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A generic workflow for Single Locus 
Sequence Typing (SLST) design 
and subspecies characterization of 
microbiota
Thomas H. A. Ederveen   1,2,3*, Jos P. H. Smits   2, Karima Hajo1, Saskia van Schalkwijk3, 
Tessa A. Kouwenhoven2, Sabina Lukovac3, Michiel Wels1,3, Ellen H. van den Bogaard2, 
Joost Schalkwijk2, Jos Boekhorst1,3, Patrick L. J. M. Zeeuwen2 & Sacha A. F. T. van Hijum1,3

We present TaxPhlAn, a new method and bioinformatics pipeline for design and analysis of single-locus 
sequence typing (SLST) markers to type and profile bacteria beyond the species-level in a complex 
microbial community background. TaxPhlAn can be applied to any group of phylogenetically-related 
bacteria, provided reference genomes are available. As TaxPhlAn requires the SLST targets identified to 
fit the phylogenetic pattern as determined through comprehensive evolutionary reconstruction of input 
genomes, TaxPhlAn allows for the identification and phylogenetic inference of new biodiversity. Here, 
we present a clinically relevant case study of high-resolution Staphylococcus profiling on skin of atopic 
dermatitis (AD) patients. We demonstrate that SLST enables profiling of cutaneous Staphylococcus 
members at (sub)species level and provides higher resolution than current 16S-based techniques. 
With the higher discriminative ability provided by our approach, we further show that the presence of 
Staphylococcus capitis on the skin together with Staphylococcus aureus associates with AD disease.

Consortia of bacteria are found in many niches and there is increasing evidence of bacterial involvement in health 
and disease1. Bacterial diversity is considerable, and the current challenge lies in determining which bacteria and 
corresponding functionalities are relevant in a given ecological niche. In order to perform follow-up experiments 
in in vitro or animal models with candidate bacteria that are assumed to be important for a given niche, resolution 
down to the strain level is desirable2. Traditionally, bacterial occurrence is determined through culture-based 
methods, with subsequent isolate identification by a plethora of available phylo- and genotyping methods: chem-
otaxonomy3, DNA fingerprinting4,5, (quantitative) PCR6, mass spectrometry7 and genome sequencing8. One 
well-established genotyping method for bacterial strains is multi-locus sequence typing (MLST)9, which is based 
on sequence variety in a number of marker core genes revealed by qPCR and Sanger sequencing. However, most 
of the aforementioned techniques have limited resolution, and placing a novel genotype in its correct phyloge-
netic context is usually difficult. Notably, single strain full genome sequencing does not suffer from these draw-
backs, but is more costly, labor intensive, and again, not easily compatible with high throughput applications10. 
Furthermore, DNA fingerprinting, MLST and genome sequencing do not allow for the measurement of bacterial 
abundances, and not all bacteria can be cultivated efficiently. Currently, sequencing-based culture-free analysis 
of complex microbial consortia as a whole can be performed with approaches such as 16S rRNA marker gene 
sequencing (16S metataxonomics) or shotgun metagenomics11. 16S metataxonomics focuses on 16S rRNA genes, 
which are universally present in all bacteria, is relatively cheap and data analysis is straightforward12. Depending 
on the primer set, 16S allows for confidently profiling most bacteria down to the genus level13,14. Metagenomics 
sequences in principle all free DNA present in a sample, allowing the classification of sequences at high taxonom-
ical resolution as well as determining functionality present in a microbiome15,16. Recently, computational analysis 
methods were adopted for strain-level classification of metagenomics sequencing data, such as ConStrains17, 
PanPhlAn18 and StrainPhlAn19. However, obtaining sufficient biomaterial for metagenomics as well as generating 
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and analyzing the datasets requires significant resources. Furthermore, aforementioned strain-level classification 
methods have difficulty with confidently detecting bacterial entities under a relative abundance level threshold of 
approximately 1% in a metagenomics sample17. Marker gene sequencing approaches perfectly allow for profiling 
bacteria that are below 0.1% relative abundance (i.e. 1 in 10,000 reads). Recently, single locus sequence typing 
(SLST) has been described for determining down-to strain level identification of Propionibacterium acnes human 
isolates by Scholz et al.20,21. Other applications of SLST have been reported for Lactobacillus plantarum strain 
tracking in human gut22 and industrial biofilms23, and for Staphylococcus (aureus) profiling on skin of atopic der-
matitis patients during therapeutic intervention with coal tar24.

Until now, an automated bioinformatics pipeline to devise sequence-based SLST screening tools for specific 
microbes in complex microbial communities is lacking, and currently requires mostly manual searches with a lot 
of hands-on time. We here present TaxPhlAn, which stands for SLST-based Taxonomy Phylogenetic Analysis: 
a method and workflow to create and use single locus marker sequences of orthologous genes to profile specific 
bacterial taxa at and beyond the species level (as illustrated in Fig. 1, based on a toy example with Pseudomonas). 

Figure 1.  SLST allows high-resolution discrimination of different bacterial phylotypes, (sub)species and 
strains. (A) Overview of current sequencing-based and alternative methods for microbiota identification 
and classification, including their (dis)advantages. Table legend as follows: estimation and indication of costs, 
return time and data analysis complexity; methods that allow for accurate phenotyping; amount of information 
retrieved with regard to genomic (functional) potential, taxonomic composition and resolution. The symbols 
represent open versus closed pie charts, meaning: low vs. high, fast vs. slow, simple vs. complex, etc. (B) 
Hypothetical dataset with 16S sequencing microbiota data of “healthy” and “diseased” subjects who suffer 
from an exemplary skin disease. The colored bars represent skin microbiota composition, and is clustered on 
microbiota profiles. In this hypothetical example, the bacterium Pseudomonas associates with skin disease state 
of the volunteers. (C) Pseudomonas genomes are collected and analyzed with the bioinformatics tool TaxPhlAn 
in order to search for candidate SLST targets. The goal of TaxPhlAn is to find genetic regions that allow for as 
perfect as possible discrimination of Pseudomonas biodiversity. Shown is a hypothetical SLST region (aligned 
DNA sequences) that allows for discriminating different Pseudomonas (sub)species. (D) Hypothetical example 
of how the SLST target as identified in (C) could allow for high-resolution Pseudomonas typing, and thereby 
to determine the (sub)species or strain-level bacteria that associate with disease. Panel represents an heatmap 
with data of identified Pseudomonas biodiversity, and their relative abundance as measured for each sample. 
Available (clinical) isolates of these bacteria can be subsequent candidates for follow-up studies.
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The TaxPhlAn bioinformatics pipeline finds SLST marker genes based on a set of reference genomes provided by 
the user in module A of the pipeline (Suppl. Fig. S1). Candidate SLST regions selected by the TaxPhlAn pipeline 
balance a trade-off between sequence conservation, which is important for PCR primer design and identification, 
and sequence variation within single-copy genes shared among all genomes-of-interest to allow for a certain 
degree of discrimination between genomes. SLST markers are designed to follow the actual phylogeny of the 
considered strains, and additionally scored based on characteristics such as discriminative resolution, marker 
length (i.e. amplicon size) and level of conservation of the marker in the taxon-of-interest. TaxPhlAn automat-
ically designs primers for candidate markers, to generate SLST amplicons by PCR for subsequent marker gene 
sequencing. Finally, next generation sequencing (NGS) data containing SLST marker sequences can be processed 
in an automated workflow additionally offered by TaxPhlAn in module B of the pipeline (Suppl. Fig. S2). This 
oligotyping-based method analyses SLST amplicons sequenced by NGS, and, for each biological sample, calcu-
lates the relative abundances of SLST alleles corresponding to representative (sub)species of strains.

Although the era of metagenomics is fast approaching, with sequencing costs reducing by the day, the required 
data analysis depends on highly specialized pipelines and bioinformatics expertise. Furthermore, low biomass 
samples are not compatible for metagenomics sequencing. Therefore, the demand for more generic yet high res-
olution methods will remain. SLST analysis by TaxPhlAn will meet this demand by offering an additional (sub)
species typing in parallel to genus level classification in one sample prepped for generic 16S sequencing. Hence, 
TaxPhlAn is no replacement of existing techniques such as 16S, but rather a complementary one.

TaxPhlAn is available as a Python/Perl command-line application, and is accessible through a pre-configured, 
plug-and-play Docker virtual machine which is supplied at the Docker Hub repository https://hub.docker.com/r/
ederveen/taxphlan/. TaxPhlAn is supplied with test datasets, properly documented with an extensive user man-
ual, and can conveniently be applied by anyone with limited bioinformatics knowledge.

The bacterial genus of Staphylococcus cannot reliably be profiled with high resolution using conventional 
16S marker gene sequencing primers13, warranting the use of SLST. In this manuscript, we showcase a clinically 
relevant application of TaxPhlAn by profiling the presence of cutaneous bacteria (with 16S) as well as by targeted 
Staphylococcus species (with SLST) present in atopic dermatitis (AD) versus healthy skin of human volunteers. 
In short, our results show real-life and cost-effective application of the presented SLST methodology for profiling 
Staphylococcus, and demonstrate significant added value of SLST compared to 16S.

Results
We have developed a bioinformatics pipeline that requires reference genomes as input, and then automates the 
discovery and design of gene targets and corresponding primer sets for SLST-based profiling of specific micro-
biota in complex communities (TaxPhlAn Module A: Suppl. Fig. S1). Primers designed by TaxPhlAn Module 
A can be applied to any biological sample to generate SLST marker gene sequences. We therefore additionally 
provide a data analysis workflow based on oligotyping to straightforwardly analyze SLST data (TaxPhlAn Module 
B: Suppl. Fig. S2). This analysis pipeline allows going from raw SLST marker gene sequencing data to a compo-
sitional microbiota-to-sample matrix, with corresponding heatmap visualization of the data and clustering of 
study samples.

TaxPhlAn performs automated discovery of gene targets for application in SLST.  We validated 
TaxPhlAn by evaluating four different bacterial taxa at the genus or species level that are typically found on two 
clinically relevant human niches: skin and gut. These are Staphylococcus, Propionibacterium acnes, Bifidobacterium 
and Escherichia/Shigella, representing both Gram-positive and Gram-negative genomes with variable sizes and 
GC-content (Table 1, and Suppl. Tables S1–S4 for more detailed information on each individual genome). For 
each of these four bacterial taxa we were able to successfully pinpoint multiple genic SLST targets able to distin-
guish (sub)species with significantly higher resolution than currently feasible with alternative high-throughput 
metataxonomics methods such as Illumina 16S marker gene sequencing on variable regions V1-V2 and V3-V4 
(Table 2, and Suppl. Table S5 for primer information, and Suppl. Tables S6–S9 for TaxPhlAn reports).

Orthologous, single-copy core genes allow for detection and typing of novel biodiversity.  
TaxPhlAn relies on single-copy orthologous genes for discovery of SLST candidates (Suppl. Fig. 1, Phase III), 
in contrast to targets in intergenic regions, or orthologous genes that are not universally present. The advantage 
of this key SLST characteristic is that it makes it more likely that novel biodiversity is correctly identified, as 

Taxon Name
Taxonomy 
Level of Input

Gram-
Staining

Human 
Niche

# Genomes 
selected

Average ± SD
Genome Size (Mb)

Average ± SD
Genome GC-content 
(%)

Bifidobacterium genus positive gut 261 2.30 ± 0.27 60.1 ± 2.0

Escherichia/Shigella supra-genus negative gut 200 4.91 ± 0.35 50.6 ± 1.1

Propionibacterium acnes species positive skin 123 2.50 ± 0.03 60.1 ± 0.1

Staphylococcus genus positive skin 200 2.59 ± 0.20 33.0 ± 1.4

Table 1.  Datasets with bacterial genomes used for TaxPhlAn benchmarking. For benchmarking we selected 
four bacterial taxa that are associated with the two clinically relevant human microbial niches of gut and skin. 
The datasets represent both Gram-positive and Gram-negative bacteria from different taxonomical levels, and 
with variable genome sizes and GC-content. See Suppl. Tables S1–S4 for more details. SD: standard deviation; 
Mb: mega base pairs.
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we expect the SLST candidate genes to be universally present in the target taxon, and we expect the observed 
sequence variation in the SLST genes to correlate with the phylogeny (irrespective of its phylogenetic level). We 
tested this assumption in silico by running TaxPhlAn with random subsamples of the total genome datasets, for 
the four representative bacterial taxa as listed previously in Table 1. We undertook jackknifing by random sub-
sampling of n-genomes from the total dataset with a step-size of 12 genomes, and running TaxPhlAn with default 
pipeline settings on that subset. Hereafter, the top 10 SLST candidates (i.e. primer sets) as reported by the pipeline 
were subjected to an in silico PCR on all available genomes in the entire dataset. The number of total genomes 
identified with an SLST target designed on a subset of 12 genomes did not improve significantly after addition of 
more genomes to this training set, nor did the number of unique SLST sequences identified (Fig. 2).

To confirm that high-scoring SLST targets as reported by the pipeline do indeed follow phylogeny based 
on full-genome information and hence contain an evolutionary conserved signal, we looked at the prime SLST 
candidates of each bacterial genome reference dataset. We observed that for every taxon-of-interest the varia-
ble region sequences of the prime SLST candidate correlated very well with the actual phylogenetic distances 
between genomes (based on SNP positions in the bacterial core genomes). This is illustrated by the unique SLST 
alleles capable of discriminating between different taxonomical clades, and as supported by their corresponding 
Spearman correlation values of 0.78 rho on average (for a projection of these alleles to the actual phylogenic tree, 
of each prime SLST candidate, see Suppl. Figs. S3–S6; for all predicted SLST targets for the reference runs and 
their phylogenetic distances correlation values see Suppl. Tables S6–S9). This data shows that TaxPhlAn allows for 
accurate phylogenetic placement of known taxa, and for inference of novel biodiversity, even when only a small 
number of genomes is available for design of an SLST target.

TaxPhlAn significantly improves Staphylococcus profiling compared to 16S in clinical practice.  
The Gram-positive bacterium Staphylococcus represents a historically relevant genus in relation to AD. 
Staphylococcus aureus associates strongly with AD disease onset and severity25–28, whereas S. epidermidis, amongst 
others, is considered a skin commensal29. However, in general, the 16S rRNA gene does not allow for confident 
classification of bacteria to the level of species12. TaxPhlAn was designed to increase the resolution of bacterial 
profiling in clinical practice. We therefore compared SLST with 16S rRNA gene sequencing for classification of 
Staphylococcus species. In order to corroborate application and feasibility of the TaxPhlAn SLST method and 
corresponding proposed experimental workflow (Fig. 3), and to demonstrate clinical relevance, we enrolled from 
our hospital dermatology clinic a group of patients diagnosed with AD (n = 5), and healthy controls (HC) without 
a history of skin diseases (n = 9) (Suppl. Table S10). The skin microbiota on the left and right antecubital fossa 
(inner elbow) of these human volunteers was obtained by a standardized wet swabbing method, from normal and 
lesional skin for HC volunteers and AD patients, respectively. Skin bacteria were typed by 16S metataxonomics 
(V3-V4), and Staphylococcus species were determined by SLST marker gene sequencing (Suppl. Table S5 for 16S 
and SLST primer information). To confirm that we have a representative AD study cohort, we first analyzed the 
skin microbiota on the level of genus by 16S (Suppl. Table S11 for 16S sequencing read statistics), and found that 
Staphylococcus dominates skin of AD patients at the expense of Propionibacterium (Fig. 4A, and Suppl. Fig. S9, 
which is in line with literature27).

Based on Staphylococcus full-length 16S sequences (V1-V9) and clustering of these sequences into OTUs with 
97% identity (Suppl. Table S12), no discrimination can be made between clinically relevant species. This analysis 

Taxon Name

#SLST clusters #16S V1-V2 clusters #16S V3-V4 clusters

OUT
Average ± SD

SDI
Average ± SD

Coverage
(%) OTU SDI

Coverage
(%) OTU SDI

Coverage
(%)

Bifidobacterium 42 ± 5 87 ± 8 (62) 95.8 10* 12 (56)* 5.0* 21 50 (26) 96.2%

Escherichia/Shigella 12 ± 6 29 ± 10 (11) 97.7 6 16 (8) 71.5 3 0 (0) 74.0%

Propionibacterium acnes 2 ± 1 7 ± 2 (16) 99.9 1 0 (0) 88.6 2 0 (0) 96.7%

Staphylococcus 24 ± 3 51 ± 6 (55) 91.1 12 41 (18) 94.0 5 9 (4) 100%

Table 2.  Performance of a default TaxPhlAn run versus common 16S regions based on the number of unique 
clusters identified. The number of reference genomes used on the benchmark can be found in Table 1, for an 
exact overview of these genomes see Suppl. Tables S1–S4. The number of unique SLST clusters found for each 
taxon-of-interest is based on the average of the top 10 SLST candidates from a default TaxPhlAn run (see also 
Suppl. Tables S6–S9). The number of 16S clusters found for these same taxa is based on primers 27 F and 338 R 
for V1-V2, and 357 F and 802RV2 for V3-V4 (V for 16S variable region) (Suppl. Table S5). Methods used for 
determining the number of clusters are either allele-based with a taxon-specific Shannon diversity index (SDI) 
threshold (in brackets the average number of informative SNP), or OTU-based with 97% identity threshold 
(accepted default in the microbiome field48). SDI thresholds were set to 0.6, except for Propionibacterium acnes 
for which we set the SDI to 0.2, because we observed less sequence variation on the level of species (for more 
information about SDI, we refer to the supplementary Methods). Values in brackets represent the average 
number of informative positions for an allele. Coverage is defined as the percentage of genomes identified 
with the primers tested. According to genome name annotations from our datasets, the number of species 
within the genus of Bifidobacterium is n = 46, Escherichia/Shigella n = 12, and Staphylococcus n = 29, and the 
number of strains within the species of Propionibacterium acnes is n = 123. SD: standard deviation, OTU: 
operational taxonomic unit, SDI: Shannon diversity index. *Note the very low coverage of V1-V2 primers for 
Bifidobacterium, in contrast to that of the V3-V4 primers.
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of V1-V9 identified only two major clusters, and these do not correlate well with phylogeny, as indicated by their 
ambiguous distribution within Staphylococcus subclades such as S. aureus and S. haemolyticus (Suppl. Table S12). 
For 16S sub-regions V1-V2 and V3-V4, species of S. epidermidis and S. capitis cannot be distinguished, albeit 
that these are in fact very different species (Suppl. Table S12). Likewise, S. aureus cannot be distinguished from S. 
schweitzeri and S. argenteus species for V1-V2 and V3-V4. Furthermore, S. aureus and S. epidermidis species can 
only be discriminated by V1-V2, and not by V3-V4.

By adopting the TaxPhlAn Discovery & Design pipeline on the Staphylococcus reference dataset as listed 
in Table 1 (Suppl. Fig. S1; Module A), we identified an SLST target that allowed for best discrimination of 
Staphylococcus species, including multiple sub-species clades. This SLST target, denoted as orthologous group 
(OG) #1123 (Suppl. Fig. S7), shows a higher resolving power than 16S regions V1-V2 and V3-V4 (Table 2). 
OG #1123 was selected as our prime SLST candidate after elaborate in silico (Suppl. Table S13) and laboratory 
validations (Suppl. Fig. S8) to prove specificity, and to exclude cross-reactivity with phylogenetically distant bac-
teria. OG #1123 is predicted to be part of the 30 S ribosomal protein S11 (note, this is not an rRNA gene), with 
an on average amplicon sequence length of 381 nucleotides (including primers). We performed marker gene 
sequencing of OG #1123 on the AD study cohort, and analysis of the obtained sequence data by the TaxPhlAn 
SLST Oligotyping pipeline (Suppl. Fig. S2; Module B). We found that the SLST target allowed for 77.2% of 
Staphylococcus reads to be assigned to species-level or lower. In comparison to 5.9% for 16S (Fig. 4B), which is 
a tremendous improvement in Staphylococcus classification for SLST over conventional 16S-based sequencing 
approaches.

TaxPhlAn allows for profiling of Staphylococcus phylotypes in complex patient communities.  
In further analysis of the Staphylococcus SLST data of the AD cohort, we observed a strong and significant 
increase of allele clusters classified as S. aureus in AD patients relative to healthy controls (30.07% AD, 1.43% HC, 
p = 0.006), and a significant decrease of S. epidermidis (5.58% AD, 33.34% HC, p = 0.006) and S. haemolyticus/S. 
hominis (0.12% AD, 12.70% HC, p = 0.002) allele clusters in these patients (Fig. 5, and Suppl. Table S14 for the 

Figure 2.  Reducing the number of input genomes for a TaxPhlAn run does not diminish performance of 
SLST candidates. We tested the stability, performance, and minimum number of input genomes required for 
the TaxPhlAn pipeline (Suppl. Fig. S1; Module A) by running the program with random subsets, and with 
variable sample sizes, of the total benchmark datasets. We determined for each run the number of unique 
SLST sequences (resolution, i.e. the number of phylotypes that can be distinguished using this amplicon in 
square symbols, expressed as percentage of total genomes for that dataset) and the total number of genomes 
for which an in silico PCR hit was predicted by PrimerProspector (coverage, in circle symbols). For each run, 
averages of the top 10 candidates were taken, and each run with each its unique random subset of genomes was 
plotted in the graph (i.e. 5 replicates). The maximum number of genomes in the benchmark datasets is 261 for 
Bifidobacterium (with datapoints in blue), 200 for Staphylococcus (green) and 200 Escherichia/Shigella (brown) 
and 123 for Propionibacterium acnes (orange).
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corresponding SLST data). Although there is a large difference in the average level of S. capitis between the two 
study groups, this difference is not statistically significant (27.22% AD, 14.74% HC, p = 0.25).

Next, one can also study the SLST data in context of the known Staphylococcus genus-level relative abundances 
based on 16S, because both SLST and 16S were measured for each sample. This was done for each SLST allele 
by multiplication of its relative abundance value to that of Staphylococcus 16S of the same sample. When taking 
into account these Staphylococcus relative abundances according to 16S then the aforementioned shift of SLST S. 
epidermidis and S. haemolyticus/S. hominis clusters between the experimental groups is lost, but not for S. aureus 
(Suppl. Fig. S10, and Suppl. Table S15 for the corresponding SLST data including/corrected for 16S). This is pos-
sibly a result of the low relative abundances of Staphylococcus in HC samples. Most interestingly, a statistically 
significant increase of S. capitis in AD patients is observed when taking Staphylococcus 16S genus-level relative 
abundances into account (19.40% AD, 0.47% HC, p = 0.003) Suppl. Fig. S10B).

Redundancy analyses (RDA) of the AD cohort further substantiates that skin microbiota profiles from HC 
and AD individuals are significantly different, both for 16S- and SLST-based sequencing data (Suppl. Figs. S11–
S12; p = 0.02). Although RDA on 16S species- and OTU-classified data both indicate that S. aureus is crucial 
for separation of HC and AD subjects (Suppl. Fig. S11A,B, respectively), we observe that 16S simply does not 
recognize most of the OTUs as S. aureus (likewise for S. epidermidis). We hereafter combined 16S with SLST 
data in one analysis, i.e. SLST allele abundances were set relative to the total bacterial population, not relative to 
only the Staphylococcus fraction. Interestingly, this preserves the significant signals that allow for separating HC 
from AD, and also substantially increases the classification rate of Staphylococcus species, thereby showcasing the 
added value of such approach (Suppl. Fig. S12B). Most notably, the combined RDA shows a great importance for 

Figure 3.  Workflow for SLST typing (graphical abstract of this AD substudy). This flow chart summarizes 
our proposed best practices for SLST. For this, we discuss the example of Staphylococcus involvement in AD 
as an SLST use case. It involves the selection of representative genomes for any taxonomy-of-interest, and 
analyzing them in a straightforward fashion with TaxPhlAn for Discovery & Design (Module A) of suitable 
SLST targets for optimal discrimination between input genomes. A small selection of the best-discriminating 
SLST candidates (i.e. primer pairs for PCR) will be tested in the laboratory by PCR on relevant strain 
collections. SLST candidates for which primer pairs survive both in silico and laboratory selection procedures 
can in principle be adopted as marker genes for typing of microbiota in next-generation sequencing (NGS) 
initiatives. Our TaxPhlAn SLST Oligotyping pipeline (Module B) allows for the analysis of SLST reads from 
NGS data, including typing of known and identification of unknown biodiversity, and reporting of results in 
comprehensible format, including automated visualization and clustering of samples. Altogether, this entire 
process facilitates the potential discovery of study parameters that associate with high-resolution microbiota 
data. Importantly, in order to “close the experimental circle”, microbiota leads from SLST data can be adopted 
in an attempt to unravel or further understand underlying biological processes. This is mainly based on 
pinpointing in high-resolution the most relevant microbial (sub)species, or even strains, for application in 
follow-up experiments or studies.
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S. aureus (22.75% in AD) and S. capitis (19.40%) in discriminating between the two study groups, which is in line 
with the univariate analyses as reported earlier in Suppl. Fig. S10A,B.

The recurring associations of S. capitis with AD disease prompted us to experimentally validate these find-
ings by an alternative approach. For this, we performed qPCR on S. capitis with species-specific primers30 and 
measured their levels in our cohort of HC and AD samples (Suppl. Figs. S13 and S14). Once again, we observe 
significantly higher levels for S. capitis in AD relative to healthy controls (p = 0.004) together with qPCR levels 
that correlated very strongly with SLST levels (Spearman rho = 0.92, p < 0.0001), thereby replicating the exact 
same biological effect as observed by SLST (Suppl. Fig. S15).

Finally, 16S and SLST sequencing efforts were performed separately, however, five 16S technical replicates 
were taken along in the SLST sequencing run. These technical replicates show highly similar profiles, even though 
their 16S and SLST amplicons were pooled into one sequencing sample (Fig. 5, and Suppl. Fig. S9; samples indi-
cated in blue are the pooled technical replicates). Likewise, biological replicates cluster very well, indicating that 
there is little intra-individual difference between sampling arms of the same volunteer.

Discussion
SLST marker gene sequencing has recently been described for determining strain level identification of specific 
bacteria within a microbiome21. Other methods for bacterial typing or profiling, such as species-specific PCR 
approaches or DNA fingerprinting-based methods for identification, usually do not have the desired resolution 
to pinpoint strains of interest, are not compatible with high-throughput screening and/or are very labor intensive. 
TaxPhlAn fills the gap between the relatively cheap but coarse-grained 16S rRNA-based analyses and the more 
expensive, complex and laborious but higher resolution metagenomics sequencing.

TaxPhlAn SLST profiling can be efficiently combined with a 16S amplicon approach, either following-up on 
an initial 16S pilot study that generated microbial leads in order to zoom-in on that clade with a higher resolution 
than feasible by 16S, or directly, by combining 16S and SLST amplicons in one single marker gene sequencing 
run. Our experimental data show that combining 16S and SLST amplicons for sequencing is practically feasible, 
can be done without adverse loss of sequencing depth, and without affecting microbiota profiles as obtained by 
separately sequencing 16S and SLST amplicons. This is particularly relevant, as it enables running SLST exper-
iments in tandem with regular 16S sequencing efforts without additional sequencing costs. SLST sequencing 
can be multiplexed, for example by combining multiple different SLST targets per sample in a single sequencing 
initiative, thereby boosting either the discriminatory resolution of SLST (hence, in principle approaching MLST 
marker gene sequencing), or enabling the profiling of multiple bacterial taxa in the same experiment.

As an additional feature, upon running the TaxPhlAn SLST Discovery & Design pipeline one is able to assign 
genomes-of-interest (strains) in order to filter on SLST candidates that allow distinguishing these genomes from 
all other input genomes. This is particularly useful when there is specific need to identify one particular phylotype 
in your samples, for example when one needs to distinguish sub-species Bifidobacterium longum subsp. longum 
from Bifidobacterium longum subsp. infantis. Likewise, one is able to assign negative control genomes to filter 
on primers of SLST candidates that do not recognize these genomes, for example when one needs to have SLST 
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Figure 4.  Significantly improved classification rate of Staphylococcus (sub)species for SLST compared to 16S. 
(A) Skin 16S V3-V4 sequencing data shows a significant increase for AD patients in Staphylococcus genus-
level assigned reads in the dataset in comparison to HC (p = 0.002) (also see Suppl. Fig. S9), which is in line 
with literature27. (B) When evaluating the percentage of (sub)species-level assigned reads, that is, number of 
total Staphylococcus reads that could be classified to species level or lower, we observe a significant increased 
classification rate for SLST in comparison to 16S (p < 0.0001). Boxplots as median with interquartile range and 
whiskers from min to max. Blue dots represent individual data points.
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Figure 5.  Staphylococcus SLST data reveals two distinct clusters separating HC and AD samples, typed by S. 
aureus- and S. capitis-like species. Heatmap summarizing the SLST Staphylococcus data from AD patients and 
HC volunteers (Suppl. Table S14). The SLST data was analyzed by the TaxPhlAn Oligotyping pipeline  
(Module B). The tree on the left is the maximum-likelihood phylogenetic tree of the SLST allele sequences 
generated with FastTree47. The alleles were built with an Shannon diversity index (SDI) threshold of 0.6, 
resulting in 45 SNP positions of the SLST marker gene sequences. Alleles for which a reference genome was 
available were named after this reference (e.g. S. epidermidis VCU129), instead of having an allele number (e.g. 
Allele #30452). Multiple references were collapsed into one clade if they shared the same allele sequence (e.g. S. 
epidermidis). The heatmap represents log10-transformed SLST relative abundances. A green asterisk indicates 
significantly differentially abundances, according to a MWU test, and corrected for Staphylococcus genus-level 
relative abundance derived from 16S data (Suppl. Table S15). Note that the phylogenetic tree was cropped at top 
and bottom in order to facilitate visualization, leaving out some lowly abundant and statistically insignificant 
taxa from this view (for a full list see Suppl. Table S14). Sample labels in blue are samples where 16S and SLST 
marker gene PCR amplicons of the same sample were pooled (technical replicates). SA- and SC-like: S. aureus- 
and S. capitis-like.
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candidates of which the primers are specific for Propionibacterium acnes, but not for other closely related com-
mensals such as Propionibacterium namnetense.

One limitation of DNA amplification-based approaches for profiling of specific taxonomic groups is the 
requirement of sequenced (reference) genomes in order to identify suitable molecular targets. 16S marker gene 
sequencing does not necessarily require reference genomes to identify new biodiversity, because it is based on 
the 16S rRNA gene that is universally present and conserved in all prokaryotes, and these sequences correlate 
well with phylogeny. For correct taxonomic classification of 16S marker gene sequencing reads prior knowledge 
from 16S rRNA gene databases is required, e.g. RDP31, GreenGenes32 and SILVA33. For SLST these considerations 
are similar to those of 16S. Even though TaxPhlAn requires a set of references, a dozen of sequenced reference 
genomes is sufficient to allow for confident inference of phylogenetic information as shown by the benchmarking 
results presented in this study. Nonetheless, the more reference genomes available for oligotyping analysis, the 
more confident SLST allele classification and inference of novel biodiversity will be. Yet, although our demon-
strated maximum achievable resolution for SLST is an improvement over 16S (Fig. 2, Table 2), one has to keep in 
mind that this resolution is also dependent on the phylogenetic complexity of the specific bacterial taxon under 
study (but that of course also applies to 16S marker genes). Also, although we here presented a generic method-
ological workflow applied to bacteria only, we see no theoretical objections for the characterization of archaea, 
fungi or lower unicellular eukaryotes with a similar SLST approach.

In the current study, we mainly identified taxa of S. aureus and (to a lesser extent) S. capitis, which were signif-
icantly increased in AD, in comparison to taxa of S. epidermidis and a cluster of S. haemolyticus/S. hominis, which 
were associated with healthy skin. Although these are known Staphylococcus species, also many S. aureus-like 
and S. capitis-like unknown taxa were identified which were significantly more abundant in AD, for which no 
existing reference is available in current databases, but for which we now know their phylogenetic relation to 
known Staphylococci. Importantly, the relation of S. capitis with AD disease as found by our SLST method has to 
our knowledge not been reported before, except for one study by Byrd et al. that reports the presence of S. capitis 
in AD lesions together with S. aureus, S. epidermidis and S. hominis (using a multiplex PCR assay)34. This there-
fore compels us to take our findings on S. capitis in relation to AD with caution given our limited sample size and 
lack of more extensive validations. Furthermore, the correlation of S. capitis with AD is statistically significant 
only when SLST relative abundances have been corrected for the corresponding Staphylococcus (genus-level) 
abundance for each sample based on 16S (Suppl. Tables S14 and S15), whereas this is not the case for S. aureus. 
Nevertheless, we were able to replicate these findings by an alternative method with targeted qPCR using S. 
capitis-specific species primers. Although the calculated relative levels of S. capitis by qPCR differ in extent to 
those by SLST we reported a very strong correlation between these values. We believe it is to be expected that 
these values will not be one-to-one comparable because of inherently different methods used, (primer) efficien-
cies, 16S copy number variation, etc. Although it may seem a less likely scenario, it should also be mentioned 
that former studies might have missed this S. capitis species because of the limited resolution of 16S, or because 
of the fact that previous in-depth metagenomics studies on AD did not include lesional skin samples28. Of final 
relevance to this discussion about S. capitis and its relation to AD, is a study by Cameron et al., 2015 that revealed 
an arsenal of virulence factors in the genome of S. capitis that likely contribute to its pathogenicity35, which makes 
it appealing to hypothesize that this species could potentially have a role in AD. Nonetheless, although we show 
in this study that SLST provides insight into specific microbiota at higher taxonomical detail than 16S, and allows 
novel microbial candidates to be detected: these microbial leads (similar to 16S) still require ultimate validation 
by alternative methods, such as by targeted PCR, before designing follow-up experiments for mechanistic under-
standing of a microbe’s role in any system.

In conclusion, TaxPhlAn provides a method for the automated design of SLST amplicons and the analysis of 
SLST sequencing data. As TaxPhlAn evaluates regions that are single-copy orthologous genes, the resulting SLST 
amplicons allow detection of novel variants and placement of these variants in phylogenetic context.

Methods
Skin microbiome sample collection and processing.  In advance of study start, collection of human 
material (skin samples by non-invasive skin swabbing procedures) was approved by the local medical ethical 
committee named: Radboudumc Commissie Mensgebonden Onderzoek (CMO) Arnhem-Nijmegen, and indi-
vidual written informed consent from the volunteers were obtained. The study was performed according to the 
Declaration of Helsinki principles. Microbiome skin samples were collected by a wet swabbing protocol of the 
inner elbow (antecubital fossa) skin of human healthy control (HC) volunteers (n = 9) and atopic dermatitis 
(AD) patients (n = 5). Inclusion criteria (and exclusion, with exception of having AD) as described by Zeeuwen 
et al.36. All human volunteers were enrolled in the dermatology clinic of the Radboud University Medical Center, 
Nijmegen, and AD was diagnosed by a trained dermatologist. Sample collection was performed as described 
previously14,36. In short, a 4 cm2 skin area of the inner elbow was swabbed with sterile Catch-All sample collection 
swabs (Epicentre Biotechnologies, Madison, USA). The swabs were soaked in sterile SCF-1 solution (50 mM Tris 
buffer [pH8], 1 mM EDTA, and 0.5% Tween-20) before sample collection. Mock swabs, only exposed to ambient 
air, were taken as negative controls. The Mobio Ultraclean Microbial DNA isolation kit (Mobio laboratories, 
Carlsbad, USA) was used according to the manufacturers protocol to extract microbial DNA, before storing it at 
−80 °C until further use.

16S and SLST PCR chemistry and conditions.  Primer sequences used for sequencing of the 16S V3-V4 
region or by SLST can be found in Suppl. Table S5, and were appended with Illumina adaptor sequences and 
sample-specific barcodes. PCR protocol with KOD hot start DNA polymerase as follows: 2 m 95 °C hot start; 
35 cycles of 20 s 95 °C, 10 s 61 °C, 15 s 70 °C; 10 m 70 °C. PCR quality control as follows: agarose gel ampli-
con sizes were checked, and Sanger sequenced to validate with BLAST to the NCBI database. SLST primer 
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specificity was tested on the following Staphylococcus strains: S. aureus (ATCC 29213), S. epidermidis (ATCC 
12228), and clinical isolates of S. capitis and S. hominis. As negative controls we used the common skin commen-
sals: Propionibacterium acnes (ATCC 6919), Pseudomonas aeruginosa (ATCC 27853), F. magna (ATCC 15794), 
and a clinical isolate of C. aurimucosum.

16S and SLST marker gene sequencing and data pre-processing.  PCR 16S and SLST amplicon 
libraries were generated as described above. For each of the 5 AD patients, one additional pooled sample was 
taken along, with mixed 16S and SLST amplicons. The libraries were barcoded, multiplexed and sequenced on 
an Illumina MiSeq machine with paired-end 300 cycles protocol and indexing, by BaseClear B.V. (Leiden, The 
Netherlands). 16S and SLST sequencing data were generated in separate Illumina runs, but the 16S/SLST pooled 
samples (technical replicates) were taken along with the SLST run. Illumina sequencing data was quality checked 
and demultiplexed by BaseClear standards, as detailed in the supplementary Methods, and FASTQ files were 
generated. Paired-end reads were assembled into pseudoreads with PEAR37, with strict assembly settings: quality 
threshold 30, minimum overlap 35 and p-value 0.0001. On average, only 0.17% of the raw reads could not be 
assembled (data not shown). Thereafter, for the 16S/SLST pooled samples, the pseudoreads were split to 16S or 
SLST input FASTA files by a local BLAST to a SLST gene database of the 7078 available Staphylococcus genomes: 
query reads with a hit (by default BLASTn settings from version 2.2.29 + ) were used for SLST analysis, if not 
send for 16S analysis by QIIME. This script has been made available as ‘split-reads-to-16S-SLST’ in the TaxPhlAn 
Docker image.

16S marker gene sequencing data analysis.  For generation of the 16S-derived taxa-to-sample compo-
sitional matrix, a customized Python workflow based on Quantitative Insights Into Microbial Ecology (QIIME 
version 1.8)38 was adopted (http://qiime.org). Reads were filtered for chimeric sequences using the UCHIME 
algorithm version 439. Hierarchical clustering of samples was performed using UPGMA with weighted UniFrac 
as a distance measure as implemented in QIIME 1.8. Figures resulting from these clustering analyses were gen-
erated using the interactive tree of life (iTOL) tool40. The Ribosomal Database Project classifier version 2.3 was 
performed for taxonomic classification of the sequence reads41. Alpha diversity metrics (PD whole tree, Chao1, 
Observed Species and Shannon) were calculated by bootstrapping 6490 reads per sample, and taking the aver-
age over 10 trials. For visualization of the differential microbiome, Cytoscape software version 3.4.042 was used 
together with in-house developed Python scripts for generating the appropriate input data deriving from the 
QIIME analysis. Note that due to technical limitations in the resolution of 16S marker gene sequencing, OTU 
(operational taxonomic unit) calling on the level of species should be interpreted with caution.

Selection of representative Staphylococcus genomes for TaxPhlAn target discovery.  
Staphylococcus genomes were downloaded (n = 7247) from the NCBI assembled genomes database43 (ftp.ncbi.
nlm.nih.gov/genomes/genbank/bacteria/) and the NCBI Traces WGS database (https://www.ncbi.nlm.nih.gov/
Traces/wgs/). TaxPhlAn requires sub-selection of input genomes due to computational capacity. We selected a 
diverse subset of those genomes based on their 16S sequences by running a BLAST search with the full 16S gene 
of S. aureus subsp. aureus 71193 to each available genome (Staphylococcus 16S reference gene was downloaded 
from SILVA database33 in April 2016; accession CP003045). Based on the best scoring BLAST hits, 16S genes were 
aligned to the aforementioned 16S reference gene by a pairwise global alignment with Needle (version EMBOSS: 
6.3.1; default settings)44. From these alignments, a 1Kb long 16S region covered by the majority of genomes was 
selected (n = 6569) and 16S OTU clusters were determined using UCLUST (version 1.2.22q)39 for cluster building 
with percentage identity set to 99.7%. This yielded 24 (16S) clusters from which we equally selected 200 unique 
Staphylococcus genomes in total. For further details we refer to the supplementary Methods.

TaxPhlAn (Module A): SLST target discovery and design workflow.  TaxPhlAn is an acronym for 
SLST-based Taxonomy Phylogenetic Analysis, and it is made up of two connected pipelines (Modules A and B). 
The TaxPhlAn Discovery & Design pipeline (Module A) finds SLST markers of single locus orthologous genes to 
profile specific bacterial taxa up-to and beyond the species level, based on a set of reference genomes provided by 
the user. It consists of a series of Perl/Python scripts, and has been made available through the supplied Docker 
as ‘TaxPhlAn-SLST-Design-wrapper.py’ (wrapper script). For more details concerning the TaxPhlAn Discovery & 
Design workflow, we refer to the supplementary Methods. In short, it consists of the following steps (Suppl. Fig. S1). 
Initiation and QC: (Phase I-a) data preparation based on a configuration file and input genomes; (Phase I-b)  
data preprocessing by input file reformatting and genome annotation. Orthology: (Phase II) orthology calcula-
tions and phylogenetic analysis on provided genomes. Target Discovery and Design: (Phase III-a) selection of core 
gene clusters for candidate marker genes; (Phase III-b/c) prediction of variable regions in candidate core clusters. 
Validation and Reporting: (Phase IV) in silico primer design and evaluation of candidate variable regions, and final 
reporting of results.

TaxPhlAn (Module B): SLST data analysis (oligotyping) workflow.  The TaxPhlAn Oligotyping anal-
ysis pipeline (Module B) is used to analyze (and visualize) raw SLST marker gene sequences from raw sequencing 
data to a compositional microbiota-to-sample matrix (Suppl. Table S14). It consists of a series of Python scripts, 
and has been made available through the supplied Docker as ‘TaxPhlAn-SLST-Oligotyping-wrapper.py’ (wrapper 
script). For more extensive details concerning the TaxPhlAn oligotyping analysis workflow we refer to the supple-
mentary Methods. In short, it consists of the following summarized steps (see graphical outline in Suppl. Fig. S2). 
Initiation and QC: (Phase 1) Data preparation with mandatory input and quality control. Allele building: (Phase II)  
Oligotyping by allele building based on Shannon diversity index. Allele matching: (Phase III-a) SLST allele 
matching and scoring; (Phase III-b) Phylogenetic analysis of alleles, and data visualization. Reporting: (Phase IV) 
Oligotyping data results and reporting.
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Statistics.  For the microbiota data in this manuscript, statistical significance between contrasts with regard 
to taxonomy abundances was tested by a non-parametric (unpaired) Mann-Whitney U (MWU), uncorrected. 
Statistical tests were performed by custom, in-house Python scripts (SciPy module version 0.17.0; https://www.
scipy.org/) downstream of QIIME. Redundancy Analysis (RDA) was done using Canoco 5.0445 using default 
settings of the analysis type “Constrained”. Relative abundance values for taxa were used as response data, and the 
sample classes as explanatory variables. RDA calculates p-values by permuting the sample classes. Correlations 
were examined using Spearman’s rank test as performed by custom, in-house R scripts (version 3.2.2; https://
www.r-project.org/). For any other type of data visualization we adopted GraphPad Prism 5.0 or Microsoft 
Office Excel 2016. Significances mentioned in figures are as follows: n.s. (not significant), *p < 0.05, **p < 0.01, 
***p < 0.001.

Sequencing data availability.  SLST and 16S Illumina sequencing data is available for download at the 
European Nucleotide Archive (ENA) database (http://www.ebi.ac.uk/ena)46 under study accession number 
PRJEB27442 (or secondary accession number ERP109520). The sequencing data is available in FASTQ-format, 
including corresponding metadata for each sample. An overview of the samples and metadata can be found in 
Suppl. Table S10.

TaxPhlAn pipeline distribution.  TaxPhlAn is accessible through a pre-configured, plug-and-play Docker 
virtual machine which is supplied at the Docker Hub repository: https://hub.docker.com/r/ederveen/taxphlan/. 
Directions to SLST test datasets and documentation can be found in the TaxPhlAn Docker home directory upon 
running the Docker image. For quick and easy install of the TaxPhlAn Docker image please see GitHub at: https://
github.com/ederveen/taxphlan/.

Data availability
SLST and 16S Illumina sequencing data is available for download at the European Nucleotide Archive (ENA) 
database (http://www.ebi.ac.uk/ena) under study accession number PRJEB27442. TaxPhlAn is accessible through 
a pre-configured, plug-and-play Docker virtual machine which is supplied at the Docker Hub repository: https://
hub.docker.com/r/ederveen/taxphlan/.
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