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Abstract: Palmprint recognition has received tremendous research interests due to its outstanding
user-friendliness such as non-invasive and good hygiene properties. Most recent palmprint recogni-
tion studies such as deep-learning methods usually learn discriminative features from palmprint
images, which usually require a large number of labeled samples to achieve a reasonable good recog-
nition performance. However, palmprint images are usually limited because it is relative difficult to
collect enough palmprint samples, making most existing deep-learning-based methods ineffective.
In this paper, we propose a heuristic palmprint recognition method by extracting triple types of palm-
print features without requiring any training samples. We first extract the most important inherent
features of a palmprint, including the texture, gradient and direction features, and encode them into
triple-type feature codes. Then, we use the block-wise histograms of the triple-type feature codes
to form the triple feature descriptors for palmprint representation. Finally, we employ a weighted
matching-score level fusion to calculate the similarity between two compared palmprint images of
triple-type feature descriptors for palmprint recognition. Extensive experimental results on the three
widely used palmprint databases clearly show the promising effectiveness of the proposed method.

Keywords: biometrics; palmprint recognition; triple-type feature descriptors; matching score fusion

1. Introduction

As one of the most important solutions for performing personal authentication our
modern society, biometric recognition can effectively and efficiently identify an individual
based on one’s physiological or behavioral traits [1–3]. There have been various biometric
recognition technologies such as face, fingerprint and gait recognition technologies, which
has been successfully used for many practical applications such as mobile payment, elec-
tronic control and security checking [4–6]. In recent years, as a relatively new emerging
biometric technology, palmprint recognition has received tremendous research interest, be-
cause it contains many discriminative and reliable features such as principal lines and rich
textures [7–9]. Moreover, palmprint recognition is a non-invasive and hygienic biometric
technology [10,11], which make people prefer to use palmprint for personal authentication,
especially in the current outbreak of COVID-19. Therefore, a growing number of studies
turn to the important and challenging palmprint recognition technology [12–16].

There have been many palmprint recognition methods proposed in the past decades, which
can be roughly classified into three categories according the types of palmprint images [17]: high-
resolution palmprint [18], low-resolution palmprint [7] and three-dimensional (3D) palmprint
recognition [19] methods. High-resolution palmprint recognition methods generally extract
the ridge directions, ridge densities and the minutiae points for personal authentication for
forensic applications [18]. 3D palmprint recognition mainly extracts the 3D surface features
of palm surface such as curvature features. In general, both high-resolution palmprint and
3D palmprint images need to be captured with special-designed and expensive devices,
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which make them impractical for commercial and civil applications. For these reasons, more
efforts were devoted to low-resolution palmprint recognition in recent years, where the low-
resolution palmprint images can be easily captured by using the common image acquisition
equipments such as mobile phone and normal camera. In this paper, we also focus on
low-resolution palmprint feature extraction and recognition, and palmprint recognition of
this paper refers to low-resolution palmprint recognition unless otherwise stated.

So far, there have been extensive methods proposed for palmprint recognition in
the literature. The original palmprint recognition methods usually extract the visible
texture-based feature-based features of palmprint such as local binary pattern (LBP) based
feature descriptor [20], and the visible line feature-based methods such as the principal
lines and wrinkles [21,22]. Most existing studies [17] have shown that the coding-based
methods are one of the most effective palmprint representations. Due to these, a number of
coding-based methods were proposed for palmprint recognition [23–30]. The original code
method was proposed by Kong et al. [23], which encoded the Gabor filtering responses
of palmprint images based on winner-take-all rule and achieved promising palmprint
verification performance. Inspired by that, Guo et al. [24] proposed a binary orienta-
tion co-occurrence vector (BOCV) method by encoding the Gabor filtering responses on
multiple directions. After that, Zhang et al. [25] extended the BOCV (EBOCV) method
by filtering out the fragile bits of the BOCV codes. Further, Fei et al. [26] proposed a
double orientation code (DOC) method by encoding the direction features of the top-two
filtering responses. Zhang et al. [9] and Fei et al. [17] made two surveys surveys for the
representative palmprint recognition methods. Moreover, the subspace learning, sparse
representation and deep-learning were also successfully used for palmprint recognition.
For example, Lu et al. [31] proposed eigenpalm method by extracting the PCA data of palm-
print. Imad et al. [32,33] proposed a sparse representation-based method by extracting the
subspace features such as PCA and LDA information and establishing an ensemble sparse
representation. Svoboda et al. [34] comparatively studied the deep convolutional neural
networks for palmprint recognition. Fei et al. [35] proposed a binary code learning method
for heterogeneous palmprint recognition by learning the complementary features of multi-
ple modalities of palmprint images. In addition, Genovese et al. [36] proposed a PalmNet
method by applying the Gabor responses and PCA into the convolutional networks. In
general, these learning-based methods usually require many labeled samples to learn and
extract the discriminative features. For example, subspace-based methods require enough
labeled samples to measure the within-class and between-class distances. Representation
based methods need a plenty of labeled samples to completely represent the query samples,
and the deep-learning methods require a massive training samples to fine-turn a plenty of
parameters of the networks. Therefore, how to directly extract the discriminative features
of palmprint images remains an interesting and important challenge.

In general, a palmprint image contains the principal lines, wrinkles and ridge patterns,
which are the most important characteristics of a palmprint. Of them, the principal line and
wrinkles has visible edges and thus they carry gradient-based features and direction-based
features. In addition, ridge-based information of a palmprint forms the texture features.
In other words, the direction-based, gradient-based and texture-based features are the
most important and distinct features of a palmprint. Motivated by this, in this paper, we
propose a triple-type feature descriptor (TFD) for palmprint representation and recognition.
Figure 1 shows the basic idea of the proposed method. First, we extract the texture features
by encoding the top-two maximum pixel distance within a local neighborhood, extract
the gradient features by encoding the top-two edge responses of palmprint images, and
further extract the direction features by encoding the most dominant direction and the
most reliable direction. Then, to make the triple-features invariant to small misalignment,
we calculate the block-wise histograms of the triple-type feature codes and cluster them
into feature vectors, respectively, as the final feature descriptors of the palmprint. Finally,
we employ the weighted matching score fusion to fuse triple-type feature for palmprint
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recognition. Extensive experimental results on three widely used contactless palmprint
databases clearly demonstrate the effectiveness of the proposed method.

Figure 1. The basic idea of our proposed TFD method for palmprint recognition. We first extract and
encode the triples types of features of a palmprint image, including the texture, gradient and direction
features. Then, we form histogram-based feature vectors as the palmprint feature descriptors. Finally,
we employ the weighted matching score fusion for feature matching and recognition.

The main contribution of this paper can be summarized as follows:

• We propose a new palmprint descriptor by extracting triple-type inherent features
of palmprint image. Unlike single-type feature descriptor, our proposed method can
completely represent the multiple important and inherent characteristics of palmprint
images.

• Unlike the recently learning-based methods which require many training samples, our
proposed method can effectively extract the discriminative feature manually without
requiring any training samples, such that our proposed method is suitable for the
few-shot and even zero-shot biometric recognition tasks.

• We conduct both palmprint verification and palmprint identification experiments on
three widely used challenging databases and the experimental results demonstrate
that our proposed method consistently outperforms previous state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 briefly the related topics.
Section 3 elaborates our proposed triple-type feature descriptors for palmprint recognition.
Section 4 presents the experimental results. Section 5 offers the concluding remarks.

2. Related Work

In this section, we first introduce the preprocessing of palmprint images. Then, we
briefly review the representative palmprint feature extraction methods. Lastly, we introduce
the fusion schemes of multiple biometrics.

2.1. Preprocessing of Palmprint Images

In general, the original palmprint images are captured from the whole hands, which
usually consist of the all hand as well as the background images. Due to this, an original
captured palmprint image needs to be preprocessed to crop the center part of the original
palmrpint image. In other words, we need to extract the region of interest (ROI) of the orig-
inal palmprint image before performing palmprint feature extraction and recognition [7].
So far, there have been several ROI extraction methods for palmprint image preprocessing,
such as the PalmCode and Deep-learning methods [7,37,38]. Particularly, the PalmCode
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method [7] is one the most popular ROI extraction method. Specifically, it first detects the
boundary of the whole palm from the original palmprint image by using thresholding
principle. Then, it dominates the crossing valley points between fingers as the reference
points, based on which a rectangular coordinate system can be established. After that,
the center part of the palm image is further located based on the coordinate system, and
cropped as the ROI of the palmprint image. In this paper, we use the PalmCode method to
extract the ROIs of the palmprint images for the experiments.

2.2. Feature Extraction for Palmprint Representation

There have been a number of feature extraction methods for palmprint represen-
tation which can be roughly classified into two categories: heuristic feature representa-
tion and learning feature representation. The heuristic feature representation methods
mainly extract the hand-crafted features of palmprint images such as the lines and direc-
tion features [39,40]. For example, Huang et al. [21] proposed a modified finite randon
transform (MFRAT) method to extract the three principal lines of palmprint for personal
verification. Wu et al. [22] proposed a DoG method to extract both principal lines and
wrinkles for palmprint representation. In addition, Dai et al. [20] designed a multiple
band wavelet-based method to extract the texture features of palmprint images. In recent
years, more efforts were devoted into learning-based palmprint representation due to the
impressive performance of deep learning on image classification [36,38]. For example,
Genovese et al. [36] proposed a PalmNet method by using CNN for palmprint recogni-
tion. In addition, Fei et al. [38] proposed a binary code learning method to extract the
discriminative features for palmprint recognition. Furthermore, Fei et al. [41] proposed a
multi-feature learning method for palmprint recognition by learning the complementary
binary codes of multiple types of features.

In general, the learning-based methods usually require enough labeled samples to
training the feature extraction model. Due to this, there are still many studies focus on hand-
crafted feature extraction of palmprint images, and the direction-based coding methods
are one of the most effective hand-crafted feature representations [27]. The most typical
direction coding methods are the dominant direction-based feature descriptors such as
competitive code [23], discriminative and robust competitive code (DRCC) [39], and robust
line orientation code (RLOC) [27] methods. They usually first define a series of feature
extraction templates, such as Gabor filters and MFRAT, to convolve a palmprint image to
compute the direction feature responses. Then, they treat the direction of the template that
has the maximum convolution response as the dominant direction of the palmprint image
and convert them into feature codes. For example, the competitive code method used six
Gabor filters as the template and used the direction index of the Gabor filter producing
the maximum filtering response as the direction features. Unlike the competitive code,
the RLOC method used the MFRAT as the templates to extract the dominant direction
features based on the same winner-take-all rule as the competitive code. The DRCC
method improved the competitive code method by using the filtering results within a
local region to extract the robust dominant direction features. Different from the dominant
direction feature descriptors, there have also a number of methods that extract multiple
direction features of palmprint images. For example, the BOCV method calculated the
convolution responses between the direction feature templates and the palmprint image,
and converted the convolution results on all directions into multiple feature codes for
palmprint recognition. Moreover, the E-BOCV method filtered out the fragile bits with
small direction responses from the BOCV code maps. In addition, the double orientation
code method [26] useed twelve Gabor filters with different directions to convolve with
a palmprint image. The two maximum responses of the two dominant directions were
encoded into decimal codes. More direction feature extraction methods were comparatively
studied in the palmprint survey literature [9,27].
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2.3. Multiple Feature Fusion

It is a widely used and effective way that fuses multiple features to improve the
overall biometric recognition performance. There have been four typical fusion schemes
for multiple features fusion: sensor level, feature level, matching score level and decision
level [42–44] fusion. In general, sensor level fusion scheme [42] uses different kinds of
sensors such as different cameras to capture multiple samples of the same biometric trait,
which are then fused by using other kinds of fusion schemes. Feature level fusion [44]
mainly extracts different kinds of features by using different methods and then concatenates
these features for representation and matching. In addition, decision level fusion scheme
means that different decision makers such as different classification methods are used,
based on which the final decision is made based on some strategy such as voting scheme.
By contrast, score level fusion scheme is to first extract multiple features, and then to
perform feature matching of them respectively. Finally, the matching results of different
features are combined to calculate the overall matching result. So far, the score level fusion
is one of the most widely used fusion scheme because it is a simple yet effective scheme in
multiple feature fusion. In this paper, we use a weighted matching score level fusion to
fuse the triple-type features of palmprint images for palmmprint recognition.

3. Triple-Type Feature Encoding and Matching

In this section, we first introduce the triple-type feature extraction of our proposed
method. Then, we detail the matching fusion of the triple-type features.

3.1. Texture Feature Extraction of Palmprint Images

It is well recognized that texture is one of the most important characteristics of a
palmprint image. Motivated by this, we first extract the texture features from palmprint
images. Different most existing LBP-like texture descriptors [20], we propose a robust
texture feature descriptor by selecting the neighbors with the maximum distances to the
center point in the local 3× 3 neighborhood. Specifically, we first calculate the absolute
gray value differences between the center point and its eight neighbors, obtaining eight
gray value differences: di(i = 1, 2, . . . , 8). Then, we sort these gray value differences in
descending order. Third, we select the two points which has the two maximum gray value
differences with the center point, and encode the direction number of them into texture
feature code, as follows:

Tcode = (m1 − 1)× 8 + (m2 − 1), (1)

where Tcode represents the texture feature code of the center point of the palmprint image.
m1 and m2 denotes direction numbers of the two neighbor points with the top-two gray
value differences. Specifically, m1 and m2 can be calculated as follows:

m1 = arg max
j
{dj}, (2)

and
m2 = arg max

j
{{dj} − dm1} (3)

If two neighbor points have the same pixel distances with the center point, we select
the smaller direction number to encode the texture feature. It is easy to check that is
ranging from 1 to 62. Because the smallest direction number combination is {1, 2}, which is
encoded into 1. The largest direction number combination is {8, 7}, which is encoded into
62. Figure 2 illustrates the basic idea of the robust texture feature extraction scheme.
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Figure 2. The basic procedure of texture feature code calculation of a palmprint image. Given a pixel
of a palmprint image, we first calculate the pixel distance between the pixel and its eight neighboring
points. Then, we select the two neighboring points with the two maximum pixel distances and
encode the position of them into the texture feature code.

It can be seen that the two neighbor points have the larger gray value differences with
the center point than the other neighbors, so that they are more robust to small random
noises. Therefore, our proposed texture feature extraction method can better represent the
texture data of palmprint images.

3.2. Gradient Feature Extraction of Palmprint Images

It is seen that a palmprint consists of rich textures, lines and wrinkles, which carry
obvious edge information. To better represent there edge features, we employ the edge
operators to exploit gradient features from palmprint images. In this paper, we use the
simple yet effective Kirsch operator [13] to extract the gradient features. Specifically, we
first employ eight Kirsch operators on eight different directions, and convolve them with
the palmprint image to produce eight edge responses. Then, we sort the absolute values of
these edge responses on eight directions. Finally, we select the direction numbers of the
templates with the two maximum edge responses, and encode them as follows:

Gcode = (p1 − 1)× 8 + (p2 − 1), (4)

where p1 and p2 denotes direction number of the Kirsch templates with the top-two abso-
lute edge responses, and they can be similarly calculated as (2) and (3). Gcode represents the
gradient feature codes, which is also ranging from 1 to 62 as the Tcode. Figure 3 shows the
main procedure of the gradient feature extraction and representation, where the direction
number of templates is ordered as Figure 2.

Figure 3. The basic procedure of gradient feature code calculation of a palmprint image. We first
define eight Kirsch templates on eight different directions. Then, we calculate the convolution of the
eight Kirsch templates with the palmprint image to obtain eights edge responses on eight directions.
Finally, we encode the directions of the two templates with the maximum two edge responses into
gradient feature code.

3.3. Direction Feature Extraction of Palmprint Images

From the overview of palmprint descriptors, the directions have served as one of
the most important and discriminative features and achieved promising effectiveness
for palmprint recognition. Motivated by this, in this paper we also extract the direction
features. In general, the common way of direction feature extraction first defines a group
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of direction-based templates, and then convolves these templates with the palmprint
image to obtain the direction responses. Finally, it engineers different encoding schemes to
convert the direction responses into the direction feature codes for palmprint representation
and recognition.

There have been various direction-based templates that were used for direction feature
extraction of palmprint, such as Gabor filters, Gaussian filters and MFRAT. Most existing
studies [17] have shown that the Gabor filter-based templates can better characterize
the direction characteristics, and thus can effectively extract the direction features of a
palmprint. Due to this, in this paper, we also employ the Gabor filters as the direction-
based templates to exploit the direction features of palmprint images. Specially, we first
define twelve direction-based templates based on the real parts of the Gabor filters with
the direction of θj = (j− 1)π/Nθ (j = 1, . . . , Nθ), where Nθ = 12 denotes the number of
templates as well as the direction number. Suppose G(θ) represents the direction-based
templates with direction θ , and I represents a palmprint image, we first calculate the
direction responses of the palmprint by convolving these direction-based templates with
the palmprint image as follows:

cj(x, y) = G(θj) ∗ I(x, y), (j = 1, 2, . . . , Nθ), (5)

where “*” represents the convolution symbol and cj represents the direction responses of
the palmprint on the direction of θj.

To better capture the discriminative direction features, we first select the direction
with the maximum convolving response, referred to as q1, which represents the most
dominant direction features of the palmprint. Furthermore, we select the direction with
the maximum direction response interval to its neighboring directions, where the direction
response interval (DRI) of a direction can be calculated as follows:

DRIj(x, y) = |rj(x, y)− rϕ(j)(x, y)|+ |rj(x, y)− rφ(j)(x, y)|, (6)

where ϕ(j) and φ(j) denotes the two nearest neighboring directions of the direction θj.
ϕ(j) equals Nθ if j= 1, and (j− 1) otherwise. φ(j) equals 1 if j=Nθ , and (j + 1) otherwise.
Therefore, the direction with the maximum direction response interval, referred to as q2,
can be selected as:

q2 = arg max
j

DRIj {j = 1, 2, . . . , Nθ}. (7)

Previous studies have shown that the most dominant direction (i.e., q1) has the com-
petitive discriminative power. In addition, the direction with the maximum DRI has good
reliability because it is hard to be affected by the neighboring directions. Due to these, we
encode these two directions with the maximum convolving response and the maximum
DRI as the direction features of the palmprint:

Dcode(x, y) = (q1 − 1)× Nθ + q2, (8)

where Dcode represents the direction feature code. Figure 4 shows the basic idea of forming
the direction feature code of a palmprint image.
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Figure 4. The basic procedure of direction feature code calculation of a palmprint image. We first
define twelve direction feature templates based on Gabor filters with different directions. Then, we
convolve these templates with the palmprint image to calculate the direction responses of twelve
directions. Finally, we encode the direction with the maximum direction response and the maximum
direction response interval into the direction feature code.

3.4. Feature Matching Fusion

In general, feature level and matching score level are the most two effective schemes
for multiple features fusion. It is note that different types of palmprint features have
different discriminative power, and the feature-level fusion cannot better describe different
features. Due to this, in this paper, we employ the matching score level fusion scheme to
fuse our proposed triple-type palmprint features. Specifically, we first form block-wise
histogram feature descriptors for triple types of palmprint features. Then, we fuse the
matching score of triple types of feature descriptors by setting different weights for them. In
the following, we detail the feature descriptor formation and weighted matching score-level
fusion procedures.

It is well seen that different regions of a palmprint usually have obvious different
vision characters. For example, some regions have more widely distributed lines and
wrinkles, so that these regions contain more gradient and direction features. In order
to overcome the small misalignment and achieve invariant palmprint representation, in
this paper, we form block-wise histogram feature vectors as the feature descriptors for
palmprint representation. Specifically, given a palmprint image, we first calculate the triple
feature code maps of the palmprint image. Then, we divide there palmprint feature maps
into non-overlapping blocks, the sizes of which are empirically set to 16× 16 pixels. Third,
we calculate the histograms of the texture feature codes, gradient feature codes and the
direction feature codes for each block, respectively. Finally, we concatenate the block-wise
feature code histograms into three feature vectors for triple type of features, respectively,
so that triple-type feature descriptors, named as TFD, are obtained for a palmprint image.

Having obtained the triple types of feature descriptors of palmprint images, we use
the simple yet effective Chi-square distance to calculate the similarity of two palmprint
images. We first calculate the Chi-square distance for each pair of triple feature descriptors
of the two compared palmprint images. Then, we fuse the triple Chi-square distances to
form the final matching score of them as follows.

S(u, v) =
3

∑
i=1

wiSi(u, v), (9)

where S(u, v) denotes the matching score of the compared feature descriptors, u and v,
of two compared palmprint images. ui and vi (i = 1, 2, 3) corresponding the feature
descriptors of the texture, gradient, and direction features, respectively. wi > 0 (i = 1, 2, 3)
are the weighted parameters to make a suitable tradeoff the matching results of the triple

feature descriptors, and
3
∑

i=1
wi = 1. Si (i = 1, 2, 3) represent the matching score calculated



Sensors 2021, 21, 4896 9 of 15

by using the Chi-square distance based on the i th feature descriptors, including the texture,
gradient and direction feature descriptors, respectively, which can be calculated as follows:

Si(u, v) =
Ni

∑
k=1

(ui,k − vi,k)
2

ui,k + vi,k
, (10)

where ui,k and vi,k denotes k th bin of the ui and vi, respectively. Ni is the feature size of
the ui and vi feature descriptor. Therefore, a smaller matching score of S(u, v) means of
higher similarity of the two compared palmprint images. By doing this, the similarity of
two palmprint images can be easily calculated for palmprint recognition.

4. Experiment

In this section, we first introduce three widely used palmprint image databases for our
experiments, including the CASIA, IITD and GPDS palmprint image databases. Then, we
conduct palmprint verification and identification experiments and analyze the experimental
results. Finally, we analyze the computational time cost of the proposed method. All
experiments are conducted under a platform including a PC with a double-core Intel(R)
i7-7700 (3.60 GHz) CPU and 16 GB RAM.

4.1. Databases

The CASIA palmprint image database [45] consists of 5502 palmprint images captured
with normal camera from both the left and right palms of 312 subjects. Each palm pro-
vided about 8 to 17 samples of the whole hands. Therefore, the CASIA database contains
612 different classes of palmprint images, so that the IITD database consists of 460 different
classes of palmprint images because the samples of the left and right hands are considered
as different classes. In this experiment, we used the Palmcode method to extract the ROIs
of the palmprint images and resized them into 128 × 128 pixels.

The IITD palmprint image database [46] consists of 2601 contactless palmprint images
captured from 230 individuals of the both left and right hands, each of which provided 5 or
6 images. Therefore, the IITD database consists of 460 different classes of palmprint images
because the samples of the left and right hands are considered as different classes. All the
palmprint images were captured by using common camera in a box, so that the hand poses
such as rotation and translation are different. The ROIs with the sizes of 128 × 128 pixels
have already been cropped and available in the database.

The GPDS palmprint image database [47] consists of 1000 contactless palmprint
images of 100 subjects of the right hands, each of which contains 10 palmprint images as
well as theirs ROIs. In the experiments, all ROIs of the GPDS databases were resized into
128 × 128 pixels.

Figure 5 presented some typical samples of the palmprint images selected from the
CASIA, IITD and GPDS databases. It is seen that that different samples of different
databases shows very different characteristics.
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Figure 5. The typical palmprint image samples selected from the CASIA, IITD and GPDS databases,
respectively, corresponding to the first to third lines.

4.2. Palmprint Verification Results

In this subsection, we conduct palmprint verification experiments on the CASIA, IITD
and GPDS databases. In general, palmprint verification is to compare a query image with a
labeled image to verify whether the query image is from the same individual as the labeled
image or not. In this experiment, we compare each pair of palmprint images from the same
database. A compare is named as genuine matching if the two compared palmprint image
are from the same palm, and otherwise called as an impostor matching. Then, we calculate
the false acceptance rate (FAR) and genuine acceptance rate (GAR) [7] on each database
to evaluate the proposed method. For a fair evaluation, we also implement several state-
of-the-art palmprint presentation and recognition methods, such as competitive code [23],
ordinal code [30], HOL [29], DoN [28], E-BOCV [25], DRCC [39] and ALDC [40] methods,
and compared them with our proposed method. For our proposed TFD method, we
empirically set weighted parameters: w1, w2 and w3 to 0.1, 0.1 and 0.8, respectively. We
will comparatively analyze the settings of these parameters in Section 4.4.

Figure 6 shows the ROC curves, i.e., FAR versus GAR, of our proposed method and
the other compared methods. We can see that our proposed method achieves comparable
and even better GAR than all the seven compared methods against the same FAR. This
is because our proposed method can extensively exploit multiple features of palmprint
images, which can provide more informative information for palmprint representation. By
contrast, the conventional heuristic palmprint recognition methods such as competitive
code, E-BOCV, DoN, only exploit the direction features, which cannot complete represent
the texture and gradient information of palmprint images. In addition, we see that the
proposed method achieves a slight better performance on the IITD database than that
on the CASIA and GPDS databases. The possible reason is that the palmprint images of
the IITD consists of more distinct line patterns than the samples of the CASIA and GPDS
databases. These distinct patterns can provide more discriminative gradient-based and
direction-based features, such that a better recognition accuracy rate can be obtained on
the IITD database.



Sensors 2021, 21, 4896 11 of 15

Figure 6. The ROCs of different methods on the (a) CASIA, (b) IITD, and (c) GPDS databases.

4.3. Palmprint Identification Results

Different palmprint verification, palmprint identification is to compare a query sample
with a group of labeled samples and aims to identify the label of the query sample. In
the palmprint identification experiment, for each database, we first randomly select n
palmprint images per each palm to form a gallery sample set, and use the rest as the
query samples, where n is set to 1 to 4, respectively. Then, we calculate the rank-one
identification accuracy rates of the proposed method and the conventional representative
methods. Specifically, we compare the proposed method with representative palmprint
recognition methods including the competitive code, ordinal code, HOL, DoN, EBOCV,
DRCC and ALDC. Moreover, the representative texture descriptors such as LBP [48] and
LDP [49] were also implemented and compared. For fair comparisons, all methods were
repeated 10 times and the average identification accuracy rates were reported. Table 1
tabulates the average rand-one identification results of the different methods on the CASIA,
IITD, and GPDS databases.

Table 1. The average rank-one identification accuracies of different methods on the CASIA, IITD,
and GPDS databases.

LBP LDP Competitive Ordinal HOL DoN EBOCV DRCC ALDC TFD

48.36 52.39 55.21 47.26 83.03 59.99 60.50 58.79 86.16 88.55
60.83 63.47 66.49 67.66 88.37 74.25 75.55 70.24 92.03 94.35
71.21 72.12 79.45 75.92 92.45 80.03 82.83 78.59 93.65 95.55CASIA

72.30 72.65 79.27 73.26 94.87 80.37 84.06 81.45 94.64 96.88

43.64 43.87 45.92 42.25 84.88 60.71 60.73 55.81 85.07 89.04
58.33 59.62 65.16 58.77 93.19 68.12 74.31 73.44 93.53 94.97
62.12 62.87 72.25 70.73 95.12 73.43 84.10 80.14 96.15 96.83IITD

64.56 64.44 79.79 76.43 96.80 80.69 87.96 85.04 97.00 97.47

50.23 52.74 61.73 56.18 79.35 61.16 60.56 47.77 85.53 85.55
66.12 68.33 75.88 74.68 91.37 75.78 75.60 68.70 92.85 95.30
69.43 70.20 80.03 82.17 93.31 80.13 84.71 75.22 95.05 96.34GPDS

70.75 70.87 86.03 85.53 96.10 85.71 87.16 81.23 97.70 98.33

From Table 1, we can see that our proposed method consistently outperforms the
nine compared by achieving obviously higher rand-one identification rates than the others.
Specifically, our proposed method achieves much better accuracy rates than the direction-
based palmprint recognition methods such as competitive code, DoN and DRCC. The
possible reason is that, compared with the direction-based methods, our proposed method
not only extracts the direction-type features but also exploits the texture-type and gradient-
type features, which can provide more informative and discriminative features over the
direction features, so that higher identification accuracy rates can be obtained. Moreover,
our proposed method significantly improves the identification accuracy rates over the LBP
and LDP methods. This is because the LBP and LDP only describe the single-type features
such as texture-based and edge-based features. By contrast, our proposed method can
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extract more direction-based and gradient-based features, which have shown promising
discriminative power for palmprint recognition, such as a better recognition accuracy rate
can be obtained.

4.4. Parameter Analysis

Our proposed method extracts triple types of palmprint features and fuse them in a
weighted matching score level fusion scheme. To evaluate the importance and discrimina-
tive power of different types of features, we set different values of weighted parameters
and compare the identification performance of the proposed method. It is impractical to
enumerate all possible values for these parameters. Due to this, in this experiment, we
first set w1 with the values ranging from 0 to 1 with the interval of 0.1, and set w2 from 0
to 1− w1 with the interval of 0.1. Accordingly, we set the w3 as: w3 = 1− w1 − w2. After
that, we perform palmprint identification with the proposed method on the CASIA, IITD
and GPDS databases, where one palmprint image per palm was randomly selected as the
gallery sample. Figure 7 describes the comparative accuracy rates of the proposed method
versus different values of the parameters.

Figure 7. The average identification accuracy rates of the proposed method versus different values of weighted parameters
on the (a) CASIA, (b) IITD, and (c) GPDS databases.

We can see from Figure 7 that the proposed method usually performs the best when
w1 and w2 are set to around 0.1 to 0.3, and accordingly w3 is set to about 0.7 to 0.8.
This demonstrates that the direction features of palmprint images usually convey more
discriminative features than the other two types of features. This is consistent with the
existing studies that the state-of-the-art palmprint methods usually extract the direction
features for palmprint recognition. In addition, the experimental results also clearly show
that, by combining the triple types of features with set suitable weights, the proposed
method can achieve obvious better recognition performance than the single-type feature
representation, demonstrating the effectiveness of the proposed method.

4.5. Computational Time Analysis

To evaluate the efficiency of feature extraction of our proposed method, in this subsec-
tion, we calculate the time cost of our proposed method for feature extraction. Moreover,
we compared the computational cost of the proposed method with state-of-the-art feature
extraction methods such as competitive code, ordinal code, EBOCV, DoN and DRCC meth-
ods. For a fair evaluation and comparison, we extract the features of 100 palmprint images
based on different methods and report the average time taken of feature extraction for a
palmprint image. Table 2 summarizes the average feature extraction time taken of different
methods. We can see that the proposed method achieves a slight higher time cost than
the compared methods. The possible reason is that our proposed method extracts triple
times of features than the other feature descriptors. It is worth noting that our proposed
method takes about 0.05 s for feature extraction for a palmprint image, which is acceptable
for practical applications. Therefore, since our proposed method can significantly improve
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the recognition accuracy over the existing methods, our proposed TFD method can make a
good tradeoff when the recognition effectiveness and efficiency are both concerned.

Table 2. The average time taken (in second) of different methods for extracting the features of a
palmprint image.

Methods Feature Extraction Time Taken

Competitive 0.0136
Ordinal 0.0152
EBOCV 0.0201
DoN 0.0102
DRCC 0.21
TFD 0.0225

5. Conclusions

In this paper, we propose a triple-type feature descriptor for palmprint recognition. To
completely exploit the discriminative features, our proposed method respectively extracts
the texture-type, gradient-type and direction-type features, which are the most important
components of a palmprint image. Then, we use the simple and effective matching score
level fusion to combine triple-type features for palmprint matching. Extensive experiments
on three challenging palmprint databases clearly show that our proposed method outper-
forms previous palmprint descriptors. For future work, we will further explore other types
of hand-crafted features to further improve the performance for palmprint recognition.

Author Contributions: L.W. conceived of the presented idea and wrote 80% content of this paper.
Y.X. also conceived the main idea and revised this paper. Z.C. carried out the experiments and wrote
20% content of this paper. Y.Z. revised this paper and provided helpful comments for this paper. S.Z.
conducted some experiments and revised this paper. L.F. conceived of the idea and provided some
comments. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partly supported by Key Disciplines of Guizhou Province-Computer Science
and Technology (No. ZDXK[2018]007), the Science and Technology Foundation of Guizhou Province
(No. QianKeHeJiChu-ZK[2021]YiBan 334), Research Projects of Innovation Group of Guizhou
Provincial Department of Education (No. QianJiaoHeKY[2021]022), and Guizhou Provincial Service
Industry Development Guide fund project in 2018 (The Third Batch, No. QianFaGaiFuWu[2018]1181).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Zhang, D. Automated Biometrics: Technologies and Systems; Springer Science & Business Media: New York, NY, USA, 2013.
2. Rida, I.; Máadeed, N.; Máadeed, S.A.; Bakshi, S. A comprehensive overview of feature representation for biometric recognition.

Multimed. Tools Appl. 2020, 79, 4867–4890. [CrossRef]
3. Fei, L.; Zhang, B.; Tian, C.; Teng, S.; Wen, J. Jointly learning multi-instance hand-based biometric descriptor. Inf. Sci. 2021, 562,

1–12. [CrossRef]
4. Lu, J.; Liong, V.; Zhou, J. Simultaneous local binary feature learning and encoding for homogeneous and heterogeneous face

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1979–1994. [CrossRef] [PubMed]
5. Liu, F.; Zhao, Y.; Liu, G.; Shen, L. Fingerprint pore matching using deep features. Pattern Recognit. 2020, 102, 107208. [CrossRef]
6. Rida, I.; Máadeed, N.; Máadeed, S. Robust gait recognition: A comprehensive survey. IET Biom. 2019, 8, 14–28. [CrossRef]
7. Zhang, D.; Kong, W.K.; You, J.; Wong, L.M. Online palmprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 20039, 25,

1041–1050. [CrossRef]
8. Zhang, D.; Kong, W.K.; You, J.; Wong, L.M. A survey of palmprint recognition. Pattern Recognit. 2009, 42, 1408–1418.
9. Zhang, D.; Zuo, W.; Yue, F. A comparative study of palmprint recognition algorithms. ACM Comput. Surv. 2012, 44, 1–37.

[CrossRef]
10. Fei, L.; Xu, Y.; Zhang, B.; Fang, X.; Wen, J. Low-rank representation integrated with principal line distance for contactless

palmprint recognition. Neurocomputing 2016, 218, 264–275. [CrossRef]

http://doi.org/10.1007/s11042-018-6808-5
http://dx.doi.org/10.1016/j.ins.2021.01.086
http://dx.doi.org/10.1109/TPAMI.2017.2737538
http://www.ncbi.nlm.nih.gov/pubmed/28796611
http://dx.doi.org/10.1016/j.patcog.2020.107208
http://dx.doi.org/10.1049/iet-bmt.2018.5063
http://dx.doi.org/10.1109/TPAMI.2003.1227981
http://dx.doi.org/10.1145/2071389.2071391
http://dx.doi.org/10.1016/j.neucom.2016.08.048


Sensors 2021, 21, 4896 14 of 15

11. Zhang, L.; Li, L.; Yang, A.; Shen, Y.; Yang, M. Towards contactless palmprint recognition: A novel device, a new benchmark, and
a collaborative representation based identification approach. Pattern Recognit. 2017, 69, 199–212. [CrossRef]

12. Jia, W.; Zhang, B.; Lu, J.; Zhu, Y.; Zhao, Y.; Zuo, W.; Ling, H. Palmprint recognition based on complete direction representation.
IEEE Trans. Image Process. 2017, 26, 4483–4498. [CrossRef] [PubMed]

13. Luo, Y.; Zhao, L.; Zhang, B.; Jia, W.; Xue, F.; Lu, J.; Zhu, Y.; Xu, B. Local line directional pattern for palmprint recognition. Pattern
Recognit. 2016, 50, 26–44. [CrossRef]

14. Zhao, S.; Zhang, B. Learning complete and discriminative direction pattern for robust palmprint recognition. IEEE Trans. Image
Process. 2021, 30, 1001–1014. [CrossRef] [PubMed]

15. Máadeed, S.; Jiang, X.; Rida, I. Palmprint identification using sparse and dense hybrid representationm. Multimed. Tools Appl.
2019, 78, 5665–5679. [CrossRef]

16. Rida, I.; Máadeed, S.; Jiang, X.; Fei, L. An Ensemble Learning Method Based on Random Subspace Sampling for Palmprint
Identification. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK,
12–17 May 2019; pp. 2047–2051.

17. Fei, L.; Lu, G.; Jia, W.; Teng, S.; Zhang, D. Feature extraction methods for palmprint recognition: A Survey and Evaluation. IEEE
Trans. Syst. Man Cybern. Syst. 2019, 49, 346–363. [CrossRef]

18. Dai, J.; Feng, J.; Zhou, J. Robust and efficient ridge-based palmprint matching. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34,
1618–1632.

19. Fei, L.; Zhang, B.; Jia, W.; Wen, J. Feature extraction for 3-D palmprint recognition: A Survey. IEEE Trans. Instrum. Meas. 2020, 69,
645–656. [CrossRef]

20. Dai, Q.; Bi, N.; Huang, D. M-band wavelets application to palmprint recognition based on texture features. In Proceedings of the
International Conference on Image Processing, Singapore, 24–27 October 2004; pp. 893–896.

21. Huang, D.S.; Jia, W.; Zhang, D. Palmprint verification based on principal lines. Pattern Recognit. 2008, 41, 1316–1328. [CrossRef]
22. Wu, X.; Zhang, D.; Wang, K. Palm Line Extraction and Matching for Personal Authentication. IEEE Trans. Syst. Man Cybern. 2006,

36, 978–987.
23. Kong, A.W.-K.; Zhang, D. Competitive Coding Scheme for Palmprint Verification In Proceedings of the International Conference

on Pattern Recognition, Cambridge, UK, 23–26 August 2004; pp. 520–523.
24. Guo, Z.; Zhang, D.; Zhang, L. Palmprint verification using binary orientation co-occurrence vector. Pattern Recognit. Lett. 2009, 30,

1219–1227. [CrossRef]
25. Zhang, L.; Li, H.; Niu, J. Fragile Bits in Palmprint Recognition. IEEE Signal Process. Lett. 2012, 19, 663–666. [CrossRef]
26. Fei, L.; Xu, Y.; Tang, W. Double-orientation code and nonlinear matching scheme for palmprint recognition. Pattern Recognit.

2016, 49, 89–101. [CrossRef]
27. Jia, W.; Huang, D.; Zhang, D. Palmprint verification based on robust line orientation code. Pattern Recognit. 2008, 41, 1504–1513.

[CrossRef]
28. Zheng, Q.; Kumar, A.; Pan, G. A 3D feature descriptor recovered from a single 2D palmprint image. IEEE Trans. Pattern Anal.

Mach. Intell. 2016, 38, 1272–1279. [CrossRef] [PubMed]
29. Jia, W.; Hu, R.X.; Lei, Y.K.; Zhao, Y.; Gui, J. Histogram of oriented lines for palmprint recognition. IEEE Trans. Syst. 2014, 44,

385–395. [CrossRef]
30. Sun, Z.; Wang, L.; Tan, T. Ordinal feature selection for iris and palmprint recognition. IEEE Trans. Image Process. 2014, 23,

3922–3934. [CrossRef] [PubMed]
31. Lu, G.; Zhang, D.; Wang, K. Palmprint recognition using eigenpalms features. Pattern Recognit. Lett. 2003, 24, 1463–1467.

[CrossRef]
32. Rida, I.; Máadeed, S. Palmprint identification using an ensemble of sparse representations. IEEE Access 2018, 6, 3241–3248.

[CrossRef]
33. Rida, I.; Hérault, R.; Marcialis, G.; Gasso, G. Palmprint recognition with an efficient data driven ensemble classifier. Pattern

Recognit. Lett. 2019, 126, 21–30. [CrossRef]
34. Svoboda, J.; Masci, J.; Bronstein, M.M. Palmprint recognition via discriminative index learning. In Proceedings of the International

Conference on Pattern Recognition, Cancún, Mexico, 4–8 December 2016; pp. 1–6.
35. Fei, L.; Zhang, B.; Xu, Y.; Tian, C.; Imad, R.; Zhang, D. Jointly heterogeneous palmprint discriminant feature learning. IEEE Trans.

Neural Networks Learn. Syst. 2021, 1–12. [CrossRef]
36. Genovese, A.; Piuri, V.; Plataniotis, K.; Scotti, F. PalmNet: Gabor-PCA convolutional networks for touchless palmprint recognition.

Pattern Recognit. Lett. 2019, 14, 3160–3174. [CrossRef]
37. Aykut, M.; Ekinci, M. Developing a contactless palmprint authentication system by introducing a novel ROI extraction method.

Image Vis. Comput. 2015, 40, 65–74. [CrossRef]
38. Fei, L.; Zhang, B.; Xu, Y.; Guo, Z.; Wen, J. Learning discriminant direction binary palmprint descriptor. IEEE Trans. Image Process.

2019, 28, 3808–3820. [CrossRef]
39. Xu, Y.; Fei, L.; Wen, J.; Zhang, D. Discriminative and robust competitive code for palmprint recognition. IEEE Trans. Syst. 2018,

48, 232–241. [CrossRef]
40. Fei, L.; Zhang, B.; Zhang, W.; Teng, S. Local apparent and latent direction extraction for palmprint recognition. Inf. Sci. 2019, 473,

59–72. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2017.04.016
http://dx.doi.org/10.1109/TIP.2017.2705424
http://www.ncbi.nlm.nih.gov/pubmed/28541201
http://dx.doi.org/10.1016/j.patcog.2015.08.025
http://dx.doi.org/10.1109/TIP.2020.3039895
http://www.ncbi.nlm.nih.gov/pubmed/33270561
http://dx.doi.org/10.1007/s11042-018-5655-8
http://dx.doi.org/10.1109/TSMC.2018.2795609
http://dx.doi.org/10.1109/TIM.2020.2964076
http://dx.doi.org/10.1016/j.patcog.2007.08.016
http://dx.doi.org/10.1016/j.patrec.2009.05.010
http://dx.doi.org/10.1109/LSP.2012.2211589
http://dx.doi.org/10.1016/j.patcog.2015.08.001
http://dx.doi.org/10.1016/j.patcog.2007.10.011
http://dx.doi.org/10.1109/TPAMI.2015.2509968
http://www.ncbi.nlm.nih.gov/pubmed/27164564
http://dx.doi.org/10.1109/TSMC.2013.2258010
http://dx.doi.org/10.1109/TIP.2014.2332396
http://www.ncbi.nlm.nih.gov/pubmed/25029458
http://dx.doi.org/10.1016/S0167-8655(02)00386-0
http://dx.doi.org/10.1109/ACCESS.2017.2787666
http://dx.doi.org/10.1016/j.patrec.2018.04.033
http://dx.doi.org/10.1109/TNNLS.2021.3066381
http://dx.doi.org/10.1109/TIFS.2019.2911165
http://dx.doi.org/10.1016/j.imavis.2015.05.002
http://dx.doi.org/10.1109/TIP.2019.2903307
http://dx.doi.org/10.1109/TSMC.2016.2597291
http://dx.doi.org/10.1016/j.ins.2018.09.032


Sensors 2021, 21, 4896 15 of 15

41. Fei, L.; Zhang, B.; Zhang, L.; Jia, W.; Wen, J.; Wu, J. Learning compact multifeature codes for palmprint recognition from a single
training image per palm. IEEE Trans. Multimed. 2020, 1–13. [CrossRef]

42. Modak, S.; Jha, V. Multibiometric fusion strategy and its applications: A review. Inf. Fusion 2019, 49, 174–204. [CrossRef]
43. Poh, N.; Kitler, J. A unified framework for biometric expert fusion incorporating quality measures. IEEE Trans. Pattern Anal. Mach.

Intell. 2011, 34, 3–31. [CrossRef]
44. Jing, X.; Yao, Y.; Zhang, D. Face and palmprint pixel level fusion and kernel DCV-RBF classifier for small sample biometric

recognition. Pattern Recognit. 2007, 40, 3209–3224. [CrossRef]
45. CASIA Palmprint Image Database. Available online: http://biometrics.idealtest.org/ (accessed on 15 January 2005).
46. IITD Palmprint Image Database (Version1.0). Available online: http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database-

Palm.htm (accessed on 15 June 2008).
47. GPDS Palmprint Image Database. Available online: http://www.gpds.ulpgc.es (accessed on 15 May 2011).
48. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-Scale and rotation invariant texture classification with local binary

patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]
49. Jabid, T.; Kabir, M.; Chae, O. Robust facial expression recognition based on local direction pattern. ETRJ J. 2010, 32, 784–794.

[CrossRef]

http://dx.doi.org/10.1109/TMM.2020.3019701
http://dx.doi.org/10.1016/j.inffus.2018.11.018
http://dx.doi.org/10.1109/TPAMI.2011.102
http://dx.doi.org/10.1016/j.patcog.2007.01.034
http://biometrics.idealtest.org/
http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database-Palm.htm
http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database-Palm.htm
http://www.gpds.ulpgc.es
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.4218/etrij.10.1510.0132

	Introduction
	Related Work
	Preprocessing of Palmprint Images
	Feature Extraction for Palmprint Representation
	Multiple Feature Fusion

	Triple-Type Feature Encoding and Matching
	Texture Feature Extraction of Palmprint Images
	Gradient Feature Extraction of Palmprint Images
	Direction Feature Extraction of Palmprint Images
	Feature Matching Fusion

	Experiment
	Databases
	Palmprint Verification Results
	Palmprint Identification Results
	Parameter Analysis
	Computational Time Analysis

	Conclusions
	References

