excitotoxic insult, enhance immune infiltration by disrupting the blood–brain barrier in
multiple sclerosis [211], which might imply a similar alteration during optic neuritis. Fur-
thermore, NMDA receptor activity can influence Müller glial synthesis and secretion of
VEGF, thus functioning as a modulator of endothelial cell proliferation and angiogenesis.
Under hyperglycaemic and hypoxic conditions in vitro, this control mechanism has been
shown to become impaired [47]. In the reverse direction, following immune infiltration,
resident microglia become activated and interact with Müller glial cells exacerbating the
overall pathophysiological response [212]. In particular, NMDA-induced toxicity in the
retina has been shown to enhance inflammatory activity and the secretion of the cytokine
IL-1β, which can act as an initiator of the apoptotic cascade [213].

A growing body of scientific evidence has shed light on the key pathophysiological role
of NMDA receptors in the degeneration of RGCs, whose intricate downstream mechanisms
of action are elucidated in the following section.

5. Cellular Mechanisms of NMDA Receptor-Induced Excitotoxicity in RGCs

Downstream of glutamate receptor over-activation, neurodegenerative processes are
initiated through an initial influx of primarily calcium, leading to subsequent alterations
in energy metabolism, protein folding and changes in gene expression which form the
main hallmarks of glutamate excitotoxicity. Figure 2 summarises these mechanisms which
have been intensively studied over decades. Recent discoveries show how homeostatic
mechanisms eventually fail and how these processes are interconnected. In this review,
NMDA receptor-dependent cellular mechanisms of excitotoxicity are described in the
context of RGC degeneration, whose vulnerability is reflected also in the interdependence
of different pathways to maintain and promote neuronal survival. As described before,
Müller glial function is also altered upon exposure to high levels of extracellular glutamate
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and significantly contributes to degeneration subsequent to pathological and prolonged
NMDA receptor activation.
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Figure 2. Schematic comparison of the physiological and pathophysiological cellular mechanisms
induced by glutamate release at the retinal ganglion cell (RGC) synapse. In response to light stimula-
tion, glutamate is readily released from the presynaptic ribbon of bipolar cells onto their postsynaptic
partners. Under physiological conditions, the initial AMPA receptor-mediated membrane depolariza-
tion increases the opening probability of the NMDA receptors, inducing a temporary intracellular
calcium influx. Calcium can be also released through inositol 1,4,5-trisphosphate receptors (IP3R)
and the ryanodine receptors (RyR) expressed on the endoplasmic reticulum membrane. Functional
mitochondrial metabolism efficiently contributes to intracellular calcium homeostasis, for instance,
through the supply of ATP allowing calcium reuptake by Sarco-Endoplasmic Reticulum Calcium
ATPase (SERCA) and extrusion of calcium to the extracellular space through the sodium-calcium
ATPase. In addition, calcium is extruded by the sodium-calcium exchanger (NCX) using the physio-
logical sodium gradient, and calcium-binding proteins buffer calcium, limiting its spatio-temporal
availability. mGluR1 is associated with the scaffolding protein Homer-1a, which can, together with
NMDA receptor-mediated synaptic calcium influx, contribute to pro-survival signalling pathways
including PIK3/Akt/mTOR and CAMKII/CREB. Phosphorylated CREB translocates to the nucleus
where it functions as a transcription factor of the immediate early genes (IEGs). Glutamate reuptake
by EAAT1 expressed on Müller glia and by EAAT2 expressed on bipolar cells, allows for rapid
glutamate clearance at the synaptic cleft. Physiological glutamate metabolism in Müller glia allows
recycling of the neurotransmitter by glutamine synthase which transforms glutamate to glutamine
using ATP. Prolonged exposure to glutamate under pathophysiological conditions, induces intracellular
calcium overload by overstimulating glutamate receptors including calcium-permeable (CP)-AMPA
receptors and destabilising the membrane potential resulting in reverse activity of NCX. Prolonged
NMDA receptor-mediated calcium influx, and mGluR1 interaction with the isoform Homer-1c, cause
calcium-induced calcium release (CICR) from endoplasmic reticulum calcium stores, exacerbating
calcium dyshomeostasis and triggering mitochondrial dysfunction and energy failure. Hence, reduced
ATP availability limits the capability of SERCA and the sodium-calcium ATPase to extrude intracellular
calcium. In addition, NMDA receptor overstimulation leads to mitochondrial fragmentation and to the
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production of nitric oxide (NO) which in turn both enhance NMDA receptor activity. Calcium
overload and the unfolded protein response (UPR) promote the pro-apoptotic signalling pathway
of p38/JNK and inhibit pro-survival ones, and the phosphorylation and activation of the c-Jun/Fos
transcription factor results in transcription of pro-apoptotic genes such as C/EBP Homologous
Protein (CHOP). Under pathophysiological conditions, glutamate clearance is impaired because of
downregulation of Müller glial glutamate transporters and their metabolic failure, resulting in ROS
production and reduction of mitochondrial ATP production. This results in glutamate spill-over from
the synaptic to the extrasynaptic space, activating extrasynaptic NMDA receptors and promoting
neuronal degeneration through a myriad of downstream mechanisms [214]. These include calpain
activation and activation of the caspase-mediated apoptotic pathway as a result of cytochrome c
(Cytc) release from mitochondria.

5.1. Intracellular Calcium Dysregulation

Under physiological conditions, synaptic glutamate release initially activates AMPA/
kainate receptors, which induce an initial membrane potential depolarization that increases
the opening probability of NMDA receptors through the removal of the voltage-dependent
magnesium block [215]. Calcium ions are then driven by their high concentration and
potential gradients into the intracellular space. In RGCs, NMDA receptors are the major
source of this calcium influx, with partial contributions from the voltage-gated calcium
channels [216,217]. In fact, GluN1, GluN2A-D, and GluN3A subunits of NMDA recep-
tors are upregulated within three hours, following a hypoxic insult to RGCs [218]. Other
potential sources of toxic calcium in RGCs include kainate receptors [219,220], as well as
GluA2-lacking CP-AMPA receptors, as has been shown in the glaucomatous retina [143,144].
Prolonged and pathological exposure to glutamate of RGCs in culture has been shown,
similar to other neuronal subtypes, to lead to a dysregulation in calcium homeostasis, also
known as ‘dysregulated calcium dynamics’ (DCD) [221]. Here, the inability of RGCs to suf-
ficiently buffer or extrude excessive calcium ions leads to a breakdown in the homeostatic
machinery resulting in a secondary, irreversible calcium increase which ultimately leads to
cell death. Although the underlying mechanisms have not been clearly elucidated in RGCs,
they are similar to reports from hippocampal neurons and may involve reverse activity or
calcium-mediated cleavage of the sodium-calcium exchanger (NCX) [222,223]. Support for
this includes in vivo evidence of NCX involvement in NMDA receptor-mediated excitotox-
icity in retinal ischemia [224]. In addition, NMDA receptor activation leads to an elevation
in intracellular calcium in RGCs through a mechanism called ‘calcium-induced calcium
release’ (CICR) [225]. CICR has been described in neurons to exacerbate glutamate-induced
intracellular calcium dysregulation via saturation of internal calcium buffers in various
neurodegenerative diseases [226]. In particular, the calcium stored in the ER is released in
response to the activation of inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine
receptors (RyRs) [227], a process regulated by mitochondrial activity [228,229].

To protect against these processes, intracellular calcium homeostasis is maintained by
calcium buffering, which can be achieved by calcium-binding proteins coupled to various
subunits of the ionotropic glutamate receptors through an array of scaffolding proteins and
cytoskeletal components [230]. This may explain why some neurons have been shown to
be more susceptible to calcium deriving from the addition of a chemical ionophore than
glutamate receptor-derived calcium since calcium buffering is maintained in microdomains
surrounding glutamate receptor entry points [231]. One scaffolding protein implicated in
the mediation of neurodegeneration is Homer-1, a component of the retinal glutamatergic
postsynaptic density involved in mediating downstream intracellular signalling. Homer-1
can form protein complexes with both NMDA receptors and type 1 mGluRs, as well as
various other scaffold proteins such as PSD-95 [232,233]. It has been shown in mouse
cerebellar neurons that mGluR1 can inhibit NMDA receptor activity through the activity of
the Homer-1a isoform, which promotes cell survival and synaptic plasticity [234]. Indeed,
while Homer-1a has been demonstrated to promote RGC survival following ischemic
retinopathy [235], Homer-1c was shown to be upregulated in the retina of DBA/2J mice
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and to correlate with disease severity [236]. Its upregulation served as an early marker
of disrupted synaptic connectivity and degeneration and was suggested to potentially
link synaptic activity to enhanced internal calcium release via the IP3Rs expressed on the
ER [236,237]. This differential coupling of iGluRs to intracellular buffering complexes may
also explain why the NMDA receptor subunits GluN2A and GluN2B have been associated
with differential susceptibility to glutamate toxicity [238,239]. As mentioned earlier, in
RGCs the GluN2A and GluN2B subunits of NMDA receptors have been shown to preferen-
tially associate with PSD-95 and SAP102 scaffold proteins, respectively [79]. These subunits
are also associated with NMDA receptors found in different localisations in neurons [240].
This is also true in RGCs with GluN2A being associated with synaptic, and GluN2B with
perisynaptic sites [79]. Thus, it may be that calcium entering by synaptic NMDA receptors
may be more readily buffered, compared to extrasynaptic NMDA receptor-derived cal-
cium, due to differences in their intracellular binding partners. Conversely, mitochondrial
uptake of calcium has been shown to lead to both metabolic impairment and apoptotic
signalling (see below), and since mitochondria are found outside of postsynaptic dendritic
spines [241], this may be an alternative explanation for the synaptic/extrasynaptic NMDA
receptor divergence in downstream signalling.

Different calcium buffering capacities may underlie the differential susceptibility of
various neuronal cell types to glutamate excitotoxicity, including RGC subtypes. The vary-
ing expression profile of different members of the large calcium-binding protein family
may influence the risk of neurodegeneration due to their varying kinetics and subcel-
lular localization which define neuronal calcium-buffering capacities [242,243]. Indeed,
calcium-binding proteins are proposed to contribute to neuronal-subtype susceptibility to
glutamate-induced degeneration where parvalbumin expression, as well as being a marker
of vulnerable interneurons of the hippocampus, is also associated with a predisposition to
neurodegeneration in retinal neurodegenerative diseases [244]. In a rodent model of retinal
ischemia, it has been reported that parvalbumin-positive RGCs were more susceptible
to cell death than calbindin-expressing cells [245,246]. Moreover, an overall reduction in
parvalbumin expression in the retina was also shown in diabetic retinopathy [247] and
glaucoma [248], suggesting the possible selective loss of parvalbumin-positive neurons.
Similarly, αON-RGCs, which are reportedly more resistant to degeneration in optic neuri-
tis [140] and glaucoma [133], express calbindin, unlike the susceptible αOFF-RGCs [249].
However, the picture is more complex than this due to the presence of multiple calcium-
binding protein family members in retinal neurons [250] and because the expression profile
might only be indirectly associated with neuronal vulnerability, being more closely coupled
with the firing kinetics and other functional characteristics of the neurons.

Collectively, NMDA receptor-mediated calcium elevations in RGCs can activate a
range of downstream death signalling mechanisms, which will be explored in more detail
in the following paragraphs.

5.2. Imbalance of Signalling Pathways and Gene Expression

In response to synaptic NMDA receptor-induced calcium influx in RGCs, similar to
other neurons, the pro-survival calcium/calmodulin-dependent protein kinase II (CAMKII),
particularly the isoform CAMKIIαB [251], is activated resulting in the phosphorylation
of the cyclic AMP-response element binding protein (p-CREB) [252]. As a result, p-CREB
translocates to the nucleus where it acts as an important transcription factor of an array of
survival genes, termed the immediate early genes (IEGs). Collectively, this pathway leads
to the activation of a protective neuronal response [253], which has been reported in the
retina following neurotoxic insults [254]. For instance, p-CREB promotes the upregulation
of brain-derived neurotrophic factor (BDNF) and its secretion from Müller glia and reti-
nal neurons with a fundamental neuroprotective function for RGCs [255]. BDNF binds
the tropomyosin receptor kinase B (TrkB) receptor on RGCs and BDNF/TrkB signalling
has been shown to be neuroprotective in glaucomatous retinas [256,257]. Conversely, the
impairment of BDFN/TrkB signalling underlies RGC and ONH vulnerability to elevated
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intraocular pressure-derived neurotoxicity in human and mouse retinas [258]. In addition,
BDNF protects retinal explants from glutamate toxicity [259] and can stimulate upreg-
ulation of GLAST and glutamine synthetase in Müller glia, particularly under hypoxic
conditions, increasing glutamate uptake [260]. In turn, intraocular injection of BDNF can
further promote phosphorylation of CREB [261], in both RGCs and Müller glia, suggesting
a cyclic mechanism. Interestingly, BDNF and VEGF have synergistic activity through
different signalling pathways to promote neurogenesis and angiogenesis [262]. Indeed, the
CAMKII/CREB pathway can be activated in Müller glia under hyperglycaemic conditions,
resulting in the expression of pro-angiogenic hypoxia-inducible factor-1α (HIF-1α) and
VEGF [263,264]. This, in turn, leads to the protective reestablishment of the vascular supply
of neurotrophins to the retina. However, pathological angiogenesis has been associated
with increased levels of HIF-1α and VEGF [265] which correlate with high levels of gluta-
mate [266] in the vitreous humour of human patients with proliferative diabetic retinopathy.
Collectively, this indicates the importance of balancing the different cellular responses to
glutamate excitotoxicity.

NMDA receptor signalling has been described as paradoxical because it can promote
both neuroprotective and neurodegenerative pathways, mediated through different down-
stream signalling pathways. For instance, the application of NMDA to rat retinas resulted in
the simultaneous activation of both pro-survival phosphatidylinositol-3 kinase (PI3K)-Akt
and extracellular signal-regulated kinase (ERK) signalling as well as apoptotic activation
of p38 MAP kinase and c-Jun N-terminal kinase (JNK) signalling in RGCs [267,268]. One
explanation might reflect the different signalling elicited by synaptic versus extrasynaptic
localised NMDA receptors [201], as mentioned earlier. It has been shown in hippocam-
pal neurons that the activation of extrasynaptic NMDA receptors leads to degenerative
cellular processes including activation of gene programmes associated with cell death.
Whereas synaptic NMDA receptor signalling is associated with cell survival transcription
programmes mediated by CREB and ERK phosphorylation, extrasynaptic NMDA receptor
activation leads to CREB shut-off and ERK retention [205,214]. Although these alterna-
tive signalling pathways have not been demonstrated in RGCs, it was recently shown
that the neurodegenerative effects of NMDA receptors are mediated by their interaction
with the channel TRPM4, a protein found only in extrasynaptic locations, and that in-
hibition of this interaction was neuroprotective for RGCs following intraocular NMDA
injection [202]. Other signalling pathways affected by prolonged NMDA receptor acti-
vation in the retina include inhibition of the PIK3/Akt/mTOR pro-survival signalling
cascade following retinal ischemic–reperfusion, which was relieved upon NMDA receptor
blockade [269]. The significance of this pathway is further supported by pharmacological
activation of PI3K/Akt/mTOR-signalling to selectively rescue RGCs from NMDA receptor-
mediated cell death in ischemic and glaucomatous retinal models [270,271]. In addition,
mTOR activity has been shown to promote RGC survival and axonal regeneration [272,273]
and to be necessary for the modulation of neuronal autophagy in diabetic retinopathy [274].

In summary, impaired protective signalling pathways and pathogenic changes in gene
expression following prolonged NMDA receptor activation have been described in RGCs.
However, a deeper insight into the consequences for organelle function is necessary to
better understand subsequent cellular death mechanisms.

5.3. Mitochondrial Dysfunction

RGCs span from the IPL of the retina, where their dendrites make contacts with their
presynaptic partners, past the GCL where their cell bodies are located, to the RNFL and
the ONH. Here, the initial segments of the axons form unmyelinated bundles of fibres,
which ultimately form the myelinated optic nerve which establishes postsynaptic contacts
with different brain areas responsible for further processing of visual information. Hence,
different compartments of a single RGC are exposed to different extracellular environments
and have substantially non-homogeneous energetic demands [275]. In addition to presy-
naptic and dendritic localization of mitochondria [276], strong expression of mitochondrial
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cytochrome c oxidase has been shown in the GCL (where their cell bodies are located) and
ONH but not in the myelinated regions of the optic nerve [277]. This reflects the high
oxygen and energy demands required of RGC cell bodies and their unmyelinated axons
in order to generate and transmit action potentials. However, high mitochondrial com-
partmentalisation in these areas also make RGCs particularly vulnerable to any imbalance
in mitochondrial homeostasis [125,278,279], as has been shown in glaucoma [280–282],
ischemic retinopathy [283,284] and diabetic retinopathy [285]. Mitochondrial homeosta-
sis involves the balancing of respiration and ROS production, the organelle degradation
rate through mitophagy-associated proteins, and the fusion and fission activity which is
directly linked to the capability of mitochondrial mobilization via cytoskeleton transporta-
tion. These processes are significantly altered following NMDA receptor-induced calcium
overload in RGCs, leading to the activation of pro-apoptotic cascades.

A high amount of energy is consumed by neurons in order to maintain calcium
homeostasis and to quickly restore low concentrations of intracellular calcium following
synaptic NMDA receptor activation [286]. Indeed, calcium is normally taken up by mi-
tochondria through the mitochondrial calcium uniporter expressed on the mitochondrial
inner membrane and locally buffered at the interface with ER membrane-located IP3Rs
and RyRs [229,287]. However, prolonged NMDA receptor activation, particularly of ex-
trasynaptic receptors, leads to saturation of the mitochondrial buffering capacity and the
extrusion of calcium through the mitochondrial permeability transition pore, thus alter-
ing the mitochondrial membrane potential necessary for energy production [201,288]. In
addition, the majority of RGC energy metabolism relies on oxidative phosphorylation
via the electron transport chain of the mitochondria and on aerobic glycolysis similar to
the Warburg effect described for certain cancers [289]. Therefore, these cells are partic-
ularly prone to oxidative stress. When the mitochondrial aerobic respiration activity is
overloaded, it causes hyperpolarization of the mitochondrial membrane potential and
production of ROS such as nitric oxide, which exacerbates NMDA receptor-mediated tox-
icity. In particular, nitric oxide has been shown to potentiate NMDA receptor-mediated
toxicity in RGCs [290,291], and increased levels of nitric oxide have been shown in both
diabetes [292,293] and glaucoma [294]. The coupling of NMDA receptors and neuronal
nitric oxide synthase complex activity has been shown to be detrimental to neuronal sur-
vival [295], as has also been demonstrated in retinal models of glutamate excitotoxicity,
hypoxia and glaucoma [296,297]. Interestingly, it was shown that the interaction between
NMDA receptors and PSD-95 mediates the neurotoxic coupling of NMDA receptor over-
activation with neuronal nitric oxide synthase in cortical neurons [295]. Similarly, the
specific disruption of the complex between PSD-95 and GluN2B subunit rescued neurons
in a mouse model of brain ischemia [298], suggesting the possible involvement of the
GluN2B-containing extrasynaptic NMDA receptors [299].

NMDA receptors can also act as sensors of free radical elevation through the redox
modulatory sites present on GluN1 and GluN2A subunits, and increases in ROS have been
described to increase the opening probability of NMDA receptors [300]. Similarly, this site
can be oxidised by redox agents such as oxidized glutathione, which also modulate NMDA
receptor activity [301]. Interestingly, it has been demonstrated that the mitochondrial mem-
brane potential can be rescued, and RGC survival increased by promoting the pro-survival
signalling of synaptic NMDA receptors [302]. Collectively, these studies have shown that
oxidative stress affects NMDA receptor activity and, at the same time, prolonged and
extrasynaptic NMDA receptor signalling directly affects mitochondrial respiration by en-
hancing ROS production. Thus, similar to other neuronal types, RGCs are likely to undergo
NMDA receptor-induced mitochondrial dysfunction and ROS production, which ultimately
leads to the activation of pro-apoptotic pathways [299,303], as for instance, has been shown
under hypoxic conditions [218]. In particular, calpain, a calcium-activated protease, has
been shown to be activated in optic neuritis [304], glaucoma [305,306], and under hypoxic
conditions [307] and has been described as one of the major factors that disrupt the axonal
cytoskeletal architecture and ultimately commit RGCs to cell death [308–312]. In addition,
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it has been shown that glutamate-induced calpain activity promotes the translocation of
the GluN2A subunit to the membrane in in vitro retinal cultures [313].

Mitochondrial turnover, which includes the biogenesis of new functional organelles,
degradation of damaged organelles (a process termed ‘mitophagy’) and recycling of exist-
ing pools of organelles through fission and fusion processes, is a highly dynamic process
that, if malfunctioning, can ultimately trigger apoptotic cascades. In particular, functional
impairment of mitophagy-related proteins such as PINK1 (PTEN-induced kinase 1), Parkin
and Optineurin has been shown to occur in both glaucoma [314–316] and diabetic retinopa-
thy [317]. The relevance of these processes to glutamate excitotoxicity is demonstrated,
for instance, by the overexpression of Parkin in RGCs, which protects isolated RGCs from
glutamate and NMDA exposure, as well as in models of glaucoma [318,319]. Further-
more, cultured RGCs were also protected from glutamate excitotoxicity upon treatment
with deubiquitinating enzyme inhibitors to modulate the Parkin-mediated mitophagy
pathway [320]. Overall, DCD, consisting of a secondary and irreversible intracellular
calcium increase, hence the term ‘dysregulated calcium dynamics’, has been shown to
enhance mitochondrial degradation which ultimately leads to energy failure due to a de-
creased number of mitochondria [321]. Furthermore, neuronal survival is also dependent
on the balancing of mitochondrial fission and fusion, which in turn affects microtubule-
mediated mobility and actin-dependent anchoring of mitochondria at presynaptic sites
and dendritic shafts [322,323]. In specific subtypes of RGCs, it has been shown that ge-
netic mutations of fusion proteins, such as the dynamin-like protein encoded by the OPA1
gene (OPA1 Mitochondrial Dynamin Like GTPase) gene, lead to mitochondrial fragmenta-
tion [324,325]. Interestingly, OPA1 gene mutation in RGCs leads to increased sensitivity to
glutamate-induced DCD and energy failure [326], as well as NMDA receptor upregulation,
exacerbation of oxidative stress and induction of apoptotic pathways [327]. Similarly, in
the DBA/2J glaucoma disease model, the downregulation of the OPA1 gene causes mito-
chondrial fragmentation and the promotion of apoptotic pathways [328]. This effect can be
rescued through memantine treatment, a preferential inhibitor of extrasynaptic NMDA re-
ceptors, which induces OPA1 gene upregulation and promotes RGC survival [328]. Hence,
the physiological functioning of mitochondrial turnover is coupled with NMDA receptor
activity in neurons in order to dynamically meet the high energy demand of different neu-
ronal compartments. Due to the particular vulnerability of RGCs to pathological NMDA
receptor-induced calcium overload, this may impact the efficient mitochondrial turnover at
various levels.

Of note, NMDA receptor and mitochondrial function are also tightly linked to neu-
roinflammation because both the overactivation of NMDA receptors and mitochondrial
dysfunction, including the overproduction of ROS and the impairment of mitophagy, ulti-
mately exacerbate inflammation-related degenerative processes in the inner retina [329]. In
particular, NMDA toxicity in the retina has been shown to activate the NLRP3 (nucleotide-
binding domain, leucine-rich-repeat containing family, pyrin domain containing-3) inflam-
masome complex and potentiate neuroinflammation [213]. The NLRP3 inflammasome is
primed at the interface between the mitochondria and ER membrane and enhanced upon
mitochondrial dysfunction and oxidative stress conditions [330], as has been discussed
for RGCs in glaucomatous retinas [329]. Therefore, RGCs can undergo a vicious circle
of mitochondrial dysfunction and neuroinflammation that can be mediated by NMDA
receptor activation.

5.4. Endoplasmic Reticular Stress

The ER is intricately involved in NMDA receptor-mediated processes of DCD and
mitochondrial dysfunction, whose consequences have been described above. This results
primarily from the function of the ER as an important intracellular calcium store which
fundamentally contributes to NMDA receptor-induced intracellular calcium increase (via
CICR) and modulates both calcium homeostasis as well as neuronal electrophysiology and
bioenergetics [226,331]. Segments of the ER membrane are physically associated with re-
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gions of the mitochondrial membrane through a complex of proteins termed ‘mitochondrial
associated membranes’ [332], forming local spots of high intracellular calcium buffering,
including calcium reuptake operated by the Sarco-Endoplasmic Reticulum Calcium ATPase
(SERCA) pump expressed on the ER membrane. Hence, ER activity is highly interconnected
with mitochondrial function, with both organelles playing critical roles in neurodegener-
ative diseases [226,229,333]. Neuronal axons display a continuous network of ER, which
couples neuronal transmission with calcium homeostasis, mitochondrial energy supply,
and the balance between synthesis and degradation of lipids and proteins, and therefore
functions as a key site of communication between different subcellular compartments. Thus,
the ER is highly dynamic within neuronal axons, and the disruption of its tubular network
organisation makes neurons more susceptible to axonal degeneration in common neurode-
generative diseases [334]. In addition, trafficking of NMDA receptors to synaptic sites is
also dependent upon ER function [335] and ER growth and fission in hippocampal neurons
are physiologically increased upon synaptic NMDA receptor stimulation which causes
dynamic organelle reorganisation [336,337]. Nevertheless, under pathological conditions,
it has been shown that prolonged activation of NMDA receptors induces the depletion of
ER calcium stores which contributes to neurotoxicity and promotion of apoptotic pathways
in cortical neurons and organotypic brain slices [227]. Even though little is known about
physiological ER tubular network dynamic organisation and ER-mediated trafficking of
NMDA receptors in RGCs, a similar mechanism of NMDA receptor-mediated ER dysfunc-
tion may well contribute to RGC degeneration in glaucoma [338] as well as ischemic [339]
and diabetic [340] retinopathies.

Protein accumulation is a hallmark of common neurodegenerative diseases and oc-
curs in RGCs in pre-symptomatic stages of Alzheimer’s disease with amyloid-β and
phosphorylated tau aggregates [109], and Parkinson’s disease with α-synuclein accumula-
tion [341,342]. Interestingly, it has been shown that Alzheimer’s disease and glaucoma share
similar pathophysiological changes [343], such as the phosphorylated tau accumulation
in RGC dendrites caused by elevated intraocular pressure [344]. Thus, age-related ocular
diseases are characterised by retinal protein accumulation [345], against which the ER
implements an ‘unfolded protein response’ (UPR), consisting of the upregulation of chaper-
one proteins, a reduction in the rate of protein synthesis and the enhanced degradation of
misfolded proteins in order to cope with inefficient protein folding [346,347]. In particular,
hypoxic damage and NMDA toxicity in RGCs cause the upregulation of the ER-resident
chaperone proteins Bip and p58IPK as a neuroprotective response in order to prevent the
production and accumulation of misfolded proteins [348–350]. Nevertheless, the UPR is
only effective until a level is reached where the damage caused by protein accumulation is
irreversible and leads to the activation of programmed cell death [346], as has been shown
in RGCs exposed to ER stress and NMDA excitotoxicity [351]. In all the above-mentioned
studies, concomitant increases in the C/EBP homologous protein (CHOP) were associated
with the initiation of the apoptotic caspase pathway [352], and retinal treatment with an
NMDA receptor antagonist has been shown to significantly decrease CHOP activity [353]
and thus, the inhibition of programmed cell death.

6. Final Remarks and Therapeutic Perspectives

Given the importance of glutamate neurotransmission in the retinal network, this
system is acutely vulnerable to glutamate excitotoxicity, which has been implicated in many
neurodegenerative diseases. In fact, this vulnerability of the retina may lend itself to being
an easily detectable diagnostic readout for the prognosis of degenerative diseases. As such,
disturbances in visual function have also been used to diagnose early signs of common
neurodegenerative diseases, whose cognitive symptoms would otherwise be harder to
detect at the early stages [354,355].

In addition to being a diagnostic window giving insight into systemic neurodegenera-
tive processes, the retina also constitutes a therapeutic window. As such, it has been the first
tissue where different gene therapy strategies have been implemented. Retinal diseases,
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such as the genetic ocular pathologies affecting PCs and the retinal pigment epithelium,
have been successfully treated using this strategy [356]. Due to the inherent properties of
the blood–retinal barrier, it has even been postulated that the ocular route may allow drug
delivery to the brain by avoiding the complications arising from the selective permeability
of the blood–brain barrier [357].

Nevertheless, treatment of retinal and common neurodegenerative diseases requires a
better understanding of the molecular pathways involved. Due to the subtype variation in
RGC susceptibility to degenerative processes, RGCs are an ideal group for determining the
factors which underlie the likelihood that an insult will lead to neuronal degeneration or
not and may reveal strategies to make highly vulnerable groups of neurons more resistant.
Understanding downstream mechanisms elicited in RGCs by glutamate excitotoxicity is
one such area of research that may impact our understanding of both neurodegeneration
and vulnerability. Indeed, by elucidating the different cellular mechanisms activated, it has
become increasingly clear that targeting a single pathway may not be sufficient and that a
synergistic approach may be necessary to obtain effective neuronal protection [358].

In addition, due to the essential roles that glutamatergic transmission has in mediating
network communication, new strategies have aimed to interfere with degenerative sig-
nalling whilst leaving physiological signalling unimpaired [148,214]. One strategy has been
to target retinal extrasynaptic NMDA receptors (avoiding those located at the synapse)
through either the application of specific inhibitors such as memantine [359–361], targeting
the extrasynaptic NMDAR-associated subunit NR2B with substances such as nafamostat
or sepimostat [362], or by interfering with degeneration-promoting interactions between
the NMDA receptor and its extrasynaptic partners, as was achieved through inhibiting
the NMDA receptor-TRPM4 interface [202]. Alternatively, modulation of pathways down-
stream of NMDA receptor activation may allow one to strengthen neuroprotective [363,364]
versus apoptotic [365,366] signalling pathways in the retina. One method to achieve this
is to target effector mechanisms downstream of physiological NMDA receptor activation,
such as enhancing either calcium homeostasis through preservation of mitochondrial func-
tion [302,320,367] or the ER-mediated UPR response [349,368]. Finally, Müller glia may
also be an important therapeutic target since their functionality is integral to protecting
RGCs from glutamate receptor-induced degeneration [369–371]. Enhancing their ability to
remove toxic glutamate or to maintain a synaptic cap to prevent glutamate spill-over may
be key to blocking the activation of neurodegenerative processes before they can begin.
Collectively, understanding the intricate positioning of RGCs within a complex network
involving not just neurons but also Müller glia as well as the retinal vasculature not only
helps to explain the vulnerability of these cells to glutamate-induced RGC degeneration,
but may direct strategies to achieve neuroprotection.
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