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Abstract

Cystic Fibrosis (CF) is the most common monogenic disease among people of Western

European descent and caused by mutations in the CFTR gene. However, the disease

severity is immensely variable even among patients with similar CFTR mutations due to the

possible effect of ‘modifier genes’. To identify genetic modifiers, we applied RNA-seq based

transcriptomic analyses in CF patients with a mild and severe lung phenotype. Global gene

expression and enrichment analyses revealed that genes of the type I interferon response

and ribosomal stalk proteins are potential modifiers of CF related lung dysfunction. The

results provide a new set of CF modifier genes with possible implications as new therapeutic

targets for the treatment of CF.

Introduction

Cystic fibrosis (CF) is the most common life-threatening genetic disease among people of

Western European descent. The disease is caused by a mutation in the underlying disease-

conferring gene, Cystic Fibrosis Transmembrane and Conductance Regulator (CFTR) that

encodes a chloride channel. CFTR mutations result in disrupted chloride transport in the epi-

thelial cells of various organs including lung, intestine, pancreas, and testes [1]. More than

2000 CFTR genetic variants have been reported and categorized into six classes, as these muta-

tions were observed to exhibit diverse effects on the production of CFTR protein, its traffick-

ing, its function, and its stability at the epithelial cell membrane [1, 2]. The most prevalent

mutation in CF is the lack of a phenylalanine residue at position 508 (also known as F508del),
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which results in a misfolded CFTR protein with reduced transmembrane conductance of chlo-

ride ions [3]. Due to the trafficking defect, the F508del mutation prevents the CFTR protein

reaching the apical membrane of epithelial cells and also interrupts the normal movement of

chloride ions by disrupting CFTR channel gating [4].

Chronic progressive lung disease is the primary reason for morbidity and mortality in CF.

However, the disease severity is immensely variable even among patients with similar CFTR

mutations. For instance, CF patients with a homozygous F508del mutation showed varying

phenotypic heterogeneity in terms of lung function that is measured by forced expiratory vol-

ume in 1 second (FEV1) [5]. It has been observed that CFTR genotypes per se do not corrobo-

rate with the pulmonary phenotype in unrelated CF patients [6]. However, twin and sibling

studies clarified that the modifier genes and their genetics contributed substantially to diver-

gent outcomes observed in CF lung disease [7, 8]. As CF is a multi-organ disease, the contribu-

tion of modifier genes towards disease severity was relatively higher when compared to non-

genetic modifiers in specific organs [9].

Modifier genes are a vital part of human genetics and it is argued that they are responsible

for the diverse phenotype observed with various diseases, more precisely in CF [10, 11]. Several

CF related modifier genes have been reported through genome-wide association studies

(GWAS), hypothesis-driven candidate gene studies, and microarray based transcriptomic

analyses [5, 9, 12–15]. Unlike GWAS and candidate gene studies, transcriptomic analyses pro-

vide information on both genetic modifiers and non-genetic modifiers such as infections from

the environment. The host immune system responds to these infections by activating immune

genes, and these gene transcripts can be measured by transcriptomic approaches. Though

microarray-based transcriptomic analyses could identify some modifier genes, the technology

is limited to known transcripts [12, 16, 17]. However, global gene expression analysis using

RNA-seq provides several advantages over microarray including the detection of a higher

number of differentially expressed genes and the detection of novel transcripts [18]. Therefore,

in the present study we performed a transcriptomic analysis using RNA-seq on CF patients

with an identical genotype (homozygous F508del), but with mild and severe lung dysfunction

determined by FEV1 measurements.

Materials and methods

Patient samples

A total of 32 F508del homozygous CF patients were recruited for the study from the University

Childrens’ Hospital, Tuebingen, Germany and the Division of Paediatric Respiratory Medi-

cine, University of Bern, Switzerland. All blood samples were collected in PaxGene blood vacu-

tainer tubes to ensure RNA quality and significantly reduce RNA degradation. Participants

were classified into severe CF patients (n = 16) and mild CF patients (n = 16) based on their

FEV1 values, which is a standard to quantify the clinical phenotype of CF. The detailed clinical

characteristics of the enrolled patients are described in Table 1. For statistical analyses of clini-

cal parameters, data were analyzed using the Mann-Whitney U test and are presented as

means and SDs, unless stated otherwise. Ethical approval was obtained from the Institutional

review board, Children’s University Hospital Tuebingen, Germany. Informed written consent

was obtained from all participants; for those who were children, consent was obtained from

respective parents or guardians.

RNA library preparation

Total RNA was isolated with PAXgene tubes using a Qiacube roboter with standard proto-

cols (www.qiagen.com). Excess globin mRNA was removed with GLOBINclearTM kit and
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sequencing libraries were prepared with the TruSeqTM Total RNA Sample Prep Kit following

the manufacturer’s instructions (www.illumina.com). Each sequencing library was tagged with

a 6 nucleotide long barcode that identifies from which sample a sequence was derived. After

size selection, all sequencing libraries were quantified on a Qubit1 fluorometer and equimo-

lar amounts of 16 libraries were combined to generate two sequencing pools. These were

loaded onto 8 lanes of an Illumina GAIIx single-read flow cell and two MiSeq flow cells.

Bound molecules were clonally amplified on a cBot instrument. Subsequently, the first 50

nucleotides from each fragment were sequenced followed by a seven nucleotide sequencing

run to decipher the barcode sequence in the adapter (www.illumina.com).

RNA-seq data analysis

The quality of raw sequenced reads was assessed using the fastqc quality control tool and high-

quality reads were aligned against the Homo sapiens reference genome (hg19) using the STAR

RNA-seq alignment tool [19]. The STAR aligners automatically detect and remove adaptor

sequences from the sequence reads before alignment. Next, we calculated the total number of

mapped reads and the number of uniquely mapped reads for each sample. As an additional

layer of quality control, we discarded samples with low mapped read count and samples with

a small percentage of uniquely mapped reads. For samples that pass the additional quality

check, we estimated the gene expression level as CPM (count per million mapped reads) using

HTSeq [20]. We used EdgeR R package to identify differentially expressed genes (DEGs)

between mild CF and severe CF [21]. RNA-Seq reads are available in NCBI-Sequence Read

Archive (SRA) database, under accession number SRP111640. Samples in each CF group were

treated as biological replicates and only genes that pass the significance cut-off were treated

as DEGs. In this study, we used log fold-change in expression less than -0.5 or greater than

0.5 and P-value (FDR corrected P-value) less than 0.05 as the significance cut-off to identify

DEGs. In order to functionally categorize DEGs, we tested enrichment of Gene Ontology

(GO) terms among DEGs using Amino.2 (www.amigo.geneontology.org). Additionally, we

also analyzed DEGs for the over-representation of KEGG pathways (http://www.genome.jp/

kegg/pathway.html). Motif activity response analysis (MARA) was performed to predict the

global regulatory interaction of RNA-seq data using ISMARA online tool (www.ismara.

unibas.ch). MARA predicts transcription factor (TF) binding sites with a specific algorithm

and calculates the influence of specific TF in terms of gene expression in a given sample.

Mann-Whitney U rank sum tests were applied to analyze differences in motif activity between

the study groups. All the major DEGs were checked for their association with CF using Open

target Platform (www.targetvalidation.org).

Table 1. Clinical characteristics of the mild CF and severe CF samples.

Clinical Parameters Mild CF patients Severe CF patients P value

Number (n) 16 16 Not Significant

Age, mean (SD) 25 (12) 21 (9) Not Significant

Male:Female 10:6 8:8 Not Significant

CFTR Mutation F508del/ F508del F508del/F508del Not Significant

FEV1 (% predicted), mean (SD) 92 (16) 36 (10) < 0.0001***

Infections PSA, SA, CA, SM PSA, SA, CA, SM, AF Not Significant

*** Mann-Whitney U test.

PSA, Pseudomonas aeruginosa; SA, Staphylococcus aureus; CA, Candida albicans; SM, Stenotrophomonas maltophilia; AF, Aspergillus fumigatus.

https://doi.org/10.1371/journal.pone.0183526.t001
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qPCR validation

qRT-PCR validation was performed for 16 of the DEGs utilizing the same samples utilized for

RNA-seq as a technical reproducibility operating different platforms. Primers were designed

with the Primer3 online tool (www.primer3.ut.ee) Primers, amplicon details, and cycling con-

ditions are listed in Table 2. cDNA was synthesized using iScript (www.biorad.com), followed

by qRT-PCR using Power SYBR green, and samples were run in triplicate on a ViiA7 Real-

Time PCR System (www.lifetechnologies.com). The relative expression levels of selected

DEGs were normalized to the 18S rRNA. Differences in mRNA expression between mild CF

and severe CF were analyzed by pair-wise fixed reallocation randomization tests with REST

2009 software [22]. The severe CF patients group was used as a control group and statistical

Table 2. Primer details and PCR cycling conditions for the qPCR validation.

Gene Primer sequences (5’-3’) Amplicon Size (bp) Annealing Temperature (˚C)

HERC5 F: CCAGCTTGCTTGTCCAACAG 157 58

R: CGGCCAGTAAACCCTCTTCT

IFIT1 F: TGGACCCTGAAAACCCTGAA 243 54

R: TCTGTGAGGACATGTTGGCT

IFIT2 F: GCGAAACAACTGCTCCATCT 205 55

F: CCAAGACATGCAAAGCCTCA

RSAD2 F: AAGAGGAGGAAGAGGACCCT 250 55

R: CAGAACCTCACCAACTTGCC

IFI44L F: GAGCAACTGGTGTGTCGTTT 213 56

F: CCTATTTCTGTGCTCTCTGGC

GOS2 F: GGAATGGAGAGACAGAGGGG 239 59

R: AGTGCAAAATGGTAGACGCA

CXCL10 F: TGGATGTTCTGACCCTGCTT 201 56

R: AAAGAATTTGGGCCCCTTGG

FOSB F: TCTGTCTTCGGTGGACTCCTTC 209 57

R: GCAAACCGTAGATGCTCAGGG

OAS3 F: GCTTCACAGAGCTACAACGG 167 58

R: CTCCCAGGCATACACAGTCA

IFI6 F: AGCAGCGTCGTCATAGGTAA 213 56

R: TGCACTCTAGCCTGGACAAT

MX1 F: CATCCAGCCACCATTCCAAG 168 57

R: AGAATCGCTTGAACCTGGGA

EGR1 F: AGCTGGAGGAGATGATGCTG 257 54

R: CCAGCACCTTCTCGTTGTTC

IL8 F: TCTTGGCAGCCTTCCTGATT 211 56

R: TCCAGACAGAGCTCTCTTCCATC

LOC644172 F: CCGACGTCCATTTCTCCAAG 184 58

R: TCATCCACTTCCAGCTCAGG

ZFN683 F: AGCCTTGCCTTACCCGCTGAAA 129 60

R: AATGGACGCTCTCCACTGTGCA

EPB41L4B F: ACCCACTTCCTTGACAGAGT 233 55

R: CGCAAGTTAGCAGCACCAAT

18s rRNA F: GTAACCCGTTGAACCCCATT 151 54

R: CCATCCAATCGGTAGTAGCG

https://doi.org/10.1371/journal.pone.0183526.t002
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significance was determined using randomization tests. In addition, the expression of each

gene was determined for every single patient using the 2-ΔΔCt method and Mann-Whitney U

tests were applied for separate gene analyses between study groups. The level of significance

was set to a P-value of<0.05.

Results

We investigated the transcriptomic profile of peripheral blood leukocytes from mild and

severe CF patients using RNA-sequencing. No differences were evident for important clinical

parameters between the investigated groups, except for the FEV1 status (P<0.0001; Table 1).

After the quality check for RNA-seq data, three samples were removed from downstream anal-

yses due to the low number of total reads and lower mapping rate (S1 Fig). In total, 12,778

genes with at least ten reads per sample were included in the final analysis stage. The principal

component analysis (PCA) of the final data revealed that the differences in the expression pro-

files of the two investigated groups were relatively small (S2 Fig).

Differentially expressed genes (DEGs) between mild CF and severe CF

Differential expression analysis showed that 88 genes were differentially expressed between

mild and severe CF group of patients, among which 74 genes (84%) had higher expression lev-

els in mild CF patients and 14 (16%) genes had higher expression levels in individuals with

severe CF. The results from this analysis with respective expression levels and adjusted P-val-

ues can be found in S1 Table. We compared DEGs between mild and severe CF patients and

the heat-map of the selected DEGs revealed two distinct clusters for the investigated groups

(Fig 1A). Global gene level expression analysis between the groups (mild CF vs. severe CF) is

shown in volcano plots (Fig 1B) with respective gene name, expression level and accuracy of

the detection using RNA-seq. EGR1, SFRP1, RSAD2, and FOSB are the major DEGs that were

Fig 1. RNA-seq analyses of Mild CF and severe CF patients. A) Heat-map of differentially expressed genes. Each column represents a separate

patient, and each horizontal line represents a separate gene. Dendrogram of clustered samples and genes, in which mild CF and severe CF samples

cluster with respect to their expression similarity. Expression profiles are measured by counts per million reads (CPM- model). B) Volcano plot of RNA-seq

data, in which the -Log10 of the false discovery rate is plotted against Log2 fold change.

https://doi.org/10.1371/journal.pone.0183526.g001
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significantly overexpressed (>3.5) in the mild CF group in comparison with the severe CF

group. Increased expression of EGR1 was found to be significantly associated with mild lung

disease (fold change = 4.5; FDR P = 3.1x10-6). Concordantly, other EGR family genes, EGR2
(fold change = 2.4; FDR P = 0.04) and EGR3 (fold change = 2.6; FDR P = 0.02) showed higher

level of expression in the mild CF group. Similarly, EPB41L4B, LOC644172,C4BPA, and

ZNF683 are the major DEGs that were significantly overexpressed (>1.5) in the severe CF

group (S1 Table). Among these genes, ZNF683 exhibited better association with the severe

form of CF lung disease (fold change = 1.5; FDR P = 0.0002).

qPCR validation of RNA-seq data

We validated RNA-seq findings for 16 DEGs by qPCR using the same samples and observed

high concordant results between RNA-seq and qPCR (94%; 15 out of 16 DEGs were verified;

Fig 2A). The comparison of DEG expression levels between RNA seq versus qPCR revealed

better correlation (Spearman’s rho, ρ = 0.53, P = 0.04; Fig 2B). Thus, these 15 genes had similar

mRNA levels, as RNA-Seq and qRT-PCR data were comparable. Furthermore, significant dif-

ference in expression levels was observed in qPCR results for the mild CF group with following

genes, IFIT2 (fold change = 3.2, P<0.001), MX1 (fold change = 3.2, P<0.05) and ZFN683 (fold

change = -2.1, P<0.05). No significant difference was achieved for EGR1 as many samples of

the severe CF group failed in amplification (data not shown). IL-8 was the only DEG that

could not be verified by qPCR. Since IL-8 is a very important proinflammatory cytokine in CF

settings, we further dissected the IL-8 data for both platforms. RNA-seq data showed that IL-8

was overexpressed in the mild CF group (Figs 2A and 3B). Conversely IL-8 was significantly

overexpressed in the severe CF group according to qPCR analysis (P = 0.01; Fig 3A).

Enrichment and MARA analysis

To understand the biological processes that could be modified differently between the mild CF

and the severe CF group, we performed a GO enrichment analysis for DEGs that are upregu-

lated in mild and severe CF. In case of the mild CF group, genes that belongs to type I

Fig 2. qPCR validation of RNA-seq findings. A) Expression profile of RNA-seq data and qPCR data for selected genes were compared using the

same samples. Severe CF samples were used as control group and the expression level set to 1 or -1. Expression was normalized using 18s as a

reference gene. Results represent mean values and are expressed as Log2 values of the fold change. Significant difference observed in qPCR results

between mild CF and severe CF patients (**P value < 0.05; ***P value < 0.001). The level of significance was set to a P-value of < 0.0001 for RNA-seq

data. B) Correlation analysis of RNA-seq and qPCR. (Log2 values of the fold change; Spearman’s rho, ρ = 0.53, P value = 0.04).

https://doi.org/10.1371/journal.pone.0183526.g002
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interferon response were selectively enriched (38%, P = 1.45E-09; Fig 4A, S2 Table). A total of

ten genes involved in this pathway showed elevated expression in the mild CF group (EGR1,

MX1, IFIT1, IFIT2, IFIT3, OAS3, OASL, IFI6, ISG15, and RSAD2). In addition, the pathways of

the anti-viral response and the immune effector process showed significant enrichment (S2

Table). Enrichment analysis identified three ribosomal stalk protein genes RPL31, RPL34, and

RPS24 were enriched in the pathway of protein targeting to the endoplasmic reticulum (ER).

No specific pathway was enriched for the fourteen-upregulated genes of the severe CF group.

To explore the contribution of specific TFs and regulatory networks of DEGs we implemented

MARA analysis to our RNA-seq data. Our data revealed that IRF1, IRF2, IRF8,and STAT2

Fig 3. IL-8 expression by qPCR and RNA seq. A) Dot-plot shows the expression of IL-8 in severe and mild CF patients. Expression was normalized

using 18s as a reference gene. Results represent mean values and are expressed as Log2 values of the fold change. B) Using the same data of Fig 2A

for IL-8 to understand different results between platforms.

https://doi.org/10.1371/journal.pone.0183526.g003

Fig 4. Functional enrichment analysis of RNA-seq data. A) Representative Gene Ontology (GO) terms enrichment among differentially

expressed genes for biological processes. Genes involved in Type I interferon response, and ribosomal proteins responsible for endoplasmic

reticulum transport and protein synthesis were over represented. B) ISMARA analysis predicts significant difference in IRF1,2,8 and STAT2 activity

between mild CF and severe CF patients (*P value < 0.05).

https://doi.org/10.1371/journal.pone.0183526.g004
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transcription factor activity were significantly increased in the mild CF group (mean activation

z-score for mild CF 2.5, mean activation z-score for severe CF -2.3; P< 0.05; Fig 4B) with ele-

vated transcript levels of their regulated genes. Top target genes (Target score>10) for these

TFs belong to the type I interferon response pathway. The highest score (Target score >25)

was observed for the following genes: RSAD2, IFI44L, IFIT1, ISG15, IFIT3, OAS3, HERC5, and

IFI44 (S1 File). Both our enrichment and pathway analysis were consistent in identifying the

possible contribution of the type I interferon response in the mild CF phenotype. The network

analysis of IRF1,2,8 and STAT2 transcription factors showed closer interactions of the above

mentioned genes (S3 Fig) and other related genes in the type I interferon response.

Discussion

CF patients with identical inherited mutations in the CFTR locus exhibit substantial variation

in disease severity and lung function. The phenotypic heterogeneity of CF is majorly affected

by modifier genes [23]. Though several approaches are utilized to identify possible modifier

genes of CF, here we used a transcriptomics approach for this purpose [11]. A previous study

by Wright et al., attempted to identify modifier genes between mild and severe CF patients in

their nasal respiratory epithelial cells by a transcriptomics approach using microarray technol-

ogy. However global gene expression analysis using RNA-seq has many advantages over

microarray [24]. Therefore, in this study we primarily used RNA-seq technology to identify

modifier gene(s) of mild and severe lung phenotype in CF patients homozygous for the

F508del mutation. Primarily, we assessed whether our transcriptomics results from peripheral

blood leukocytes were comparable to native cells of the respiratory system (nasal, tracheal, and

bronchial epithelial cells) to avoid possible difference in these cell types. We compared our

data with six different studies and observed similar expression patterns for genes including

CXCL10, GOS2, PTGS2, IFIT1, IFIT3, and ISG15 [12, 16, 17, 25–27]. Thus, upregulated gene

profiles are relatively similar between blood leukocytes and native respiratory cells in CF. Like-

wise, both RNA-seq and microarray platforms resulted in common upregulated genes. Our

data suggest that the blood cell transcriptome can be used as a surrogate for both upper and

lower airway respiratory cells in CF. In addition, our RNA-seq data were validated using qPCR

with the same samples and resulted in a high coherence score (94%).

The differences in the expression profiles of the two investigated groups are relatively small

as they resulted in only 88 DEGs. However, we observed striking differences for these genes

between the mild and severe pulmonary phenotype of CF. Seventy four genes exhibited higher

expression in patients with mild CF lung disease compared with severe CF lung disease. A

total of 14 genes showed a significant upregulation in individuals with severe CF compared

with those with mild CF. Interestingly, enrichment analysis revealed that genes involved in the

type I interferon response and the defense response to viral infections were highly enriched in

the mild CF group. Though previous studies reported the association of type I interferon genes

(IFIT1, IFIT3, and ISG15) with CF [12], the present study confirms the role of the type I IFN

pathway in modifying CF. A very recent study using a systems biology approach identified a

type I interferon gene IFI16, as a major CF modifier gene that alters lung function [28]. The

type I IFNs are well-known for anti-viral response, and viral infections are potential contribu-

tors for a decline in lung function in CF patients [29]. Therefore, we carefully considered the

influence of viral infections with the observed expression profile. However, all our study par-

ticipants did not exhibit symptoms of cold or upper respiratory viral infections during blood

sampling. Therefore, we deemed that the contribution of viral infections to the observed DEGs

between mild and severe CF patients is less likely. However, increasing evidences suggest that

Type I IFN signaling pathway is involved in host defense against other pathogens including

Transcriptomics based identification of CF modifier genes
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bacteria, parasite and fungi [30]. For example, the type I interferon gene expression and their

polymorphisms were prominently associated with susceptibility to systemic candidiasis [31].

Notably, earlier studies confirmed that the type I interferon signaling was activated by Pseudo-
monas aeruginosa in normal lung epithelial cells but was abrogated in CF epithelial cells [32].

P. aeruginosa is a well-known pathogen in CF patients that has been directly associated with

decline in pulmonary function [33]. Of note, our study patients in both groups had fungal and

bacterial infections without significant differences in their distribution between groups. There-

fore, it is rational to hypothesize that due to the enhanced Type I IFN signaling, mild CF indi-

viduals kept their infections and lung function decline in control. This hypothesis can be

further supported by the anti-bacterial effect of the type I IFN response in lung epithelium and

the respiratory tract [34, 35]. The effect of another interferon related gene, IFRD1, in modify-

ing the pathogenesis of CF is well studied by others and us [15, 36]. Together, our findings sup-

port the contribution of IFN, specifically, the type I IFN response in modifying lung function

associated with CF.

Among the upregulated genes of the type I IFN response, EGR1 was a prominent gene that

shows higher expression in mild CF patients. A previous transcriptomic study had identified

that EGR1 was downregulated in P. aeruginosa infected CF bronchial epithelial cells [37].

Besides, EGR1 was observed to be upregulated in A. fumigatus and Toxoplasma gondii infected

cells [38], which signifies its significance during infections. Interestingly, we found that two

other EGR family members, EGR2 and EGR3, were also upregulated in the mild CF group.

EGRs are a family of DNA-binding zinc-finger proteins and function as transcriptional regula-

tors. In addition, EGR proteins were found to closely interact with other type I IFN genes

including Mx1, HERC5, RSAD, and others. Thereby, the role of EGRs as potential modifier

genes in CF lung disease warrants future research. Other potential modifier genes in type I

IFN signaling are Mx1 and IFIT2, as they play a dominant role against P. aeruginosa and their

expression also was verified by qPCR [35]. MARA analysis resulted in higher transcriptional

activity of IRF1,2,8 and STAT2 TF in mild CF patients and they are responsible for the higher

expression of Type I IFN genes. Enrichment analysis identified three ribosomal stalk proteins

RPL31, RPL34 and RPS24, that were highly expressed in individuals with mild CF. These pro-

teins were observed to be involved in protein trafficking to the ER and golgi transport. The rel-

evance of ribosomal stalk proteins in CF is well documented. Earlier study in primary human

bronchial epithelial cells with a homozygous F508del mutation showed that silencing of RPL12
was rescued by CFTR ion channel activity [39]. In addition, another ribosomal stalk protein

RPL27 was reported as chloride-dependent gene, which expression is related to the function of

the CFTR channel [40]. As the F508del mutation is related to protein trafficking and early deg-

radation in ER, these ribosomal stalk proteins are attractive for further research.

The CF lung environment is dominated by neutrophils and elevated levels of the proinflam-

matory chemokine, IL-8 [41]. A recent study presented a genetic association of IL-8 polymor-

phisms with FEV1 status of CF patients [42]. In our study, we observed increased expression of

IL-8 transcripts in individuals with mild CF. However, this observation could not be verified

by qPCR as more IL-8 expression was found in the severe CF group. A similar results was

observed in nasal epithelia cells between mild and severe CF and argued that IL-8 is not pre-

dictably associated with severity of the disease [17]. However, as we noted a contradicting

result between RNA-seq and qPCR, further validation with independent samples seems essen-

tial to explore the role of IL-8 in CF lung function variability. GWAS meta-analysis study with

a high sample number (n = 6,365) revealed the strong association of five genomic regions to

CF lung disease severity [13]. We examined whether any of the observed DEG shares the speci-

fied genomic location. Remarkably, we found that chromosomal mapping has assigned the

HCG27 gene to position 6p21.33, which is very close to the reported HLA-DRA locus at
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6p21.32. Although HCG27 is reported to be a pseudo-gene, we observed a significant differ-

ence in expression levels between mild and severe CF individuals and the region including

HCG27 is also a major susceptibility loci for psoriasis [43]. Nevertheless, our present study

using a RNA-seq based transcriptomics approach was able to locate reported susceptibility loci

and thereby replicate the larger GWAS study. Although other genes described earlier do not

exactly match those identified in our study, they belong to the same biological families. For

example, ATP12A was reported to be responsible for airway acidification in CF, and we identi-

fied ATP6V1G1, a gene of the same family, in our study [44].

Collectively, our comparative transcriptomic analysis between mild and severe CF lung dis-

ease provided new insights into CF pulmonary decline. The global gene expression analyses

identified that genes of the type I interferon response and ribosomal stalk proteins and

revealed potential CF modifier genes. Our findings have the potential for picking new thera-

peutic targets from from this list of genes for treatment of cystic fibrosis.
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