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Abstract
With the rapid development of Artificial Intelligent algorithms on Computer Vision, 2D object detection has greatly suc-
ceeded and been applied in various industrial products. In the past several years, the accuracy of 2D object detection has 
been dramatically improved, even beyond the human eyes detection ability. However, there is still a limitation of 2D object 
detection for the applications of Intelligent Driving. A safe and reliable self-driving car needs to detect a 3D model of the 
around objects so that an intelligent driving car has a perception ability to real driving situations. This paper systematically 
surveys the development of 3D object detection methods applied to intelligent driving technology. This paper also analyzes 
the shortcomings of the existing 3D detection algorithms and the future development directions of 3D detection algorithms 
on intelligent driving.
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1  Introduction

Every day, almost 3700 people are killed globally in crashes 
involving cars, buses, motorcycles or pedestrians. More 
than half of those killed are pedestrians, motorcyclists, or 
cyclists. Crash injuries are estimated to be the eighth lead-
ing cause of death globally for all age groups and the first 
leading cause of death for children and young people. As 
reported by the U.S. Department of Transportation, more 
than 90% of car crashes are attributed to drivers errors. The 
adoption of autonomous vehicles is expected to improve 
driving safety and traffic efficiency. Therefore, an accurate 
environment perception system is necessary to reduce the 
traffic accidents.

The intelligent driving is one of the most important devel-
oping direction of smart cars and intelligent transportation 
systems. A safe and reliable self-driving car needs to detect 

a 3D model of the around objects so that an intelligent driv-
ing car should have a perception ability to real driving situ-
ations. An intelligent driving car equipped with monocular 
cameras, stereo cameras, or laser radars can acquire vari-
ous types of information. The rapid development of these 
sensors contributes to intelligent driving greatly. Besides, 
based on 2D object detection algorithms, 3D object detec-
tion algorithms have been developing rapidly. Especially in 
these 2 years, some outstanding 3D detection works that are 
not inspired by traditional algorithm structures also achieved 
good performance. The improvement of 3D detection algo-
rithms combined with the intelligent upgrading of traditional 
cars makes Intelligent driving closer to human lives. The 
comparison between 2D and 3D object detection is shown 
in Fig. 1.

This paper is structured as follows. Section 2 describes 
commonly used sensors and datasets for perception works 
in Intelligent Driving. Section 3 lists representative frame-
works for 3D object detection in autonomous driving. The 
results of different 3D object detection algorithms are com-
pared and summarized in Sect. 4. Section 5 provides a brief 
conclusion of 3D object detection algorithms.

This work was presented in part at the 26th International 
Symposium on Artificial Life and Robotics (Online, January 
21–23, 2021).
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2 � The hardware preparations for intelligent 
driving

2.1 � The technologies demanded by intelligent 
driving

Self-driving technology involves a lot of technical areas. 
A mature self-driving car needs different kinds of sensors, 
high-precision maps, Internet of Vehicles (IoV) and high-
performance chips. As is shown in Fig. 2.

Self-driving cars are one of the most discussed technolo-
gies in modern society. The development of autonomous 
driving can be divided into 6 levels. From 2020 to 2030, all 
the manufacturers and research institutes are all pushing the 
development of self-driving from Level 3 to Level 4.

Level 0: The driver does all the driving: steering, brakes, 
and power, etc.

Level 1: These cars can handle one task at a time, like 
automatic braking.

Level 2: These cars would have at least two automated 
functions.

Level 3: Drivers are still indispensable to intervene if nec-
essary, but are able to shift all the functions to the vehicle.

Level 4: These cars are officially driver-free in certain 
environments.

Level 5: A fully-autonomous system is expected to func-
tion as good as a human driver, coping with various uncon-
strained driving scenarios.

2.2 � The current manufacturers of intelligent 
vehicles

Autonomous driving has the most important place for arti-
ficial intelligence technology being applied to real human 
life. Especially in the Novel Coronavirus period, non-contact 
robot applications become particularly important. Many car 
manufacturers have made good achievements in autonomous 
driving technology.

In 2020, Waymo made fully driverless taxis commer-
cially available in Arizona, US. For now, Waymo is the 

Fig. 1   The comparison between 2D detection and 3D detection

Fig. 2   The technologies demanded by intelligent vehicles



117Artificial Life and Robotics (2022) 27:115–122	

1 3

only platform to transport passengers by fully autonomous 
vehicles, and it is seen as an industry leader.

Tesla’s self-driving car has ditched expensive LiDAR to 
develop Tesla Vision using a combination of cameras. This 
makes self-driving cars cheaper and more consumers able 
to experience the latest self-driving technology.

Honda Research Institute plans to launch an L3 auton-
omous vehicle in 2022 and an L4 autonomous vehicle in 
2025.

BMW plans to produce L4 autonomous vehicles by 2024, 
capable of driving themselves in certain geographical loca-
tions, such as highways or dual carriageways.

2.3 � 3D object detection sensors

In autonomous driving, detection sensors equipped in smart 
cars are the most important devices that can provide accurate 
and real-time information for Intelligent Driving systems. 
Many categories of detection sensors can be used in 3D 
object detection algorithms, and the most commonly used 
detection sensors have been listed in Fig. 3. Sensors can 
be generally divided into three main categories by different 
kinds of information detected.

First, visual sensors, such as monocular cameras and ste-
reo cameras, can detect color information and pixel-level 
images. The depth information can also be calculated by 
the triangulation method. Second, LiDARs and radars can 
directly measure the depth information and acquire point 

clouds maps of the 3D scenes. But the point clouds in maps 
are irregularly arranged and very sparse, which could bring 
some difficulties in later netural network calculations. The 
third category of sensors is the fusion of the above two cat-
egories. The fused sensors can provide more comprehensive 
data, including pixel-level images and point cloud maps. 
Theoretically, the more information provided by sensors, the 
higher detection accuracy could achieve by detectors.

2.4 � 3D object detection datasets

Since 2012, an increasing number of datasets has been 
created to train and evaluate the object detection frame-
works. In 3D object detection research field, datasets can be 
divided into indoors and outdoors according to the applica-
tion scenes. This paper surveyed the 3D object detection 
frameworks mainly used under Intelligent Driving scenes, 
so this section highlights several widely used outdoor data-
sets, especially autonomous driving datasets, as is shown 
in Table 1.

These well-known 3D object detection datasets listed here 
tend to use RGB cameras and LiDARs to detect different 
kinds of data. These fusion datasets can not only provide 
colorful and pixel-level images, but also provide point cloud 
maps with depth information. And all the datasets contain 
many different self-driving scenes, multiple object classifi-
cations and a mass of 3D annotation bounding boxes, which 
could ensure adequate training and evaluation data for 3D 

Fig. 3   The comparison of different sensors

Table 1   A summary of 3D 
object detection datasets for 
intelligent driving

Datasets Scenes Classes Annotated frames 3D boxes Year Sensors

KITTI 22 8 15k 200K 2012 RGB + LiDAR
nuScenes 1k 23 40k 1.4M 2020 RGB + LiDAR
H3D 160 8 27k 1.1M 2019 RGB + LiDAR
Waymo 1k 4 200k 12M 2020 RGB + LiDAR
Lyft Level 5 366 9 46k 1.3M 2019 RGB + LiDAR
A*3D – 7 39k 230K 2019 RGB + LiDAR
ApolloScape – 35 140K 70K 2019 RGB + LiDAR
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object detectors. A few of the most commonly used datasets 
are introduced as below.

2.4.1 � KITTI

The KITTI dataset is the largest computer vision algorithm 
evaluation dataset in the world for autonomous driving 
scenes. The dataset is used to evaluate the performance of 
computer vision technologies such as optical flow, visual 
odometry, 3D object detection, and 3D tracking in autono-
mous driving environments. KITTI contains real-world 
image data collected from scenes such as urban, rural and 
highways. One image in KITTI could obtain up to 15 cars 
and 30 pedestrians. The original datasets are classified as 
Road, City, Residential, Campus and Person. For 3D object 
detection, labels are subdivided into car, van, truck, pedes-
trian, cyclist, tram and so on.

2.4.2 � ApolloScape

ApolloScape dataset was provided by Baidu Inc. The 3D 
LiDAR object detection and tracking dataset consist of point 
clouds and high-quality labels. It is collected under various 
lighting conditions and traffic situations in Beijing. More 
specifically, ApolloScape dataset contains very complex 
traffic flows mixed with vehicles, cyclists and pedestrians.

2.4.3 � H3D

H3D is a point cloud dataset for self-driving scenes pro-
vided by Honda. H3D dataset contains HDD dataset, which 
is also a large-scale natural driving dataset collected in the 
San Francisco Bay Area. H3D has a complete 360 degree 
lidar dataset with 3D bounding box labels. The dataset also 
contains vedio data, manually annotated from 2 to 10 Hz 
linearly.

2.4.4 � Waymo

Waymo is a self-driving car company owned by Google 
Inc. Waymo company announced Waymo Open Dataset, 
a bonus-based benchmark compared to previous academic 
benchmarks. In addition, Waymo contains 3000 driving 
records, 600,000 frames, with approximately 25 million 3D 
bounding boxes and 22 million 2D bounding boxes. Waymo 
has a huge amount of data in various autonomous driving 
scenes.

2.4.5 � Lyft Level 5

Lyft Level 5 is also well known like KITTI dataset. Lyft 
Level 5 dataset is acquired by 64-wire radars and multi-
ple cameras. The Level 5 dataset includes over 55,000 

human-labeled 3D annotated frames, surface maps, and an 
underlying HD spatial semantic maps.

3 � The classification of 3D detection 
frameworks

We divide 3D object detection methods into three categories: 
vision based, point clouds based and multi-sensor fusion 
based methods. An overview of methodologies, advantages 
and limitations for these methods are demonstrated below. 
The following subsections address each category individu-
ally, which are shown in Fig. 4.

3.1 � Vision based 3D detection framework

Vision sensors, especially monocular cameras, are the most 
important devices for 2D object detection. Meanwhile, ste-
reo cameras and depth cameras are more suitable to detect 
a 3D object in real world for their ability of measuring dis-
tance. Depth information is the fourth image channel that 
contains information about the distance from the surface of 
the object to the viewpoint. Depth Map is similar to a gray 
image, but each of its pixel values is the actual distance the 
sensor is from the object. Usually, the RGB image and the 

Fig. 4   The classification of the 3D object detection frameworks



119Artificial Life and Robotics (2022) 27:115–122	

1 3

Depth image have a correspondence relationship from pixels 
to pixels.

This subsection focuses on the frameworks that could 
estimate 3D bounding boxes based on RGB images and 
depth information. And the frameworks are mainly divided 
into 2 parts based on the different cameras.

3.1.1 � Monocular camera frameworks

3D object detection from a single image without lidar is a 
challenging task due to the lack of accurate depth informa-
tion. Traditional 2D convolution frameworks are unsuitable 
for this task because they cannot capture tridimensional 
objects and their scale information, which are important for 
3D object detection. To better represent 3D structure, Ding 
[1] transformed depth maps estimated from 2D images into a 
pseudo-Lidar (PL) representation. And then use the existing 
3D object detectors to detect objects. This method can pre-
dict point clouds information from a normal image pictured 
by monocular cameras. But there is definitely an error exist-
ing between predicted point clouds and real point clouds.

3.1.2 � Stereo camera frameworks

The 3D object detection using LiDAR is always much more 
accurate than those using cameras. While PL has led to 
a drastic reduction in the accuracy gap between methods 
based on LiDAR sensors and those based on cheap cameras. 
PL combined advanced deep neural networks for 3D depth 
estimation with those for 3D object detection together, and 
performed well.

However, PL’s two networks need to be trained one by 
one. To obtain an end-to-end PL framework, Qian [2] intro-
duced a new framework based on differentiable Change 
of Representation (CoR) modules that can allow PL to be 
trained end-to-end. The final framework achieves better 
results than PL in combination with Point R-CNN. This 
work gets the highest entry on the KITTI image-based 3D 
object detection leaderboard at the submission time in 2020. 
Although, stereo cameras could measure the depth informa-
tion by disparity map. While many recent works still try 
to recovery point clouds with disparity estimation and then 
apply a 3D detector based on LiDAR sensors.

In 2020, Sun [3] proposed a new framework called Disp 
R-CNN for 3D object detection using stereo images. To 
address the challenge from scarcity of disparity annotation 
in training, Sun J. proposed to use a statistical truth without 
the need for LiDAR sensors, which reduced much of the 
cost in Intelligent Driving. The disparity map is computed 
for the entire image, which is computationally costly. So 
Sun J. designed an instance disparity estimation network 
(iDispNet) that predicts disparity only for pixels on objects 
of interest and learns a category-specific shape prior for 

more accurate disparity estimation. Disp R-CNN achieves 
competitive performance and outperforms the average preci-
sion of the lasted advanced methods by 20%.

In the past several years, as is known to all, LiDAR-based 
3D detection frameworks perform much better than visual-
based methods. But 3D detection frameworks using LiDAR 
sensors could not extract semantic information without the 
help of images. So, Chen [4] proposed a method called Deep 
Stereo Geometry Network (DSGN). Significantly reduces 
this gap by detecting 3D objects on a differentiable volumet-
ric representation: 3D geometric volume, which effectively 
encodes 3D geometric structure for 3D regular space. With 
this method, depth information and semantic information 
could be acquired simultaneously. Chen Y. provides a simple 
and effective one-stage stereo-based 3D detection pipeline 
that jointly estimates the depth and detects 3D objects in an 
end-to-end learning manner. DSGN approach outperforms 
previous stereo-based 3D detectors and even achieves com-
parable performance with several LiDAR-based methods on 
the KITTI 3D object detection leaderboard.

3.2 � LiDAR based 3D detection framework

Currently, the point clouds-based methods achieve state-of-
the-art performance in 3D detection methods. Due to the 
accurate depth measurement of point clouds dataset, many 
frameworks, which used 3D-based methods to regress 3D 
bounding boxes, with high detecting accuracy. But 3D 
based methods also will bring a lot of computation burdens. 
While the shortcoming of the great amount of computations 
becomes a challenge to real-time self-driving applications. 
So many researchers tend to use the 2D-based detection 
algorithms to realize the object detection in 3 dimensions. 
This subsection divided the LiDAR-based frameworks into 
categories: 2D indirect method and 3D direct method.

3.2.1 � 2D indirect method frameworks

Martin et al. [5] used the YOLOv2 detection network to 
realized a 3D object detection framework in 2018, called 
Complex-YOLO. And this work achieved an excellent detec-
tion speed to meet the real-time 3D detection in self-driving. 
This work transformed the 3D point clouds into BEV (Bird’s 
Eye View) images, including the height, density and inten-
sity messages. The main idea of this work is to transform the 
3D point clouds data into 2D image shapes, and then use the 
2D detectors to complete the 3D object detection.

Li et al. [6] proposed a 2.5D object detection framework 
called 6DOF-YOLO in 2021. This work also transformed the 
3D point clouds into BEV (Bird’s Eye View) images. But the 
difference from the Complex-YOLO is that Li’s work did a 
2.5D detection, which could regress the height of vehicles. 
While Complex-YOLO actually did a 2D detection and then 
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used point clouds message to calculate 3D bounding boxes. 
Li’s work also used the state-of-the-art YOLOv4 [7], get-
ting a great balance between the detecting efficiency and the 
accuracy.

3.2.2 � 3D direct method frameworks

In 2018, Shi et al. [8] proposed a 3D detector called Poin-
tRCNN, which is a two-stage 3D point cloud target detection 
framework. By dividing the point cloud of the whole scene 
into foreground and background, the stage-one network 
directly generates a small number of high-quality 3D propos-
als from the point cloud. The stage-two network refines the 
proposals in the canonical coordinate by combining semantic 
features and local spatial features. PointRCNN actually used 
PointNet [9] to complete a 3D convolution, which has a great 
improvement in accuracy, but the efficiency is not mentioned.

In 2019, Yang et al. [10] present a new two-stage 3D 
object detection framework, named sparse-to-dense 3D 
Object Detector (STD). This two-stage network used Point-
Net++ network as the backbone for 3D detection. Novelties 
are a new spherical anchor and 3D intersection-over-union 
(IoU), which achieves a high recall and the localization 
accuracy. This method outperforms other state-of-the-arts, 
especially on the hard dataset, but with an inference speed 
of only around 10 FPS.

3.3 � Sensors fusion framework

To integrate all the advantages of different sensors, fusion 
technology plays an important role to balance the different 
characters from different sensors. Up to now, multi-sensor 
fusion 3D detection methods are classified into two kinds: 
Single-stage Fusion and Multi-stage Fusion.

3.3.1 � Single‑stage fusion

Single-stage fusion means that different features from differ-
ent sensors will be fused only one time at the feature extrac-
tion layer or at the data preprocessing stage.

One of the representing works is PointPainting [11]. 
Instead of end-to-end training in the design of fusion net-
work structure, it is divided into two stages: the first stage is 
semantic segmentation of camera data; the second stage is 
3D target detection by combining LiDAR point cloud with 
semantic information. The two stages are connected by fea-
ture projection.

3.3.2 � Multi‑stage fusion

Multi-stage fusion means that different features from dif-
ferent sensors will be fused many times at different feature 
extraction layers during the whole fusion algorithm process.

ContFusion [12] is an example of Multi-stage fusion 
method. Compared with single-stage fusion, this method is 
more complex, mainly in the extraction of fusion features. 
The overall network structure is an end-to-end network, 
which is divided into four parts: camera feature extraction, 
feature fusion, LiDAR feature extraction and detection out-
put. The character of this design is the fusion of the two 
kinds of information is conducted in every feature detection 
layer. So the detection accuracy could be extremely high.

Chen [13] proposed a two-stage network of 3D detection 
called MV3D in 2017. MV3D uses point clouds and images 
as input. The whole network can be divided into two stages: 
the first is a 3D Proposal Network to generate the Region of 
Interest (ROI). The second is a Region-based Fusion Net-
work to fuse the LiDAR Bird View, LiDAR Front View and 
images data. MV3D comprehensively analysed the impact of 
different fusion stages on the detection results. And MV3D 
finally used the multi-stages fusion in the different layers of 
the Fusion Network.

4 � Summary

As we can see from Table 2, the results of the frameworks 
mentioned are evaluated using a new evaluation metric 
on the KITTI leaderboard. Several methods undergoing 
old evaluation are not available on the leaderboard. First, 
generally comparing, all the Bird’s Eye View (BEV) detec-
tions have a better performance than the 3D Detection in 
Average Precision (AP). Secondly, as we can see from this 
table, frameworks using different sensors also have a huge 
gap in AP. Visual sensors-based frameworks always get the 
lowest accuracy, while the multi-sensor fusion frameworks 
achieved state-of-the-art performances. But when we take 
the sensors’ prices into account, multi-sensor fusion frame-
works would cost the most in these three kinds of works, and 
the camera sensors are the least expensive. The most excel-
lent visual 3D detection frameworks have achieved results 
that are greatly close to the best performance. So Intelligent 
Driving systems using visual sensors will have a great pros-
pect for future development.

In February 2021, the California DMV (Department of 
Motor Vehicles) released new autonomous driving data 
for the year 2020. The California DMV annual Miles Per 
Intervention (MPI) is one of the key measurements of 
autonomous driving, reflecting the average miles of each 
intervention annually. It is widely regarded by the indus-
try as a more objective, quantitative and accurate measure 
than driving experience test. As the analyze of the different 
intelligent vehicles manufacturers, and along with the excel-
lent research and development institutions, the best testing 
results until now are listed in Table 3. As the Table shows, 
the top 10 testing results are listed here, and the intelligent 
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driving technology of Waymo company possesses the best 
performance.

This paper also summarized some shortcomings of the 
3D object detection systems applied in autonomous driv-
ing. First, in the practical application of driverless vehicles, 
obstructing and surrounding environment confusion will 
lead detectors to miss the target object in the traffic. Second, 
there will be a great amount of data to process in the traffic, 
while most algorithms cannot meet the requirements of real-
time in autonomous driving. Third, in unmanned driving, the 
real-time performance of 3D target detection is difficult to 
be guaranteed and the accuracy of 3D target detection is not 
high enough for safe self-driving.

The final goal of Intelligent Driving is that the self-
driving skills need to exceed the average driving skill of 
human. So, Intelligent Driving needs to use more accurate 
3D object detection algorithms and more faster processing 
chips to make the self-driving cars more security and more 
fluency. Frameworks using vision cameras are the most 
competitive methods because of the low cost and potential 
for higher detecting accuracy. It is believed that self-driving 

cars using cameras only have the capacity to ensure security 
because human beings use their eyes only. The most impor-
tant thing for self-driving is to possess a smart brain–a smart 
3D detector.

5 � Conclusion

This paper systematically surveys the development of 3D 
object detection methods applied to intelligent driving tech-
nology. This paper also discusses the different types of infor-
mation acquired by different sensors, such as RGB images, 
point cloud maps, and multi-source information fusion. 
After analyzing the effective and representative 3D detec-
tion works in details, this paper summarized these works 
into different types according to the different realizing algo-
rithms. The experiment data of different kinds of 3D detec-
tion frameworks are discussed and compared on the KITTI 
Benchmark. And the practical application of these detectors 
in real traffic environments is also analyzed. The relation-
ship of the detecting accuracy and the demanding accuracy 
for safe driving is also researched. This paper finally talks 
about the shortcomings of the existing 3D object detection 
frameworks and the future development directions on Intel-
ligent Driving.
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