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Abstract 

Background:  Hepatocellular carcinoma (HCC) has become a global health issue of wide concern due to its high 
prevalence and poor therapeutic efficacy. Both tumor doubling time (TDT) and immune status are closely related to 
the prognosis of HCC patients. However, the association between TDT-related genes (TDTRGs) and immune-related 
genes (IRGs) and the value of their combination in predicting the prognosis of HCC patients remains unclear. The cur-
rent study aimed to discover reliable biomarkers for anticipating the future prognosis of HCC patients based on the 
relationship between TDTRGs and IRGs.

Methods:  Tumor doubling time-related genes (TDTRGs) were acquired from GSE54236 by using Pearson correlation 
test and immune-related genes (IRGs) were available from ImmPort. Prognostic TDTRGs and IRGs in TCGA-LIHC data-
set were determined to create a prognostic model by the LASSO-Cox regression and stepwise Cox regression analysis. 
International Cancer Genome Consortium (ICGC) and another cohort of individual clinical samples acted as external 
validations. Additionally, significant impacts of the signature on HCC immune microenvironment and reaction to 
immune checkpoint inhibitors were observed.

Results:  Among the 68 overlapping genes identified as TDTRG and IRG, a total of 29 genes had significant prognostic 
relevance and were further selected by performing a LASSO-Cox regression model based on the minimum value of λ. 
Subsequently, a prognostic three-gene signature including HECT domain and ankyrin repeat containing E3 ubiquitin 
protein ligase 1 (HACE1), C-type lectin domain family 1 member B (CLEC1B), and Collectin sub-family member 12 
(COLEC12) was finally identified by stepwise Cox proportional modeling. The signature exhibited superior accuracy 
in forecasting the survival outcomes of HCC patients in TCGA, ICGC and the independent clinical cohorts. Patients 
in high-risk subgroup had significantly increased levels of immune checkpoint molecules including PD-L1, CD276, 
CTLA4, CXCR4, IL1A, PD-L2, TGFB1, OX40 and CD137, and are therefore more sensitive to immune checkpoint inhibi-
tors (ICIs) treatment. Finally, we first found that overexpression of CLEC1B inhibited the proliferation and migration 
ability of HuH7 cells.

Conclusions:  In summary, the prognostic signature based on TDTRGs and IRGs could effectively help clinicians clas-
sify HCC patients for prognosis prediction and individualized immunotherapies.
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Background
Hepatocellular carcinoma (HCC) is considered an 
aggressive malignancy, and has become a global health 
issue of wide concern due to its high prevalence and 
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poor therapeutic efficacy [1]. The incidence and mortal-
ity of HCC have emerged rapidly on the background of 
increased alcohol abuse, cirrhosis, aflatoxin exposure, 
diabetes, metabolic syndrome, and obesity. With the 
rapid developments in immunotherapy, HCC patients 
could access potential treatment strategies including 
Sorafenib, Lenvatinib, and Atezolizumab [2], while not 
all the patients could benefit from these immune-based 
therapies due to the complex immune status of HCC 
[3–5]. Tumor doubling time (TDT), a classic biomarker 
reflecting tumor growth patterns, has some implica-
tions for general management of tumor patients includ-
ing anticancer treatment reactivity and outcome, tumor 
histologic type prediction, and best surveillance inter-
vals determination [6–9]. When gradual and predictable 
tumor growth was determined based on TDT, patients 
with indolent or aggressive tumors could be identified at 
an early stage and receive follow-up treatment to improve 
final survival, which may reduce the mental and financial 
burden caused by overdiagnosis or missed diagnosis [9–
11]. What’s more, TDT was highly associated with tumor 
vascular invasion and recurrence [12] and could be 
regarded as a reliable predictor of sorafenib’s therapeutic 
effect [7], suggesting that TDT might have a significant 
relationship with the cancer immune status. Further-
more, immunotherapy is becoming the new standard of 
treatment for advanced stages, considering its increas-
ing use worldwide to treat HCC patients, although the 
inadequate immune response has been a growing con-
cern [13]. However, the association between TDT-related 
genes (TDTRGs) and immune-related genes (IRGs) and 
the value of their combination in predicting the progno-
sis of HCC patients remains unclear. In the present study, 
a novel prognostic signature based on currently available 
TDTRGs and IRGs could efficiently classify HCC patients 
for prognosis and individualized immunotherapies.

Materials and methods
Public datasets and generation of TDTRGs and IRGs
The mRNA expression data and clinical characteristics 
of HCC patients from three publicly available datasets 
including TCGA-LIHC, GSE54236, and ICGC (LIRI-JP) 
were incorporated into the present study. Genes with 
a cut-off criterion of adjust P value < 0.01 and Pearson 
correlation coefficient > 0.3 in GSE54236 were consid-
ered TDTRGs. IRGs were available from the Immunol-
ogy Databases and Analysis Portal (ImmPort) database 
(https://​www.​immpo​rt.​org/​home) [14].

Prognostic risk score model construction and functional 
analysis
The univariable Cox regressions were first performed 
to calculate the association between overlapped genes 

of TDTRGs and IRGs and survival outcomes in TCGA-
LIHC cohort. Then LASSO-Cox regression method and 
stepwise Cox regression analysis were performed to 
evaluate the above prognosis-related genes and establish 
a prognostic signature. A risk score was finally estab-
lished based on the basis of linearly combining the for-
mula below with the mRNA expression level multiplied 
by the multivariate Cox regression coefficient (β) model. 
Risk score = (βmRNA1 × mRNA1) + (βmRNA2 × mRNA2) + 
… + (βmRNAn × mRNAn). We stratified patients in TCGA 
dataset into two subgroups due to the optimal risk score 
threshold. The predictive power and independence of the 
prognostic signature in TCGA were assessed by ROC 
analysis, Kaplan–Meier survival analysis, and Cox pro-
portional hazards regression analysis. Gene set enrich-
ment analysis (GSEA) between the two subgroups was 
performed to identify the significantly alerted Hallmarks 
with FDR < 0.05. Annotated gene set h.all.v7.2.symbol.
gmt (Hallmarks) was chosen as the reference gene set.

Clinical specimens and quantitative real‑time PCR 
(qRT‑PCR) analysis
Fresh frozen tumor tissues from previously collected 
HCC patients were selected as an independent validation 
cohort [15]. qRT-PCR was used to detect the mRNA lev-
els of genes in the model [16]. After the relative mRNAs 
expression levels were normalized to β-ACTIN and log2 
transformed, patients were stratified into two subgroups 
according to the above formula. Primer sequences are 
showed in Additional file 3: Table S1.

Immune status calculation and immune infiltrates analysis
The immune status of each sample was assessed by apply-
ing the ESTIMATE algorithm [17] to the TCGA cohort 
and calculating immune and stromal scores, and the 
association between risk scores and immune, stromal 
scores were analyzed by Pearson correlation analysis. To 
explore the impacts of the prognostic model on immuno-
therapies, we calculated the relationship among risk score 
and 15 potentially available targeted immune checkpoint 
genes in TCGA-LIHC, including CCL2, CD274, CD276, 
CD4, CTLA4, CXCR4, IL1A, IL6, LAG3, PDL1, PDL2, 
TGFB1, OX40, CD137 and CDX40L [18]. Furthermore, 
to assess the potential association between prognostic 
signature and tumor-infiltrating immune cells (TIICs) 
in the HCC microenvironment, the TCGA database 
was used to measure the abundance ratios of 22 types of 
TIICs through CIBERSORT [19] (http://​ciber​sort.​stanf​
ord.​edu/). Finally, the predictive ability of significantly 
changed TIICs was assessed by Kaplan–Meier survival 
analysis.

https://www.immport.org/home
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
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Genetic alterations and TMB analysis
The mutation and CNA data of 361 HCC patients were 
downloaded from TCGA to analyze the difference of 
genetic alterations between the high- and low-risk score 
subgroups with R package “maftools”, and the tumor 
mutation burden (TMB) of each patient was subse-
quently assessed.

Cell culture, plasmids construction, and cell infection
HuH7 cells purchased from ATCC were cultured in rec-
ommended DMEM medium (Sangon Biotech, China) 
with 10% fetal bovine serum (FBS, Sangon Biotech, 
Shanghai, China) in 100% humidity at 37  °C with 5% 
CO2. Lentiviral vector encoding the full-length human 
CLEC1B DNA sequence (Ubi- CLEC1B -3FLAG-SV40-
EGFP-IRES-puromycin) and empty vector were selected 
for generating stable overexpressing (OE) and negative 
control (OE-NC) stable cell lines using lipofectamine™ 
3000 transfection reagent (Invitrogen, Carlsbad, USA) 
according to the manufacturer’s instructions.

Cell proliferation and migration assay
The viability of cells was assessed through the cell count-
ing kit-8 (CCK-8, Sangon Biotech, Shanghai, China) in 
accordance with the manufacturer’s instructions. For 
the CCK-8 assay, in short, cells were seeded in 96-well 
cell culture clusters at a density of 1 × 105 cells per well 
and cultured for 1  day, 2  days, and 3  days, respectively. 
After culturing, 10 μL CCK-8 solution was added into 
each well, and then the absorbance was detected at 
a wavelength of 450  nm within 4  h with a microplate 
reader. For the wound-healing assay, cells were seeded 
in 6-well plates and cultured to approximately 80% con-
fluence in serum-free medium and then cell monolayers 
were scratched with a sterile pipette tip. Cells were cul-
tured in DMEM medium with 10% FBS for the next 24 h 
after removal of cell debris by PBS washing. The area of 
the wound width was measured after photographing the 
wound width of the cell monolayers. Three independ-
ent duplicates needed to ensure the accuracy in this 
assay and the wound closure rate was calculated as [1—
(wound area / original wound area)] from photographs. 
For the transwell assay, after transwell filters were coated 
with Matrigel, cultured cells were resuspended in 200 
μL serum-free DMEM at a density of 1 × 104 cells per 
mL, and plated into the transwell inserts while the wells 
were filled with 500 μL DMEM supplemented with 10% 
FBS. After incubated at 37℃ for 48  h, cells attached to 
the downside of the transwell filters were stained with 
0.1% crystal violet in PBS for 15 min and counted under 
microscopy at 200 × magnification.

Statistical analysis
Categorical data were compared with Pearson chi-square 
test or Fisher exact test whenever appropriate, and 
quantitative variables were analyzed using independent-
samples t test. ROC curve analysis and Kaplan–Meier 
survival analysis were performed to assess the predic-
tion performance of survival outcomes with R software 
(Version 4.0.3). Cox proportional model was performed 
to analyze the relationship between prognostic signature 
and survival outcomes, together with other clinical fea-
tures. Clinical characteristics of HCC patients in TCGA, 
ICGC and clinical validation cohorts were showed in 
Additional file 3: Table S2. Results were considered statis-
tically significant when P value < 0.05.

Results
Identification of overlapped genes in TDTRGs and IRGs
With the cut-off criterion of adjust P value < 0.01 and 
Pearson correlation coefficient > 0.3, 1539 genes in 
GSE54236 were considered TDTRGs. Then 68 genes 
were identified as overlapped genes of TDTRGs and IRGs 
(Fig.  1A). The expression levels of the 68 overlapping 
genes in normal and tumor tissues in the TCGA-LIHC 
dataset were shown in Fig. 1B. Results of Go and KEGG 
analysis indicated that these overlapped genes were 
majorly associated with immune response and inflamma-
tion (Fig. 1C).

Establishment of a prognosis‑related signature in TCGA​
As calculated by univariable Cox regression, 29 of the 
68 overlapped genes had significant prognostic rel-
evance (Fig.  2A) and were further analyzed. The cor-
relations between these prognostic genes were shown 
in Fig.  2B. Then the most valuable prognostic genes 
among the 29 genes above were selected by performing 
the LASSO-Cox regression model based on the mini-
mum value of λ (Fig.  2C) and a prognostic three-gene 
signature was finally identified via a stepwise Cox pro-
portional model. Risk score = (0.2984276 × HACE1) + (
0.1782599 × COLEC12) – (0.2154380 × CLEC1B). Risk 
scores for HCC patients were calculated with the above 
formula, and patients were stratified into high- or low-
risk subgroups with an optimal risk score threshold 
(Fig. 2D). The association between risk score and clini-
cal characteristics including age, gender, grade, stage, 
vascular invasion, value of AFP, cirrhosis, and tumor 
status were evaluated. The results revealed that higher 
risk scores were linked to advanced TNM stage, later 
grade, later T stage, and recurrence (Additional file  1: 
Figure S1). Kaplan–Meier survival analysis revealed 
that patients with higher risk scores were significantly 
relevant to poorer survival outcomes (Fig.  2E). In 
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addition, further stratified survival analysis was applied 
for different clinical characteristics, and the results 
demonstrated that this prognostic model could further 
differentiate patients with different clinical characteris-
tics including age, vascular invasion, grade, recurrence, 
TNM stage, gender, and AFP value (Additional file  2: 

Figure S2). Finally, ROC analysis revealed that this sig-
nature had a good prognostic performance with AUCs 
at 1-, 2-, 3-year of 0.780, 0.668, 0.692 (Fig. 2F). Finally, 
the relationship between risk score and TDT was ana-
lyzed, and we found that HCC patients in the high-risk 
group had significantly shorter TDT (Fig. 2G).

Fig. 1  Identification of overlapped genes in TDTRGs and IRGs. A 68 overlapped genes in TDTRGs and IRGs. B The expression of overlapped genes in 
TCGA-LIHC. C GO and KEGG analysis of overlapped genes

(See figure on next page.)
Fig. 2  Construction and survival analysis of three-gene signature in TCGA. A Forest plots showing the results of 29 prognosis-related overlapping 
genes to univariate Cox analysis. B Correlation analysis of 29 overlapping genes. C Adjustment of parameter selection in LASSO-Cox analysis by 10 
cross-validations. D Distribution of risk scores, OS status, and gene expression profiles. E Kaplan–Meier survival plot. F Characteristics in ROC analysis 
for predicting 1, 2, and 3-year OS rates. G TDT difference between the two subgroups
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Fig. 2  (See legend on previous page.)
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Verification of the signature in ICGC cohort and clinical 
cohort
To validate the signature, the ICGC dataset and a 
clinical cohort were applied as validation cohorts. 
Risk scores of patients were calculated with the same 
formula, and patients were stratified into high- or 
low-risk subgroups in the ICGC cohort (Fig.  3A) and 
the clinical cohort (Fig.  3D). Kaplan–Meier survival 
analysis revealed that patients with higher risk scores 
were prominently relevant to poorer OS rates in the 
ICGC cohort (Fig. 3B), as well as in the clinical cohort 
(Fig.  3E). ROC analysis revealed that this signature 
had a good prognostic performance with AUCs at 1-, 
2-, 3-year of 0.641, 0.618, 0.639 in the ICGC cohort 
(Fig.  3C) and 0.775, 0.638, 0.705 in the clinical cohort 
(Fig. 3F), respectively.

Establishment of a nomogram model in TCGA​
To investigate the coefficient prediction efficiency of this 
signature, a nomogram model was established in the 
TCGA dataset, and the result revealed that the nomo-
gram with a C-index of 0.713 could help us provide a 
quantitative method for predicting the 1-, 2-, 3-year sur-
vival rate accurately (Fig.  4A). The overlap between the 
forecasted and actual probabilities of 1-, 2-, 3-year sur-
vival rate in the calibration curves indicated good agree-
ment (Fig. 4B–D).

Functional analysis and immune status calculation
To investigate the essential molecular mechanisms within 
this three-gene signature, Gene Set Enrichment Analysis 
(GSEA) was performed to identify significantly alerted 
biological processes and pathways. Annotated gene set 
h.all.v7.2.symbol.gmt (Hallmarks) was chosen as the ref-
erence gene set. Five Hallmarks with FDR < 0.05 were 
enriched in this signature, including adipogenesis, fatty 
acid metabolism, oxidative phosphorylation, TNFA sign-
aling via NFKB, and xenobiotic metabolism (Fig.  5A). 
According to the results of the ESTIMATE algorithm, 
risk scores was significantly associated with immune 
scores, as well as stromal scores (Fig.  5B), and patients 
in the low-risk subgroup had higher immune scores and 
stromal scores when compared with patients in the high-
risk subgroup (Fig. 5C), indicating that this signature was 
closely related to tumor immune status. In the following, 
the expression levels of 15 potentially targetable immune 
checkpoint genes were compared between the two sub-
groups in the TCGA database, and results showed that 
patients in the high-risk subgroup had significantly 
increased PD-L1, CD276, CTLA4, CXCR4, IL1A, PD-L2, 
TGFB1, OX40 and CD137 (Fig.  5D), indicating that 

immune checkpoint inhibitors (ICIs) treatment were 
more effective for patients in high-risk subgroup.

Immune infiltrates analysis
Based on the CIBERSORT algorithm, the differences 
and correlations of 22 types of TIICs in two subgroups 
in TCGA were assessed by Wilcoxon signed-rank  test 
and Pearson correlation analysis, respectively. Difference 
analysis demonstrated that HCC patients in the low-risk 
score subgroup had modestly increased ratios of plasma 
cells, CD4 memory resting T cells, resting NK cells, and 
monocytes, while patients in high-risk score subgroup 
had significantly elevated ratios of follicular helper T cells 
(Fig. 6A). Pearson correlation analysis indicated that six 
types of TIICs were significantly associated with the risk 
scores, including plasma cells, CD 8 T cells, resting NK 
cells, follicular helper T cells, resting dendritic cells, and 
monocytes (Fig.  6B). Furthermore, plasma cells, rest-
ing NK cells, follicular helper T cells, and monocytes 
were considered as overlapping TIICs (Fig. 6C). Among 
the four overlapped TIICs, unfortunately, Kaplan–Meier 
survival analysis revealed that only plasma cells were 
prominently relevant to poor survival outcomes in HCC 
patients (Fig. 6D).

Genetic alterations and TMB analysis
The results of genetic alterations analysis indicated that 
the top 10 most significantly mutated genes were TP53, 
TTN, CTNNB1, MUC16, ALB, PCLO, APOB, MUC4, 
RYR2, and ABCA13 in the TCGA cohort (Fig.  7A). In 
addition, the mutation rates of the above genes were 
remarkably different in the two subgroups (Fig.  7B). 
Both HACE1 and CLEC1B had a mutation in 1% of HCC 
samples, while less than 1% mutation rate was found for 
COLEC12 in HCC patients (Fig.  7C). Subsequently, the 
TMB of each patient was assessed. However, no signifi-
cant difference in TMB was found between the two sub-
groups (Fig. 7D).

Expression levels of genes in model
Differential mRNA expression of the three genes between 
tumor and normal tissues was explored in Gene Expres-
sion Profiling Interactive Analysis (GEPIA) [20] (http://​
gepia.​cancer-​pku.​cn/) and we found that only CLEC1B 
differed significantly and therefore was focused on fur-
ther analysis (Fig. 8A). Differences in mRNA expression 
of the three genes in HCC cell lines were explored in Can-
cer Cell Line Encyclopedia (CCLE) [21] (https://​porta​ls.​
broad​insti​tute.​org/​ccle) and all of these genes were sig-
nificantly different across HCC cell lines (Fig. 8B). Finally, 
the protein expression levels of CLEC1B between tumor 
and normal tissues were explored in Human Protein 

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
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Fig. 3  Verification of this signature in ICGC and clinical cohort. A Distribution of risk scores, OS status, and gene expression profiles in ICGC. B 
Kaplan–Meier survival plot in ICGC. C Characteristics in ROC analysis for predicting 1, 2, and 3-year OS rates in ICGC. D Distribution of risk scores, OS 
status, and gene expression profiles clinical cohort. E Kaplan–Meier survival plot clinical cohort. F Characteristics in ROC analysis for predicting 1, 2, 
and 3-year OS rates clinical cohort
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Atlas (HPA, www.​prote​inatl​as.​org), and a significant dif-
ference was detected (Fig. 8C).

Inhibition of overexpressed CLEC1B on cell proliferation 
and migration ability
After generation of stable overexpression (OE) and 
negative control (OE-NC) cell lines, CLEC1B expres-
sion in HuH7 cells was confirmed by qRT-PCR (Fig. 9A). 
To investigate the influence of CLEC1B on the malig-
nant growth and migration potential, cell proliferation 
assay, wound-healing assay, and transwell assay were 
performed. For cell proliferation ability, the results of 
CCK-8 showed that the proliferation rate of up-regulated 
CLEC1B was significantly lower than controls in HuH7 
cells (Fig.  9B), indicating that CLEC1B inhibited the 
proliferation ability of HuH7 cells. For migration ability, 
wound-healing assay showed that CLEC1B overexpres-
sion remarkably inhibited migration ability in HuH7 cells 
(Fig. 9C), as did the result of transwell assay (Fig. 9D). All 

the results above indicated that CLEC1B might inhibit 
the proliferative and migration potential of HCC cells.

Discussion
Tumor doubling time could effectively reflect the growth 
pattern of tumors, which was crucial for arranging times 
for tumor detection and chemotherapy interventions 
[7] and was valuable for predicting the trend of tumor 
metastasis [22]. Previous studies showed that the tumor 
growth patterns differed significantly between indolent 
and invasive tumors [6, 23], indicating that we can ini-
tially determine the indolent or aggressive biology based 
on TDT. Besides, even in the same tumor, such as HCC, 
an aggressive malignancy with a very short five-year sur-
vival time, the tumor growth patterns varied significantly 
due to the HBV or HCV virus infection, non-viral liver 
disease, and individual variability. On the other hand, 
immunotherapy for HCC patients within the tumor 
immune microenvironment (TIME) has been greatly 

Fig. 4  Predictive significance of signature verified in nomogram model. A A nomogram combining the three-gene signature. B–D The calibration 
plots for 1, 2, 3 years survival probabilities

http://www.proteinatlas.org
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Fig. 5  Functional analysis, immune status calculation, and levels of immune checkpoint genes in two subgroups. A GSEA is based on the 
three-gene signature. B Correlation analysis of risk scores, immune scores, and stromal scores. C Difference analysis of immune scores and stromal 
scores in two subgroups. D Expression levels of immune checkpoint genes in two subgroups
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Fig. 6  Immune infiltrates analysis. A Violin plot showing the abundance differentiation of 22 TIICs in two subgroups. B Correlation analysis of risk 
scores and abundance of 22TIICs. C Venn plot showing four TICs that were differentially expressed and correlated with risk scores. D Kaplan–Meier 
survival plot for the four TIICs
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Fig. 7  Somatic mutation and TMB analysis. A Mutation profile of HCC patients in TCGA cohort. B Oncoplots of mutated genes in two subgroups. C 
Genetic alterations of the three genes. D Difference analysis of TMB in two subgroups
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developed in recent years. Some advanced HCC patients 
could benefit from these immune checkpoint inhibitors 
therapies and exhibit favorable survival outcomes [24–
27]. Therefore, it is necessary to study prediction models 
based on TDT and TIME for more accurate HCC moni-
toring and treatment in clinical practice.

In the present study, tumor doubling time-related 
genes (TDTRGs) were acquired from GSE54236 by 
using the Pearson correlation test and immune-related 
genes (IRGs) were available from ImmPort. Prognos-
tic TDTRGs and IRGs obtained from univariable Cox 
regression analysis in TCGA-LIHC dataset were deter-
mined to create a prognostic model by the LASSO-Cox 
regression and stepwise Cox regression analysis. Three 
genes (HACE1, CLEC1B, and COLEC12) were involved 
in the model. International Cancer Genome Consor-
tium (ICGC) and another cohort of individual clinical 
samples acted as external validations demonstrated that 
the signature exhibited superior accuracy in forecasting 
the survival outcomes and TDT in HCC patients. More 
importantly, this three-gene signature was an independ-
ent risk factor for HCC patients when other clinical fac-
tors in the three cohorts were considered. Additionally, 
significant impacts of the signature on the HCC immune 

microenvironment and reaction to immune check-
point inhibitors were observed. Finally, we found over-
expressed CLEC1B could inhibit the proliferation and 
migration of Huh7 cells, which is consistent with the pre-
vision research [28]. In conclusion, the prognostic signa-
ture based on TDTRGs and IRGs could efficiently classify 
HCC patients for prognosis prediction and individual-
ized immunotherapies, and CLEC1B might be an immu-
notherapy target in the future.

HECT domain and ankyrin repeat containing E3 
ubiquitin protein ligase 1 (HACE1) is an E3 ubiquitin 
ligase located on chromosome 6q21 that plays a crucial 
role in tumor biology and is closely associated with sur-
vival outcomes. HACE1 could act as a tumor suppressor 
in various human malignancies, including lung cancer 
[29], HCC [30], breast cancer [31], osteosarcoma [32], 
colorectal cancer [33], gastric cancer [34], Leukemia 
[35] and Wilms tumors [36]. For example, in lung can-
cer, HACE1 deletion could promote KRasG12D-driven 
lung cancer progression by modulating the tumorigenic 
activation of RAC-family GTPases [29]; HACE1 could 
accelerate autophagic flux to inhibit tumor growth by 
ubiquitinating the autophagy receptor and could serve 
as an autophagy-related target for immunotherapeutic 

Fig. 8  Expression levels of the three genes. The mRNA expression levels of the three genes in GEPIA (A) and CCLE (B). *p < 0.05. C The protein 
expression levels of CLEC1B in HPA
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intervention [37]; HACE1 reduced the accumulation 
of HIF1α during cellular hypoxia by decreasing the 
stability of the protein, thus achieving the purpose of 
inhibiting tumor growth. In HCC, the down-regulated 
HACE1 was closely related to poor survival outcomes, 
while overexpressed or demethylated HACE1 inhib-
ited proliferation and migration ability of HCC cells 
[30, 38]. All above indicated that HACE1 might be a 
potential therapeutic target  in HCC patients. C-type 
lectin domain family 1 member B (CLEC1B), a tumor 
platelet-related molecule secreted by activated platelets 
in the peri-tumor area, could affect thrombus forma-
tion and hematogenous metastasis of tumors through 
interactions with podoplanin [39]. Blocking the inter-
action might be a promising therapeutic strategy for 

preventing pulmonary metastases from osteosarcoma 
[40]. Cordycepin treatment effectively reduced the pro-
liferation and migration ability of gastric cancer cells 
by upregulating CLEC1B [41]. Recently, CLEC1B was 
confirmed to be remarkably downregulated and related 
to tumor hemorrhage in HCC, indicating that CLEC1B 
could be served as a potential target for PD-L1/PD1 
immunotherapy [28, 42]. Therefore, to further deter-
mine the antitumor effect of CLEC1B, we explored 
the expression level of CLEC1B in HCC cell lines and 
a generalized low expression was found. Subsequently, 
we overexpressed CLEC1B in HuH7 cells and observed 
a significant inhibition of cell proliferation and migra-
tion ability. All these suggested that CLEC1B might be 
a promising molecule for antitumor immunotherapy 

Fig. 9  Overexpressed CLEC1B inhibited cell proliferation and migration in Huh7 cells. A Lentivirus vector encoding the full-length human CLEC1B 
DNA sequence was used to manipulate CLEC1B expression. B CCK-8 assay, C Wound-healing assay, and D transwell assay were used to detect the 
effect of overexpressed CLEC1B on cell proliferation and migration ability. *p < 0.05, **p < 0.01, ***p < 0.001
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in HCC patients. As for COLEC12, it was increased 
in osteosarcoma and remarkably associated with poor 
survival outcomes [43], while there are few relevant 
studies in HCC and further research is needed.

In previous studies, a large number of signatures have 
been identified for predicting survival outcomes in HCC 
patients [44–49]. Compared with these signatures, the 
novel three-gene signature in our current study has some 
new features: first, the signature constructed based on 
TDT and TIME is more accurate for HCC monitoring 
and treatment in clinical practice; second, the signature 
is validated by qRT-PCR analysis in a small size clinical 
cohort, ensuring its clinical relevance. Finally, the three-
gene signature contains fewer genes and is easier to 
implement clinically. Undeniably, our current study has 
some restrictions. The great diversity of HCC and the 
mechanism of recurrence after treatment may reduce the 
performance of the signature. Moreover, the small sample 
size limits the validation of the model, and future mul-
ticenter randomized controlled studies are required to 
evaluate this signature. In addition, the specific mecha-
nisms of the three genes in HCC, especially for CLEC1B, 
are still not well understood and more in vivo and in vitro 
experiments are needed in the future.

In summary, a prognostic three-gene signature based 
on TDTRGs and IRGs was constructed in our current 
study, which could effectively help clinicians classify 
HCC patients for prognosis prediction and individual-
ized immunotherapies.
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