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Abstract

Passive acoustic monitoring is an important tool for studying marine mammals. Ocean bot-

tom seismometer networks provide data sets of opportunity for studying blue whales (Balae-

noptera musculus) which vocalize extensively at seismic frequencies. We describe

methods to localize calls and obtain tracks using the B call of northeast Pacific blue whale

recorded by a large network of widely spaced ocean bottom seismometers off the coast of

the Pacific Northwest. The first harmonic of the B call at ~15 Hz is detected using spectro-

gram cross-correlation. The seasonality of calls, inferred from a dataset of calls identified by

an analyst, is used to estimate the probability that detections are true positives as a function

of the strength of the detection. Because the spacing of seismometers reaches 70 km, faint

detections with a significant probability of being false positives must be considered in multi-

station localizations. Calls are located by maximizing a likelihood function which considers

each strong detection in turn as the earliest arrival time and seeks to fit the times of detec-

tions that follow within a feasible time and distance window. An alternative procedure seeks

solutions based on the detections that maximize their sum after weighting by detection

strength and proximity. Both approaches lead to many spurious solutions that can mix

detections from different B calls and include false detections including misidentified A calls.

Tracks that are reliable can be obtained iteratively by assigning detections to localizations

that are grouped in space and time, and requiring groups of at least 20 locations. Smooth

paths are fit to tracks by including constraints that minimize changes in speed and direction

while fitting the locations to their uncertainties or applying the double difference relocation

method. The reliability of localizations for future experiments might be improved by increas-

ing sampling rates and detecting harmonics of the B call.

Introduction

Passive acoustic monitoring is an important tool for studying the spatial and temporal distri-

bution, population density and habitat usage of vocalizing marine mammals, that comple-

ments visual surveys and tagging [1]. When acoustic sensors are deployed on the seafloor in

suitably configured networks, they can be used to locate calls using multi-station methods [2].

For individuals that vocalize repeatedly, the resulting tracks provide additional constraints on
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animal behavior. Although passive acoustic monitoring is a relatively efficient method for long

term observations, it is still costly to operate the large sensor networks required for monitoring

and tracking over large areas. There are a limited number of capable Navy ranges that are opti-

mized for tracking [3] but elsewhere in the oceans, data suitable for tracking can be hard to

come by. For this reason, there is growing interest in taking advantage of ocean bottom seis-

mometer (OBS) networks that are being increasingly deployed for earthquake monitoring

along many continental margins and tectonic plate boundaries. Within the global academic

community there are several hundred OBSs that are designed for deployments of about a year,

and they are commonly deployed in networks of up to a few tens of sensors. Seismic networks

generally sample at frequencies of only 50–200 Hz (historically, most often at the lower end of

this range for long-term deployments) and so are only suitable for studying the baleen whale

species that vocalize at low frequencies. OBSs with 50 Hz sampling rates are primarily sensitive

to fin whales (Balaenoptera physalus) whose most common call is a 1-s 20 Hz chirp found

throughout the oceans [4] and blue whales (Balaenoptera musculus) that have geographically

distinct calls with the most common low-frequency calls generally centered between 15–25 Hz

[5]. At sampling rates of 200 Hz, OBS have the potential to detect vocalizations from several

other species including Bryde’s (Balaenoptera brydei) [6], Sei (Balaenoptera borealis) [7],

Minke (Balaenoptera acutorostrata) [8] and Gray whales (Eschrichtius robustus) [9].

Several studies have obtained example fin whale tracks manually with local OBS networks

using both time difference of arrival with multipath spacing [10] and time of arrival [11, 12].

Wilcock [13] developed a semi-automated method that uses a grid search method to model

the times of multipath arrivals. It was used to obtain a large number of whale tracks over one

year at a site on the Juan de Fuca Ridge [14]. Fin whale tracks can also be obtained from single

stations using the three-component particle motions of the direct arrival [11, 15] and poten-

tially from the spacing of multipaths in regions of complex bathymetry [16].

For blue whales, the call duration is often too long to identify multipaths or measure particle

motions for the direct arrival and so multi-station networks are necessary for tracking. A num-

ber of studies have utilized seafloor seismometer or hydrophone networks to successfully track

blue whales using time of arrival [17], time difference of arrival [18–20] and time difference of

arrival combined with modeled amplitudes [10, 21]. In all of these studies, the calls were identi-

fied manually and only a few tracks were obtained. In all but one, the typical spacing of instru-

ments was<15 km which simplified the task of associating the same call between stations. The

one exception was a study off the Western Antarctic Peninsula where low ambient noise levels

and a low density of calling animals, enabled tracks for Antarctic blue whales to be obtained

with 3 stations spaced ~150 km apart after a careful search for matching calling sequences [19].

In this paper, we describe the development of a semi-automated algorithm to track North-

east Pacific blue whales using a large network of widely spaced ocean bottom seismometers in

a setting where many calling animals can be present and noise levels are reasonably high

because of shipping and climatology. A particular challenge addressed by this study is the need

to consider very faint detections in order ensure that there are enough reporting stations to

locate calls. This results in a data set with a lot of detections with a significant probability of

being a false positive that can contribute to spurious localizations.

Materials and methods

Seismic data

The seismic data used to track blue whales comes from a network of OBSs deployed as part of

the Cascadia Initiative experiment, supplemented by seismometers on the Ocean Networks

Canada (ONC) NEPTUNE cabled observatory (Fig 1). The Cascadia Initiative was an
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two networks with network codes 7D (Cascadia

Initiative Community Experiment - OBS

Component, http://ds.iris.edu/mda/7D/#7D_2011-

01-01_2017-12-31) and NV (NEPTUNE Canada,

http://ds.iris.edu/mda/NV/). The station names

used are shown in Fig 1 with the corresponding

network indicated by the symbol type. The channel

code used is HHZ except for NEPTUNE Canada

station KEMF for which it is EHZ. The location

identifier for this data is not set. The times of data

extend from July 25, 2011 through July 22, 2012

with the majority of analysis on three days of data

from December 13, 2011 through December 15,

2011. The IRIS DMC provides a variety of tools for

downloading waveform data which are

documented at https://ds.iris.edu/ds/nodes/dmc/

data/types/waveform-data/. For this study the

MATLAB irisFetch software was used (https://ds.

iris.edu/ds/nodes/dmc/software/downloads/

irisfetch.m/) to access waveform data. The blue

whale detection data set is provided in the

Supporting Information Dataset S1 Dataset.zip.
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Fig 1. Seismic network. A bathymetric map of the continental margin and Cascadia Basin offshore the Pacific Northwest showing the configuration of the

seismic network used to track blue whales. A total of 38 ocean bottom seismometers (OBSs) from the first year of the Cascadia Initiative (CI) experiment
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amphibious experiment designed to monitor seismicity and image earth structure on the Cas-

cadia subduction zone and Juan de Fuca tectonic plate [22]. As part of this experiment, ~70

OBSs were deployed from late summer or early fall to summer of the following year over four

years from 2011–2015. The experiment footprint alternated annually between a northern

region off northern Oregon, Washington and southern British Columbia, and a southern

region off northernmost California and Oregon. The network extended several hundred kilo-

meters offshore with instrument spacings of ~70 km in deep water and ~35 km on the conti-

nental slope and shelf, except for two regions of concentrated deployments off Grays Harbor,

Washington, and Cape Mendocino, California. Each instrument recorded the output of a

Nanometrics Trillium Compact or Guralp CMG-3T seismometer that measured the three-

component velocity of the seafloor and a pressure gauge that was primarily sensitive to fre-

quencies below ~10 Hz. The majority of the OBSs sampled at 50 Hz with the rest sampling at

125 Hz. At the time of the experiment, the ONC NEPTUNE cabled observatory operated bur-

ied Guralp CMG-1T seismometers at several site on the continental slope and abyssal plain off

Vancouver Island and several closely spaced short period GeoSENSE BH-1 corehole seismom-

eters [23] on the Endeavour segment of the Juan de Fuca Ridge. These instruments sampled at

100 Hz or 200 Hz.

Here we use data from the vertical seismometer channel for the first year of the Cascadia

Initiative OBS deployments (Fig 1). A total of 64 OBSs were deployed in this year in the north-

ern footprint. After excluding stations that did not return good data at the frequency of blue

whales or which were isolated spatially from other sensors, 39 OBS were suitable for multi-sta-

tion tracking. These data were augmented by records from three cabled seismometers

deployed on the ONC NEPTUNE cabled observatory. The network extends from the conti-

nental shelf across the margin and the Cascadia Basin to the Juan de Fuca Ridge. For the devel-

opment of the localization algorithm, we have focused on a three-day test period from

December 13–15, 2011 that includes many blue whale calls.

Call detection dataset

The B calls of the Northeast Pacific blue whale were detected using the method of spectrogram

cross-correlation whereby a detection kernel based on a template of the call is cross-cross cor-

related with a spectrogram of the data as a function of time with the frequencies matched [26,

27]. After normalizing the seismic records to a uniform sensitivity, continuous spectrograms

were constructed for each station using a 2-s Hanning window with 80% overlap (Fig 2A–2C).

Because the 50-Hz sampling frequency of the majority of the OBSs was insufficient to record

the high-amplitude third harmonic of the B call and many of the instruments sampling at

higher sampling rates were noisy at high frequencies [28], detections were based on just the

first harmonic. The detection kernel (Fig 2D) was constructed from representative calls and

comprises a single tone that sweeps down linearly from 15.7 Hz to 14.4 Hz over 10 s with a

bandwidth of 0.5 Hz. Following Mellinger and Clark (2000), the detection kernel is imple-

mented with the second derivative of a Gaussian function centered on the call frequency. This

results in bands of negative values above and below the call frequency and ensures that the ker-

nel sums to zero.

(triangles) were combined with three stations from the Ocean Networks Canada (ONC) NEPTUNE cabled observatory (circles). The full network was in

operation from November 29, 2011, to May 13, 2012. Depths are shown by a color scale with contours at 200 m and 2500 m. The inset figure shows the

location of the experiment on the globe. Bathymetric data were obtained from the Global Multi-Resolution Topography (GMRT) Synthesis (data DOI: 10.

1594/IEDA.100001) [24] and are available for use under a CC BY 4.0 license. The figure was created with the Generic Mapping Tools software [25].

https://doi.org/10.1371/journal.pone.0260273.g001
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Fig 2. Example spectrogram and detections. (a) Spectrogram of 30 minutes of data with arbitrary scaling from station

J53A starting at 03:30:30 UT on December 11, 2011, showing a sequence of strong Northeast Pacific blue whale calls. An

earthquake is also apparent at ~1200 s as a vertical band of energy. (b) As for (a) but normalized by subtracting the median

at each frequency and shown with a color scale for values that exceed the 90th percentile value. (c) Four-minute segment of

the spectrogram from (a) with A and B calls labeled. (d) Cross-correlation kernel that is tuned to the slope of the first half of

the B call. (e) Recognition score (RS) for (c) with the minimum threshold of 2.2 shown as a dashed line. Three B calls are

strong detections and both the A call and a faint feature early in the spectrogram register as weak detections.

https://doi.org/10.1371/journal.pone.0260273.g002
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The kernel is cross correlated with the instrument spectrograms as a function of time with

the frequencies matched. This leads to a time dependent recognition score which in our detec-

tion dataset is defined on a logarithm to base 10 scale. The scaling of the recognition score is

arbitrary but the higher the value of the recognition score the more likely there is a B call. For

our data set, a threshold of 2.2 was chosen as a conservatively low value. We identified as a

detection all the peaks in the recognition score that exceeded this threshold and were separated

from higher peaks by at least 10 seconds. For each detection, we recorded the time of the peak,

the peak recognition score, and the duration for which the recognition score exceeded the

threshold. The peak recognition score and duration are quite strongly correlated (correlation

coefficient = 0.70).

To evaluate the detector, we compared on station J28A, the automated detections with a

dataset of B calls that were confidently identified as a blue whale by a human analyst looking at

the spectrogram independently (Fig 3). Because the automatic detection threshold was very

low, all but 2.7% of the calls identified by the analyst registered as detections. Missed detections

generally result from instances when the blue whale calls are overlapped by other transient sig-

nals, namely earthquakes, short duration events [28] and fin whale calls. Treating the analyst

detections as ground truth, the precision of the automated detections is 0.98 and 0.91 for peak

recognition scores>7 and in the range 6–7, respectively. However, these high threshold detec-

tions only account for 27% of the calls identified by the analyst and the peak recognition scores

for some identified calls are as low as 3. Because the number of automated detections increases

quickly with decreasing threshold (Fig 3B), the precision decreases rapidly at lower thresholds

to 0.51 for peak recognition scores in the range 5–6 and 0.11 for the range 4–5.

A precision-recall curve (Fig 3C) illustrates the challenges of the detector. Achieving a high

rate of recall requires a low precision leading to a large number of false detections. However,

the analyst detections are based on an assessment that a feature in the spectrogram is definitely

a blue whale and features that were possibly a blue whale where not included. It follows that

many of the automated detections that were not identified by the analyst are likely true posi-

tives. An estimate of the precision as a function of the peak recognition score can be obtained

Fig 3. Performance of the detector. (a) Histogram with a logarithmic scale showing the call count for Cascadia Initiative station J28A for the automatic detector

as a function of the peak recognition score (dark gray) and the calls that were identified independently by an analyst as a definite blue whale (light gray). The

scaling of the peak recognition score is arbitrary. (b) Precision (number of true positives divided by the sum of true positive and false positives) of automatic blue

whale detections as a function of the minimum peak recognition score determined by treating the analyst identifications as ground truth (solid line and circles)

and as inferred by comparing detection rates between the calling and non-calling season for blue whales (dashed line and triangles). (c) Precision-recall curve for

the automated detection based on treating the analyst detections as ground truth. The recall is the number of true positives divided by the sum of true positives

and false negatives. Labels indicate the threshold for the peak recognition score.

https://doi.org/10.1371/journal.pone.0260273.g003
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after considering the distribution of analyst identified calls and detections with time (Fig 4).

Blue whale calls are seasonal, and for OBS J28A all but 4 of the 1714 B calls identified by the

analyst occur between November 25 and March 4. A comparison of the rates of detections in

the calling and non-calling season for different ranges of peak recognition score shows that

they are consistently higher in the calling season with the fractional difference decreasing as

the peak recognition score decreases (Table 1). By making the simplifying assumptions that

the rate of false detections is invariant throughout the year and that the blue whales do not call

outside the identified calling season, the excess detections during the calling season can

equated to the count of true positives. An estimate of the precision of the detector, pr, can be

Fig 4. Histograms call times. A histogram showing call detections on station J28A as a function of time in 10-day bins. (a) Calls identified by

an analyst as a definite blue whale. (b) Automated detections with peak recognition scores exceeding 4 (light gray), 5 (medium gray) and 6 (dark

gray). Dashed vertical lines bound the assumed calling season.

https://doi.org/10.1371/journal.pone.0260273.g004
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obtained according to

pr að Þ ¼
ðrcðaÞ � rncðaÞÞ

rcðaÞ
ð1Þ

where a is peak recognition score, and rc and rnc, the rates of detections during the calling and

non-calling seasons, respectively.

For OBS J28A (Table 1), the precision is only 0.16 for peak recognition scores in the range

2.5–3.0 but as the peak recognition score increase the precision increases rapidly (Fig 3B),

reaching 0.5 and 0.82 for peak recognition score in the range 3.5–4 and 4.5–5, respectively.

While the rate of true positives identified by the analyst is 17 per day during the calling season,

the inferred rate of true positives with peak recognition scores exceeding 3.5 is 117 per day.

Lowering this threshold to 2.5 doubles the inferred rate of true positives to 248 per day but at

the expense of increasing the rate of false positives from 65 to 579 per day. To apply this

approach to other stations, we inspected a sampling of automatic detections on many OBSs

and concluded that detections with a peak recognition score�6, are consistently very likely

true positives. For each OBS, we divided the data into 5-day bins and for each bin counted the

number of automated detections within different intervals of peak recognition score. We then

sorted the bins by the number of strong detections with peak recognition scores�6. We desig-

nated the smallest subset of bins that include 98% of the strong detections as occurring during

the calling season and the remainder as occurring in the non-calling season. We then used Eq

(1) to estimate the precision of the detector as a function of peak recognition score. The results

are reasonably consistent between stations. Averaged over all stations (Table 1), the inferred

precision increases from 0.07 for a peak recognition score of 2.2–2.5 to 0.95 and 0.99 for peak

recognition scores of 5–6 and>6, respectively. While this analysis is reliant on the simplifying

assumptions that there are no blue whale B calls outside the inferred calling season, and that

the amplitudes of blue whale calls and the noise characteristics responsible for false detections

are invariant throughout the year, it nevertheless provides a means to assess the general reli-

ability of the detections incorporated into blue whale localizations.

Localization algorithm

The call detection data set comprises a set of times that corresponds to peaks in the recognition

score each with an estimated probability that the detection is a true positive. There is an

Table 1. Rate and estimated precision of automated detections.

Peak Recognition Score Station J28A Detection Rate, day-1 Estimated Precision of Detections During Calling

Season

Non-Calling Season Calling Season J28A All Stations

2.2–2.5 457 498 0.08 0.07

2.5–3 370 438 0.16 0.16

3–3.5 144 207 0.30 0.38

3.5–4 47 94 0.50 0.62

4–4.5 13 43 0.69 0.79

4.5–5 3.7 21 0.82 0.88

5–6 1.2 16 0.93 0.95

>6 0.09 7.3 0.99 0.99

Data on station J28A are available from November 16, 2011, to May 15, 2012, and the calling season is defined as November 25 –March 4, the interval when all but 4 of

1714 confirmed detections were observed.

https://doi.org/10.1371/journal.pone.0260273.t001
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extensive literature on marine mammal localization (see for example [29] for a brief review).

Most approaches require a means to associate the same call on multiple stations before apply-

ing a separate localization step. Association is challenging for our dataset, not only because it

potentially includes multiple blue whales making stereotyped calls at the same time, but also

because our data set necessarily includes a large proportion of false positives because we must

consider faint detections in order to ensure that calls are detected on enough stations for

multi-station localization.

Nosal [29] describes a probabilistic method for tracking multiple marine mammals using

time difference of arrival or time of arrival which is attractive for our dataset because it

requires no a priori assumptions about which arrival belongs to which call. Using time of

arrival, a likelihood function, L, for a single call recorded by a network of stations can be

expressed as a product of the travel time misfits according to

L x;Oð Þ ¼
QN

i¼1
exp �

1

2s2
i

ðTi � t̂ iðxÞ � OÞ
2

� �

ð2Þ

where x and O are the position and origin time of the call, i the index of N stations recording

the call, Ti the observed call arrival times, σi the arrival time uncertainties and t̂ iðxÞ the pre-

dicted travel times. For multiple calls, this expression is modified to

L x;Oð Þ ¼
QN

i¼1
max

k
exp �

1

2s2
i;k
ðTi;k � t̂ iðxÞ � OÞ

2

� �� �

ð3Þ

where k is the index of arrival times on a given station occurring after the call time, and the

likelihood function is calculated by choosing the arrival time on each station that maximizes

its value. A grid search in space and time can then be used to find maxima in L which will cor-

respond to potential locations. When the arrival time data set includes only true arrival times

with paths that match those used to model travel times and when arrival times are available for

each call on each station, each maximum in L with a value close to unity will correspond to a

call location. When spurious arrival times are present, the method is likely to lead to erroneous

localizations. In the case of an animal calling repeatedly, post-processing can be used to iden-

tify those call locations consistent with a single animal track. Nosal [29] suggests that when

more stations are present than necessary to locate the call unambiguously and when arrival

times may not always be present on all stations for a given call, it may be desirable to maximize

over several subsets of stations, each containing at least the minimum number of stations nec-

essary to locate a call.

There are challenges to applying the method of Nosal [29] to the blue whale date set. First,

the method is computationally demanding, and those demands increase with the size of the

network and the duration of the observations. Second, spurious arrival times can lead to erro-

neous locations and as noted above, our dataset necessarily includes a large proportion of false

positives. Third, for a large network, the approach of subsetting stations to account for stations

that may not record a particular call adds to the computational burden and may act to increase

the number of erroneous localizations from spurious detections by removing the redundant

arrival times necessary to identify them.

To reduce the computational demands, we limit the search in space and time to solutions

that are consistent with the time of a strong “master detection” that is the earliest arrival time

in the solution. Each detection time with an estimated probability of being a true positive that

exceeds a high threshold is designated in turn as a master detection and its time is combined

with all detection times exceeding a lower probability threshold that follow within a feasible

time window on stations at a feasible distance. A likelihood function, is constructed from these
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detection times according to

L xð Þ ¼
R ms1;1

� ms1;1

QN
i¼1
max max

k
exp �

1

2s2
i;k
ðTi;k � t̂ iðxÞ � OðxÞ � t

0Þ
2

� �� �

; qsmall

� �

dt0 ð4Þ

where the sum is over the N stations with detections and O(x) is the call origin time calculated

at a given location based on the time of the master detection according to

OðxÞ ¼ T1;1 � t̂1ðxÞ ð5Þ

where the master detection time is assigned the indices i = 1 and k = 1. Since the precise call

origin time is not of interest, the integral over t’ in Eq (3) sums the likelihood function at a

given location over all call origin times that are consistent with the master detection time to an

acceptable multiplier, m, of its uncertainty, σ1,1. To prevents stations with no fitting detections

from influencing the maximum of L, a uniform small value, qsmall, is substituted into product

when the likelihood at a particular station is very low.

Maximizing Eq (3) will yield the solution that fits the master detection and as many other

detections as possible, but in some instances, it can fail to yield the correct location if it fits low

probability detections or detections on distant stations at the expense of higher probability

detections nearer the call location. To overcome this, a second approach is considered which

seeks to maximize the number of high probability detections on stations near the whale loca-

tion. For the ith station, we define a function fi which is set to zero or unity depending on

whether there is a fitting arrival time according to

fiðx; t0Þ ¼ 1 if mink j
Ti;k � t̂ iðxÞ � OðxÞ � t0

s2
i;k

j � m0

fiðx; t0Þ ¼ 0 otherwise

ð6Þ

where m’ defines the maximum number of standard deviations for an acceptable detection

time misfit. A solution that favors fitting arrival times for a high probability detection near the

location is expressed as the maximization of

E x; t0ð Þ ¼ F x; t0ð Þ
PN

i¼1
fiðx; t

0Þ
pði; kÞ

maxðjx � xij;RÞ
ð7Þ

where p(i,k) is the estimated probability that the detection is a true positive, and max (|x−xi|,
R) is the distance of the station at position xi from the call position subject to a minimum

value, R. R prevents a station very near the solution from dominating the sum and should be

set to about half the typical spacing of stations so that the weighting of the nearest stations to

the solution are similar throughout the network. The term F ensures that there is a minimum,

Mmin, of fitting arrival times and is defined

Fðx; t0Þ ¼ 1 if
PN

i¼1

fiðx; t
0Þ � Mmin

Fðx; t0Þ ¼ 0 otherwise
ð8Þ

The two approaches of maximizing Eqs (3) and (6), which we term methods 1 and 2,

respectively, both provide a set of fitting detections. Eq (1) is then utilized to construct a likeli-

hood function based just on these detection times, and this is integrated over the origin times

that are consistent with the master detection time to construct a spatial probability distribution
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function

P xð Þ ¼ K
R ms1;1

� ms1;1

QM
i¼1
exp �

1

2s2
i

ðTi � t̂ iðxÞ � OðxÞ � t
0Þ

2

� �

dt0 ð9Þ

where K is a normalization term chosen so that the spatially integrated probability density is

unity and M the number of fitting detections.

For simplicity, solutions are obtained based on a single travel time versus distance curve.

The ray tracing program BELLHOP [30] is used to calculate ray paths assuming a water depth

of 2600 m, a source at 25 m depth [31], and a water column velocity model obtained from the

NOAA World Ocean Atlas [32] for the month of December and the center of the network

(46.5˚N, 127.05˚W). At each distance a single travel time is obtained by averaging the times

observed for each path using their predicted amplitude as weights. A third order polynomial is

fit to the travel times as a function of the straight-line source to station distance out to a dis-

tance of 300 km. Similar calculations with water depths ranging from 200 m to 3 km are con-

sistent with this travel time curve to within ~1 s out to 200 km although the errors in the

calculated times likely exceed this because our simplified approach does not account for the

loss of energy due to attenuative interactions with the seafloor. To obtain solutions efficiently

to Eqs (3) and (6), travel times from each station are precomputed onto a latitude-longitude

grid that encloses the network and has a grid spacing of 0.005˚ in latitude (~550m) and 0.01˚

of longitude (~780 m). The integrals of Eqs (3) and (6) are obtained numerically with a tempo-

ral discretization of 0.25 s for master detection origin time misfit t’.
Table 2 lists the values of parameters used for the solutions. The localization methods

require an estimate of the detection time uncertainty that must combine the uncertainty in

identifying the time of its arrival and the uncertainty in modeling it. Because the first harmonic

of the B call has only a gentle slope in frequency the detection time from cross correlation has

a significant uncertainty which we estimate ranges from 1 s for high probability calls with

probabilities of�0.9 to 2.5 s for calls with probabilities of�0.2. For the travel time predictions,

we assume the uncertainty from fitting a smooth curve to the travel time predictions is 1 s. We

estimate that the predictions themselves have an uncertainty that increases from ~1.25 s at 75

Table 2. Localization parameters.

Parameter Value

Minimum probability for a master detection 0.9 (also consider 0.8 and

0.95)

Minimum probability for a detection in the solution 0.2 (also consider 0.1 and

0.5)

Maximum distance of a station from the station of the master detection 150 km

Maximum time of a detection after the master detection 100 s

Maximum allowed master detection misfit normalized to its uncertainty, m 3

Detection time uncertainty, σ,(based on probability, p) 2 s (p� 0.9)

2.5 s (p = 0.8)

3 s (p = 0.5)

3.5 s (p� 0.2)

Minimum contribution to the likelihood product of Eq (3) for a poorly fitting station,

qsmall
exp(-4.5) = 0.011

Maximum allowed detection time misfit normalized to uncertainty of a fitting arrival

time in Eq (5), m’
3

Minimum distance from the station to the call in the calculation of Eq (6), R 50 km

Minimum number of stations for a solution, Mmin 4

https://doi.org/10.1371/journal.pone.0260273.t002
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km (mostly higher probability detections) to 2.5 s at 150 km (lower probability detections)

based on the standard deviation of the weighted distribution of travel times calculated by

BELLHOP that contribute to the predicted time. The resulting total detection time uncertainty

is thus estimated to vary from 2 s for detections with probabilities of�0.9 to 3.5 s for detec-

tions with probabilities of�0.2 (Table 2).

For the two methods, we apply Eqs (3) or (6) to find a preferred set of detections. If there

are at least 4 detections fitting to within three times their estimated uncertainty, we compute

the probability density function P(x) in Eq (8). If the 95% confidence limits obtained from

selecting the appropriate contour level in P(x) define two or more distinct maxima or extend

to the side of the localization grid, or if the 1-σ horizontal uncertainty exceeds 20 km in any

direction, the solution is discarded. For acceptable solutions, we use spline interpolation to

find the location, x� that maximizes the probability density to a precision of 100 m. We also

compute the components of mean location �x and covariance matrix C from of P(x) according

to

�xi ¼
RR
Pðx1; x2Þ xi dx1 dx2 ð10Þ

and

Cij ¼
RR
Pðx1; x2Þðxi � �xiÞðxj � �xjÞ dx1 dx2 ð11Þ

where x1 and x2 are the two horizontal coordinates that form x, and i and j have values of 1 or

2. In general, the mean location and most probable location are very similar with the difference

much smaller that the uncertainty obtained from the covariance matrix.

Fitting smooth tracks

When calls are grouped into sequences from the same whale, it can be useful to fit a smooth

track that accounts for the uncertainties in locations to estimate the net speed and direction of

motion. For three calls on a track, a smoothing constraint that penalizes changes in speed and

direction can be written

ð1 � wÞðxi� 1 � dxi� 1Þ � ðxi � dxiÞ þ wðxiþ1 � dxiþ1Þ ¼ 0 ð12Þ

Where xi is the current horizontal location of the ith call, δxi is the change in location from

smoothing, and the weighting is based on the origin times, O, of the calls according to

w ¼
Oi � Oi� 1

Oiþ1 � Oi� 1

ð13Þ

In order to provide uniform smoothing along the track, two weights must be applied to Eq

(11). The first, 1/(Oi+1−Oi−1), strengthens the penalty when the calls are closer in time and

thus, uniformly penalizes change in the rate of change of speed and direction. The second, 1/

min(w, 1−w), accounts for the fact that when the central location is close in time to one of the

outer points, a given change in the position of the central call will result in larger changes in

speed and/or direction.

The weighted constraints of Eq (11) can be written for all calls in the track

SdX ¼ � SX ð14Þ

where X and δX are vectors that include the current locations and changes in location of all

the calls in the track, respectively, and matrix S applies the smoothing weights. The normalized

PLOS ONE Tracking blue whales with a widely spaced network of ocean bottom seismometers

PLOS ONE | https://doi.org/10.1371/journal.pone.0260273 December 15, 2021 12 / 33

https://doi.org/10.1371/journal.pone.0260273


spatial misfit of the ith smoothed location relative to the solved location x�i is

C�
1
2

i xi þ dxi � x�i
� �

ð15Þ

where Ci is the spatial covariance matrix of the solved location.

A solution that seeks to fit the locations of all calls with a smooth track can then be written

as

C
�

1

2

aS

2

6
4

3

7
5dX ¼ C

�

1

2 X� � Xð Þ

� aSX

2

6
4

3

7
5 ð16Þ

where C is the covariance matrix of all locations and α is the weighting of the smoothing con-

straint. This is an overdetermined weakly non-linear inverse problem that can be solved itera-

tively using a least squares method [33] with X updated by adding δX after each iteration until

the solution converges. If the spatial covariances of the locations are properly scaled, then the

smoothing weight can be steadily decreased until the locations are fit to their expected uncer-

tainty. If necessary, locations that are obvious outliers because they cannot be fit by the smooth

track, can be removed and the inversion repeated.

An alternative approach to fitting a smooth track is to combine the smoothing constraint of

Eqs (11)–(13) with the double difference method [34]. This approach was developed for earth-

quake locations, but it is well suited for refining tracks of marine mammals with stereotyped

calls and its application to fin whales has been described in detail by Wilcock [13].

Rather than seeking to minimize travel time residuals, the double difference method seeks

to adjust locations so as to fit the difference between the residuals on stations that are common

to two nearby calls. A double difference time, d, can be written

di;jl ¼ ðTi;j � T
pred
i;j Þ � ðTi;l � T

pred
i;l Þ ð17Þ

where i is the station index, and j and l are the indices of nearby calls. This double difference

time can be equated to changes in the call locations and origin times according to

di;jl ¼
@ t̂ i;j
@x

dx1;j þ
@ t̂ i;j
@y

dx2;j þ dOj �
@ t̂ i;l
@x

dx1;l �
@ t̂ i;j
@y

dx2;l � dOl ð18Þ

where t̂ are the predicted travel times and δx1, δx2 and δO changes in the horizontal coordi-

nates and the call origin time. A set of double difference times can be written in matrix form as

G
dX

dO

" #

¼ d ð19Þ

where G is a sparse matrix of partial derivatives, δO a vector of changes in origin times, and d
a vector of double difference times. If the uncertainties of the double difference times are

known each row of G and d can be weighted by the reciprocal of the uncertainty. A solution

that combines the double difference times with the smoothing constraints of Eq (13) is then

written as

G

bS 0

" #
dx

dO

" #

¼
d

� bS x

" #

ð20Þ

where β is the smoothing weight. As for Eq (15), this can be solved iteratively by least squares.

After each iteration, the locations and origin times are updated, and the difference times are
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recalculated. Those difference times with absolute values that exceed a threshold of a multiple

of the difference time uncertainty can removed from the next iteration. The advantage of the

double difference method is that it is largely insensitive to errors in modeling the travel times

because those errors are mostly common to the two calls being considered. It also provides a

means to eliminate spurious detections because these can be expected to yield spurious differ-

ence times when paired with a correct detection or another spurious detection. The disadvan-

tage of the method is that the smoothing weight cannot be adjusted so as to yield smoothed

locations that match the location error, although it can be adjusted so that the difference time

residuals match their uncertainty.

Results and discussion

Localizations

To evaluate the localization algorithm, we manually inspected spectrograms and the timing

and peak recognition scores of detections for example solutions to determine whether the

detections in the location were unambiguously from a single call. For a sequence of calls, this

involved determining whether the detections were from the same call within the sequence and

assessing whether stronger detections not included in the solution were from different calls

within the sequence or could be unambiguously assigned to a call from a whale at a different

location. For calls not within sequences, the manual assessment was harder and involved deter-

mining whether subsets of detections within the solution could be combined with other detec-

tions to yield another feasible location with higher probability detections at the earlier

recording (nearer) stations. Based on this analysis we categorized localizations as correct,

incorrect or uncertain. Fig 5 shows an example of a correct localization based on method 1 of

Eq (3) for a master detection on station J53A. Although the likelihood function is quite com-

plex because of the presence of 17 detections on 12 stations, the maximum value of the likeli-

hood function leads to a location near station J53A that fits detections on 6 surrounding

stations, 5 of which are high probability. The location has a formal 1-σ uncertainty of 1.9 km

in longitude and 1.3 km in latitude.

In contrast, Fig 6 shows a localization for a call in the same calling sequence where method

1 fails. The chosen location models the correct detections for stations J53A (the master detec-

tion), J54A and J61A but incorporates erroneous detections for stations J52A, J55A and J37A

and does not model detections on stations J45A and J46A. The chosen location lies well to the

south of the correct location near J53A and is very close to station J45A which has no modeled

detection. The formal location uncertainties are 2.9 km in longitude and 1.9 km in latitude.

The correct solution near station J53A does appear as a local maximum in the likelihood func-

tion that fits the same number of detections to three standard deviations but is not selected

because the fit is worse.

Applying method 2 of Eq (6) (Fig 7) leads to the correct solution because detections that are

fit to within 3 standard deviations are weighted based on their probability and proximity. The

final solution correctly predicts detections at 6 of the 7 closest stations and has a formal uncer-

tainty of 1.8 km in longitude and 1.4 km in latitude. Interestingly, both solutions incorporate a

spurious detection at station J55A which appears to be linked to a high amplitude A call. For

the solution shown in Fig 7, this erroneous detection time is not particularly well fit. Because

the predicted detection time is too late, it acts to pull the solution to the west.

Provided there are enough detections, both localization methods will yield bad or biased

locations if they include spurious detections that are either false positives or a result of mixing

true positives from more than one B call. The problem of false positives is well illustrated by

examining some of the statistical properties of the locations for the 3-day test period. In Fig 8A
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and 8B, we show histograms of the probability of the fourth and fifth most likely detections in

the localizations. At least 4 stations are required to locate a call in two horizontal direction and

time [35]. However, the estimated probability of the fourth most likely detection (Fig 8A) is

less than 0.5 for 52% of the solutions and less than 0.3 for 20%. A fifth detection adds redun-

dancy to a solution that in the absence of many spurious detections can be used to identify an

outlier, but 69% and 31% of such detections have probabilities less than 0.5 and 0.3, respec-

tively (Fig 8B). Only 45% of the locations are based on more than 5 detections (Fig 8C), but as

Fig 6 illustrates, the presence of 6 modeled detections is insufficient to guarantee a correct

solution. If it is assumed that a reliable localization requires at least 6 modeled detections of

which most are high probability, then only 12% and 5% of the solutions meet this requirement

when the a fourth highest probability is required to be>0.8 and >0.9, respectively. If the fifth

highest probability is required to meet these thresholds, the percentages are reduced to 4% and

1%, respectively. For the second localization method a value of E> 0.1 can be achieved with 6

high probability detections within ~70 km. Only 12% of the locations obtained with the second

method meet this criterion (Fig 8D) and when the probabilities of the 4th and 5th detections

are also required to exceed 0.8, this percentage is reduced to 8% and 3%, respectively. Even

with very stringent criteria for accepting individual localizations, the false locations that arise

from mixing true positives from different calls are not eliminated. This data set may be partic-

ularly prone to the problem of mixing two calls from the same whale because the 70 km spac-

ing of OBSs is almost equivalent in travel time to the observed spacing of ~50 s of successive B

calls in ABB-type songs [36].

Figs 9 and 10 show an example where two alternative localizations are obtained using the

same high probability (0.93) detection on station J52A but with different high-probability

(1.00) detections on station J53A which appear to be successive calls from the same whale.

Both solutions also fit a low probability detection (0.29) on station J44A but otherwise fit a

completely different set of detections, many of which appear to be blue whales. From inspec-

tion of the spacing of calls in the spectrograms, it is clear that there are multiple whales calling

during this interval which makes it difficult to tell which, if either, of the two locations is

correct.

Tracks

Because it is infeasible to inspect all solutions and sometimes difficult even after inspection to

fully ascertain whether a given location is correct, the localization results are most useful for

finding groups of locations that are consistent with a track for a single whale calling repeatedly.

To do this, it is first necessary to discard repeat locations, which are defined as localizations

that include a set of detections that are a subset of those for a localization obtained with an ear-

lier master detection. A simple space and time filter is then applied to link locations into

groups by searching for a location that is within 10 km and 15 minutes of at least 4 other loca-

tions and then repeating this process iteratively for all the locations added to each group. To

Fig 5. Correct localization with method 1. An example of a successful localization using method 1 that used the likelihood

function of Eq (3) for a master detection on station J53A at 00:05:35 UT on December 13, 2011. The upper two panels are

maps showing (a) the logarithm of the likelihood function L(x) (Eq 3) and (b) the probability density function P(x) (Eq 8)

with a color scale. Labeled squares show stations, with filled squares indicating stations with detection times in the solution.

The 95% probability area of the location is shown by a bold black contour. (c) Eight spectrograms for 4 minutes of data

starting one minute before the master detection with detections used in the solution shown as solid black labeled with the

estimated probability the detection is a true positive, other detection times as thin dashed black lines, and the predicted

arrival times as dot-dashed red lines. Spectrograms are created with a 4-s-window and 95% overlap, normalized by

subtracting the median at each frequency, and shown as a color scale for values that exceed the 90th percentile value. Example

A and B calls are labeled on the spectrogram for station J54A.

https://doi.org/10.1371/journal.pone.0260273.g005
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Fig 6. Incorrect localization with method 1. An example of an incorrect localization obtained with a master detection

on station J53A at 00:02:30 UT on December 13, 2011, obtained using method 1 plotted using the same conventions as

Fig 5.

https://doi.org/10.1371/journal.pone.0260273.g006
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Fig 7. Correct localization with method 2. A correct localization for the same master detection as Fig 6 obtained using

method 2 based on Eq (6) that maximizes the number of high probability nearby detections. The upper panels show (a) the

function E(x) of Eq (6) with the highest value shown by a black x-mark, and (b) the probability function of Eq (8) plotted using

the same conventions as Fig 5. The lower panels show spectrograms plotted using the same convention as Fig 5.

https://doi.org/10.1371/journal.pone.0260273.g007
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Fig 8. Characteristics of localizations. Histograms showing characteristics of the solutions for a 3-day interval from December 13 through

December 15, 2011, obtained with a minimum master detection probability of 0.9 and a minimum detection probability of 0.2. (a) The

estimated probability of the 4th most probable detection in the localizations from method 1 (Eq 3) shown for all locations, locations within
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account for pauses in calling, groups are combined if they are separated by no more than 1

hour, and if at least 4 locations in one group are each within 20 km of 4 locations in the other

group. These spatial requirements are quite relaxed to allow for localization errors.

The localization methods allow a detection to be included in multiple localizations and as

illustrated in Figs 9 and 10, there is the potential for detections for calls in sequences with a

consistent call spacings to be both located into the correct tracks and mislocated into spurious

tracks by systematically combining detections from successive calls. An iterative approach is

used to eliminate such spurious tracks based on the observation that the correct track will very

likely include more calls. After completing the localization process and finding tracks, all the

detections within tracks with a minimum number of locations are assigned to belong to the

location in that track. When the detection is incorporated into locations within more than one

track, it is assigned to the location in the track with most locations. The localization procedure

is then repeated with the flagged calls excluded from all but their assigned location. For our

test data set, we found that two iterations in which the minimum number of locations is first

25 and then 15, reliably eliminates spurious tracks.

Several approaches can be used to assess the quality of tracks, and these are illustrated by

comparing two tracks on the eastern side of our network (Figs 11A and 12A), the first that we

consider reliable (Fig 11) and the second that we do not (Fig 12). A reliable track should be

characterized by higher probability detections at stations near the call locations, and stations

near the call locations should generally have detections included in the locations. Figs 11B and

12B plot the locations of stations relative to each call location in the two tracks with color cod-

ing to illustrate stations with detection missing from the localizations and the probability of

detections that are included in the localizations. In Fig 11B, the highest probability detections

are mostly clustered around the locations and there are very few stations near the locations

with detections missing from the localizations. In contrast, in Fig 12B, the higher probability

detections are more scattered and there are many missing detections at nearby stations.

Another way to assess the tracks is to plot the cumulative number of stations as a function of

range (horizontal distance) from the call locations for both stations included in the localiza-

tions and stations that are missing. For reliable tracks, the ratio of included to missing detec-

tions is generally higher than one out to distances of at least 75–100 km (Fig 11C), while for

spurious tracks it is generally less than one (Fig 12C).

The two primary Northeast Pacific Blue whale song sequences are AB songs in which A and

B calls alternate with an inter-call interval between B calls of ~120 s and ABB songs in which

each A call is followed by two or more B calls with an inter-call interval of ~50 s [36]. For a reli-

able track, a histogram of the time between successive locations will generally show a peak at

one of these characteristic inter-call intervals (Fig 11D), while an unreliable track will not (Fig

12D). Finally, spurious tracks often yield infeasibly fast swimming speeds; the next section dis-

cusses how to estimate a smooth path and speed from the locations in a track. Based on apply-

ing these various approaches and looking at individual solutions, we infer that tracks with at

least 20 locations are reliable in the test data set. Inspection of the characteristics of localiza-

tions (Fig 8) shows that the locations in tracks are on average significantly more robust than

the full set of localizations.

Table 3 summarizes the results of fitting tracks to the 3-day test period with different

choices of the minimum probabilities for the master detection and for including detections in

the solution. For each choice of minimum probabilities, we evaluate four different processing

tracks and locations in tracks with at least 20 calls. (b) As for (a) but for the 5th most probable detection for the subset of solutions with at least

5 detections. (c) The number of stations in the solution obtained with the method 1. (d) The maximum value of E(x,t0) (Eq 6) for localizations

from method 2 which favors detections with high probabilities near the location.

https://doi.org/10.1371/journal.pone.0260273.g008
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Fig 9. First ambiguous localization. A localization plotted using the same conventions as Fig 5 obtained using Eq (3)

with a master detection on station J53A at 04:24:41 UT on December 15, 2011, that fits 9 detection times.

https://doi.org/10.1371/journal.pone.0260273.g009
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Fig 10. Second ambiguous localization. A localization plotted using the same conventions as Fig 5 obtained using Eq (3)

with a master detection on station J52A at 04:25:22 UT on December 15, 2011, that fits 8 detection times. This solution

incorporates the same detections for station J52A and J44A as Fig 9, but otherwise fits a different set of detections.

https://doi.org/10.1371/journal.pone.0260273.g010

Fig 11. Characteristics of a reliable track. Some characteristics of an example track that is considered reliable, comprising 33 locations on December 14

between 1334 and 1519 UT. (a) Locations of calls in the track (red pluses) and seismic stations (black triangles). (b) Locations of stations that contribute

detections to the localization of each call in the track plotted relative to the call location and color coded by the estimated probability that the detection is a

true positive. Open circles indicate stations that are missing from the localization but that were recording detections as evidenced by the presence of at

least one detection within a time window extending from 60 s before the first detection in the localization to 120 s afterwards. (c). Cumulative count of

detections contributing to the call localizations as a function of the range to the location (black solid line) and of stations for which detections are missing

in the localization but for which at least one detections is available at the station from 60 s before the first detection to 120 s afterwards (red dashed line).

Also shown is the ratio of these two counts (dot-dashed blue line). (d) Histogram showing the time between of successive locations in the track.

https://doi.org/10.1371/journal.pone.0260273.g011

PLOS ONE Tracking blue whales with a widely spaced network of ocean bottom seismometers

PLOS ONE | https://doi.org/10.1371/journal.pone.0260273 December 15, 2021 23 / 33

https://doi.org/10.1371/journal.pone.0260273.g010
https://doi.org/10.1371/journal.pone.0260273.g011
https://doi.org/10.1371/journal.pone.0260273


schemes in which either the localization method is first used to assign detections to tracks and

then either the same or the other method is used to obtain the final tracks. As the minimum

probabilities are reduced, the number of locations within tracks increases as would be

expected. Relative to a baseline solution with minimum master detection and detection proba-

bilities of 0.9 and 0.2, respectively, decreasing the master detection probability to 0.8 or the

detection probability to 0.1, leads to a ~20% increases in the number of locations in robust

tracks with�20 locations while increasing the computation time (the number of detections

that must be modeled) by ~40%. There is a clear benefit from assigning calls to the initial track

Fig 12. Characteristics of an unreliable track. As for (a) except for an example track that is considered unreliable, comprising 13 locations on December

13 between 0931 and 1117 UT.

https://doi.org/10.1371/journal.pone.0260273.g012
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locations with one localization method and then obtaining the final tracks with the other. This

can be simply explained, because this approach will incorporate calls into a track if they are

located successfully with either method. More locations are assigned to robust tracks when

method 1 is used to initially assign detections to locations within tracks and method 2 then

used to obtain the final locations.

Fig 13A and 13B shows the distribution of normalized travel times misfits for localizations

in tracks based on final localizations obtained with method 1 and 2. Both distributions are fit

well by a normal distribution, but the uncertainties for the case where the final track is

obtained with localization method 2 are much larger. The problem with the localization

method 2 is that while maximizing E(x) favors solutions with many probable and proximal

detections, it also favors solutions which just fit true positives within the prescribed uncer-

tainty threshold while also incorporating additional false positives. When the location is then

obtained by maximizing Eq (8), the false positives broaden the distribution of misfits. For this

reason, the preferred approach is to use localization method 2 to assign detections to the loca-

tions in tracks and then localization method 1 for the final locations. The typical location

uncertainties are several kilometers (Fig 13C and 13D).

The variance of the travel time misfits normalized to their uncertainty, s2, can be written for

tracked calls as

s2 ¼
PQ

j¼1

PMj
i¼1

ðTi;j � T
pred
i;j Þ

s2
i;j

=
PQ

j¼1
Mj ð21Þ

where j is the index of the Q calls that are in tracks, i the index of Mj detections in each call

location, and Tpred the predicted detection times for the most probable location given by

Tpred
i;j ¼ Oðx�Þ þ t0� þ t̂ iðx

�Þ ð22Þ

where t’
�

is the origin time adjustment for the most probable location. If the assumed travel

Table 3. Results of processing data from December 13 through December 15, 2011.

Minimum Master

Detection Probability

Minimum

Detection

Probability

Localization

Attempts

Detections

Modeled

Method to Assign

Detections to Tracks

Method 1 used for Final

Localizations

Method 2 used for Final

Localizations

Calls in

Tracks

Calls in Tracks

(NT�20)

Calls in

Tracks

Calls in Tracks

(NT�20)

0.95 0.2 14,545 175,724 1 1077 876 1553 1245

2 1368 1209 1398 1108

0.9 0.5 16,199 138,929 1 788 582 1180 922

2 980 896 1080 810

0.2 19,991 245,672 1 1274 1063 1981 1589

2 1709 1473 1789 1378

0.1 21,293 351,287 1 1607 1247 2504 1843

2 2045 1612 2249 1680

0.8 0.2 26,778 335,419 1 1699 1305 2503 1949

2 2056 1701 2234 1688

Method 1 and 2 refer to the localization methods that are based on using Eqs (3) and (6), respectively. NT is the number of locations in tracks.

https://doi.org/10.1371/journal.pone.0260273.t003

PLOS ONE Tracking blue whales with a widely spaced network of ocean bottom seismometers

PLOS ONE | https://doi.org/10.1371/journal.pone.0260273 December 15, 2021 25 / 33

https://doi.org/10.1371/journal.pone.0260273.t003
https://doi.org/10.1371/journal.pone.0260273


Fig 13. Statistics of locations in tracks. Characteristic of the locations within tracks obtained by first assigning detections to locations within

tracks using one localization method and then using the other method to obtain the final locations. These plots are for a minimum probability
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time uncertainties are correct, then the expected value of s2 is given by

E s2ð Þ ¼
PQ

j¼1
Mj � p

PQ
j¼1
Mj

ð23Þ

where p = 3 is the number of free parameters (x1, x2 and time). For the example shown in Fig

13A, the expected value of s is 0.74 compared with the observed value of 0.96 which suggests

that either that the uncertainties in Table 1 are underestimated or the solutions include spuri-

ous detections. We explored increasing the assigned detection uncertainties and this has little

effect on the mismatch between the expected and observed values of the travel time misfits,

suggesting that the cause is the presence of spurious detections in the solutions.

The two methods of fitting a track are illustrated with two examples (Figs 14 and 15). The

first track (Fig 14) is for a whale that swims about 70 km north over 18 hours at an average net

speed of ~4 km/hr. The second (Fig 15) is a shorter track lasting under 4 hours in which the

whale moves southward at ~2 km/hr. Both approaches are able to successfully fit the data with

smoothed paths. For the first method of Eq (15), a chi-squared test is used to discard calls

whose spatial location uncertainties are inconsistent with a smooth path at the 99% confidence

level. The inference is that such locations are likely biased by spurious detections. After remov-

ing 21 poorly fitting locations out of 355, the track with a smoothing weight α = 106 leads to a

fairly smooth track that fits the locations with an average normalized spatial variance of 2.07,

which is close to the expected value of 2 when the locations are fit to their uncertainty. For the

2nd track, 11 locations out of 92 are discarded and the mean normalized spatial variance for α
= 106 is 2.14. The locations are fit to their uncertainty for α = 104, but the track is quite com-

plex suggesting that the location uncertainties are underestimated because of the presence of

spurious detections or that the whale track is indeed quite complex.

For the double difference method of Eq (19), the solutions for each track with three choices

of smoothing weight are based on between 87% and 91% of the double difference times which

suggests that about 5% of the detection times are bad presumably because they are for detec-

tions that are not from the call. For these solutions, we assume that the variance of the differ-

ence times is the sum of the variance for the two observed detection times. This can be

expected to be an overestimate since the double difference times will eliminate most of the

travel time modeling uncertainty because the ray paths are similar. For the middle smoothing

weight, the mean variances of the double difference time misfits normalized to their assumed

uncertainties are 0.44 and 0.36 for the two tracks, respectively. This suggests that over half the

uncertainty in the detection times is related to errors modeling travel times which is consistent

with our assumptions in assigning travel time uncertainties.

Conclusions

We have described an automated algorithm to locate the B calls of the northeast Pacific blue

whale using time of arrival that has been developed to analyze data from a network of widely

of master detections and all detections of 0.9 and 0.2, respectively but the plots have similar characteristics for tracks obtained with all the

choices of minimum probabilities listed in Table 3. (a) Histogram of the travel time misfits normalized to the assumed uncertainties (Table 1)

for master detections (dark shading) and all detections (light shading) for locations in tracks with� 20 locations with the final locations

obtained using localization method 1 (Eq 3). A solid line shows a Gaussian distribution fit to the histogram which has a standard deviation of

0.96. (b) As for (a) except the final locations are obtained with localization method 2 (Eq 6). The Gaussian distribution fit to the histogram has a

standard deviation of 1.35. (c) Histogram of the smallest horizontal 1-σ location error for all tracked locations (light shading) and tracks with

�20 locations (dark shading) for final locations obtained with localization method 1. (d) As for (c) but for the largest horizontal location error.

https://doi.org/10.1371/journal.pone.0260273.g013
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Fig 14. Smooth paths for a long track. An example of smoothed paths that are fitted to a track comprising 355 call locations between

0021 UT and 1834 UT on December 13, 2011. (a) Smoothed tracks obtained using the method of Eq (15) with three choices of

smoothing weight after discarding the 21 outlying locations. Call locations are shown as faint plus symbols with an ellipse illustrating the

average location uncertainty. The mean squared normalized spatial misfit is 2.49, 2.07 and 1.81 for smoothing weights α = 108, 106 and

PLOS ONE Tracking blue whales with a widely spaced network of ocean bottom seismometers

PLOS ONE | https://doi.org/10.1371/journal.pone.0260273 December 15, 2021 28 / 33

https://doi.org/10.1371/journal.pone.0260273


spaced ocean bottom seismometers deployed for the Cascadia Initiative experiment off the

coast of the Pacific Northwest. Detections are based on spectrogram cross-correlation using a

template that matches the first harmonic of the B call. A probabilistic approach is used to find

locations that are consistent with the times of a sufficient number of detections following a

strong master detection. Because the receivers are spaced at up to 70 km apart, the algorithm

must consider feint detection that have a significant probability of being false positives. False

localizations frequently result from including false positives and from mixing true positives

from different calls. A modification that favors locations that include strong detections on

receivers near the location only partially resolves this problem. For the Cascadia Initiative data

set, the algorithm is more suitable for finding groups of locations that are consistent with calls

from a single whale. It is inferred that such groups are reliable when they include at least 20

locations. The location uncertainties are quite large but methods to fit a smooth track to the

locations in a group suggest that the net speed and swimming direction of the whale can be

estimated when the path is�10 km long.

There are several ways that the localization method could be improved for future experi-

ments. Efforts to improve the detection algorithm might reduce the number of false posi-

tives. Obviously if the receivers were more closely spaced, there would be less need to

incorporate the weak low probability detections that lead to many spurious locations.

Unfortunately, the needs of marine mammal studies are unlikely to influence the design of

OBS experiments. A more realistic modification, given the ongoing improvements in stor-

age capacity and power requirements of OBSs, is that future experiments sample at higher

rates. For OBSs with the anti-alias filter set to �50 Hz (i.e., sample rates >100 Hz), a spec-

trogram cross-correlation detector could also search for harmonics of the B call [36]. The

third harmonic in particular, has a high amplitude [37] and a sweeps down over a frequency

band that is three times as large and it is thus, more diagnostic than the first harmonic.

Using higher harmonics would also provide a means to eliminate spurious detections from

the A call. The A call is not swept in frequency, but its frequency content overlaps that first

harmonic of the B call [38] and thus, strong A calls often register as weak B call detections

in our data set. If B calls are detected using the first harmonic, then A calls could be elimi-

nated by using an automated A call detector but these are hard to implement because of the

pulsed character of the call [36]. However, since A calls do not have significant energy that

overlaps the third harmonic of the B call, they will not trigger a B call detector based on this

harmonic. Finally, if detections are made on the third harmonic, the detection time uncer-

tainty would likely be reduced to about a third because it is inversely proportional to the

rate of frequency modulation. Smaller detection time uncertainties could be combined with

more sophisticated travel time modeling, to obtain locations with much smaller travel time

misfits. This would in turn, reduce the possibility that spurious or mismatched detections

would randomly combine into spurious locations with travel time misfits comparable to

true locations.

104, respectively. Also show is a smoothed track based on averaging locations temporally by weighting with a Gaussian function with a

20-minute standard deviation. (b) Tracks obtained using the double-difference method of Eq (19). The starting data set comprises 13,174

double-difference times and is constructed by linking each call to up to 8 calls within the next hour if there are four common stations.

The solutions were obtained with 5 iterations at each smoothing weight and with poorly fitting double difference times discarded after 3

iterations if the absolute misfit exceeded three times the assumed uncertainty. Totals of 11,999, 11,683 and 11,625 difference times were

used in the final solutions for smoothing weights of β = 10, 2, and 0.5, respectively. The mean variances of the double difference time

misfits normalized to their assumed uncertainties are 0.58, 0.44, and 0.41. (c-d) Speed as a function of time corresponding to the tracks

shown in (a) and (b), respectively.

https://doi.org/10.1371/journal.pone.0260273.g014
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Fig 15. Smooth paths for a short track. As for Fig 14 except for a track with 92 locations from 0132 UT to 0611 UT on December 15, 2011. (a)

Solutions are obtained after discarding 11 outlying locations and the mean squared normalized spatial misfit is 2.22, 2.14 and 1.97 for smoothing

weights α = 108, 106 and 104, respectively. (b) The starting data set comprises 3638 double difference times and 3204, 3161 and 3159 are used in the

final solutions for smoothing weights of β = 10, 2, and 0.5, respectively. The mean variances of the double difference time misfits normalized to their

assumed uncertainties are 0.44, 0.37 and 0.36.

https://doi.org/10.1371/journal.pone.0260273.g015
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Supporting information

S1 Dataset. Call detections. The call detection data is in a ZIP file that includes a single

comma separated variable file in which each row after the header row contains a call detection

with the station name, station longitude in decimal degrees, station latitude in decimal degrees,

numerical date in “mm/dd/yy” format, UTC time in “HH:MM:SS.SSS” format, the peak recog-

nition score, the duration, and the estimated probability that the detection is a true positive.
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