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Eighty-five percent of multiple sclerosis cases begin with a discrete attack termed clinically isolated syndrome, but 37% of clinically

isolated syndrome patients do not experience a relapse within 20 years of onset. Thus, the identification of biomarkers able to dif-

ferentiate between individuals who are most likely to have a second clinical attack from those who remain in the clinically isolated

syndrome stage is essential to apply a personalized medicine approach. We sought to identify biomarkers from biochemical, meta-

bolic and proteomic screens that predict clinically defined conversion from clinically isolated syndrome to multiple sclerosis and

generate a multi-omics-based algorithm with higher prognostic accuracy than any currently available test. An integrative multi-vari-

ate approach was applied to the analysis of cerebrospinal fluid samples taken from 54 individuals at the point of clinically isolated

syndrome with 2–10 years of subsequent follow-up enabling stratification into clinical converters and non-converters. Leukocyte

counts were significantly elevated at onset in the clinical converters and predict the occurrence of a second attack with 70% accur-

acy. Myo-inositol levels were significantly increased in clinical converters while glucose levels were decreased, predicting transition

to multiple sclerosis with accuracies of 72% and 63%, respectively. Proteomics analysis identified 89 novel gene products related

to conversion. The identified biochemical and protein biomarkers were combined to produce an algorithm with predictive accuracy

of 83% for the transition to clinically defined multiple sclerosis, outperforming any individual biomarker in isolation including oli-

goclonal bands. The identified protein biomarkers are consistent with an exaggerated immune response, perturbed energy metabol-

ism and multiple sclerosis pathology in the clinical converter group. The new biomarkers presented provide novel insight into the

molecular pathways promoting disease while the multi-omics algorithm provides a means to more accurately predict whether an in-

dividual is likely to convert to clinically defined multiple sclerosis.
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Introduction
Clinically isolated syndrome (CIS) is the first manifest-

ation of multiple sclerosis (MS) in 85% of patients.1

However, not all patients with a CIS attack go on to a

confirmed MS diagnosis. Indeed, 37% of CIS patients do

not fulfil McDonald 2010 diagnostic criteria 20 years

after onset2 while only 63% transition to clinically

defined MS, which is, in practice, the occurrence of a se-

cond clinical attack.3 Early treatment is essential to min-

imize the occurrence of further attacks and the

accumulation of permanent disability.4–9 Thus, differenti-

ation of individuals who are most likely to have a second

clinical attack from those who remain in the CIS stage is

essential to achieve the desired personalized medicine

approach.

Currently, MS diagnosis relies upon exclusion of other

possible diagnoses followed the interpretation of a com-

bination of detailed clinical evaluation, magnetic reson-

ance imaging (MRI), and CSF analysis according to the

latest McDonald Diagnostic criteria.10 The revisions

introduced in the 2017 McDonald criteria [namely the in-

clusion of CSF oligoclonal IgG bands (OCGB) as a surro-

gate maker for dissemination in time] have resulted in

more patients being diagnosed with MS at the point of

CIS, this is at the expense of reduced specificity of only

61%–63% compared to 85%11,12 using the previous

2010 criteria. Hence, these revisions undoubtedly benefit

patients by ensuring that MS is treated in timely manner.

However, the McDonald criteria are not meant to predict

the course for disability worsening or time to second

relapse.

Recognised risk factors of clinically defined conversion

from CIS to MS have been identified including younger

age of disease onset, male gender,13,14 the number of T2

weighted MRI lesions,15 the presence of OCGB,16 intra-

thecal IgM synthesis17,18 and neurofilament light

chain.19 However, these measures are validated only at

the group level, and there is no biofluid or imaging

marker to address this unmet need for individual use.

For example, 21% of CIS patients with normal MRI

scans at baseline still transition to clinically defined MS

and, while OCGB are extremely sensitive for the diagno-

sis of MS, 50% of CIS patients who test positive for

OCGB at baseline do not have a second clinical attack

within 50–60 months.16,19,20

To identify novel predictive biomarkers for the transi-

tion to MS we collected baseline CSF samples from

54 patients with CIS with 2–10 years of follow-up to

determine clinical conversion. This study represents
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the first comprehensive multi-omics investigation of CIS

to include simultaneously clinical chemistry, metabolo-

mics and proteomics analysis of baseline CSF samples

coupled with extensive clinical follow-up and to

investigate the power of such biomarkers at predicting

clinically defined conversion in an individualized man-

ner. Here we report the capacity of novel biochemical

and protein markers to predict the transition from CIS

to clinically defined MS. The future use of simple

multivariant biomarker algorithms in the clinical care

pathway has the evident potential to facilitate the per-

sonalization and optimization of therapy for individuals

with CIS.

Materials and methods

Study participants

CSF samples were collected in the Department of

Neurology of the University Hospital Basel, during rou-

tine diagnostic measures, as indicated by the treating

physicians. Inclusion criteria were as follows: (i) the pres-

ence of a monophasic clinical episode suggestive of MS

(CIS), not attributable to other diseases (for example, in-

fectious, neoplastic, congenital, metabolic or vascular dis-

ease)21; (ii) clinical follow-up of at least two years; (iii)

available basic demographic and clinical data (age, gen-

der, dates of CIS onset, serum sampling, CSF examin-

ation, MRI, clinically defined conversion to MS (if

present) and last follow-up visit); and (iv) CSF informa-

tion at time of CIS. Patients with neuromyelitis optica, or

a history of a progressive disease course from onset were

excluded. Exclusion criteria included (i) active systemic

infection and (ii) steroid treatment at the time of CSF

sampling. Conversion to MS was diagnosed according to

Poser criteria. This implied the exclusion of alternative

diagnoses and the presence of a second clinically evident

demyelinating attack which had to be separated in time

and space from the first episode (i.e. occurring after an

interval of at least one month and in a separate CNS lo-

cation).22 In total, 85 individuals were recruited at CIS

onset and examined for eligibility in the study. Of these,

three were confirmed to have active infections and two

were receiving steroid treatment at the point of CSF sam-

pling while 26 had insufficient follow-up to determine

clinical converter status and were excluded from the

study. A flow chart of sample recruitment and exclusions

can be found in Supplementary Fig. 1. There were no

missing data for any of the 54 participants included in

the analysis. CIS patients were recruited based on the

criteria above to avoid bias and no significant differ-

ence in age, gender or onset expanded disability scale

status (EDSS) was observed between the converter and

non-converter groups.

Standard protocol approvals,
registrations and patient consents

Written informed consent was obtained from all patients

according to the Declaration of Helsinki. Ethical approval

was obtained by the local ethics committee.

Power calculation

Prior to analysis, a power calculation (PPCA model using

the R package MetSizeR) was carried out. This confirmed

that a sample size of 40 (20 non-converters and 20 con-

verters) would be sufficient to achieve an FDR cut-off of

0.05 assuming the significance of 10% of variables.

These assumptions are in line with our previous omics

analysis of MS patient cohorts and indicated that n¼ 22

in the converter group would be sufficient.

CSF sample collection

CSF samples were centrifuged at 400 g for 10 min at

room temperature, and the cell-free supernatant stored at

�80�C within 2 h of collection.23 Samples were processed

as per standard laboratory procedures for leukocytes

(cells/mm3), and total protein concentration (mg/dl).

Serum samples were collected at the same visit to calcu-

late the CSF/serum albumin ratio (Qalb). The integrity of

the blood–CSF barrier was determined by calculating the

CSF/serum ratio for albumin (Qalb).24 Intrathecal synthe-

sis of IgG was determined by detection of oligoclonal

IgG bands (OCGB) by isoelectric focussing on agarose

gel and subsequent immunoblotting using IgG-specific

antibody staining.25 Testing of OCGB was considered

positive if pattern two or three (local synthesis of IgG

within the CNS) were present.26 These parameters are

henceforth referred to as clinical chemistry parameters.

Nuclear magnetic resonance sample
preparation for metabolomics
analysis

On the day of metabolomics analysis, CSF samples were

thawed at room temperature and 100ml was then diluted

with 450 ll of 75 mM sodium phosphate buffer prepared

in D2O (pH 7.4) containing 1 mM maleic acid as an in-

ternal reference standard. Samples were briefly centrifuged

at 3000 � g for 5 min before transferring to a 5-mm

NMR tube.

Nuclear magnetic resonance
spectroscopy and data processing
for metabolomics analysis

All nuclear magnetic resonance (NMR) spectra were

acquired at 310 K using a 700-MHz Bruker AVIII spec-

trometer operating at 16.4 T equipped with a 1H

[13C/15N] TCI cryoprobe (Department of Chemistry,
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University of Oxford). The noesygppr1d (Bruker,

Germany) pulse sequence was used to acquire 1H NMR

spectra with a 2 s presaturation, 32 data collections, a

spectral width of 16 ppm, and an acquisition time of

1.46 s. All spectra were preprocessed in Topspin 2.1

(Bruker, Germany); zero filled by a factor of 2 and multi-

plied by a 1D exponential corresponding to a 0.3 Hz line

broadening. All spectra were baseline corrected with a

fifth-degree polynomial and referenced to the lactate

doublet at 1.33 ppm. Following visual inspection for

errors in baseline correction, referencing, spectral distor-

tion or contamination, the processed spectra were

exported to ACD/Labs Spectrus Processor Academic

Edition 12.01 (Advanced Chemistry Development, Inc.,

Toronto, Canada), whereby regions of the spectra be-

tween 0.83 and 8.47 were split into 0.02-ppm-wide bins.

The residual water resonance region (4.13–5.22 ppm) was

removed from the analysis. The integral of each spectral

bin was calculated and exported as a .csv file for statis-

tical analysis. Metabolite assignment was performed by

referencing to literature values,27,28 the Human

Metabolome Database29 and via 2 D correlation spectros-

copy (COSY) experiments. A list of all NMR-detectable

CSF metabolites has been previously reported.30 While,

all metabolite resonances were included in our analysis

the 30 most abundant metabolites detectable in the NMR

spectra included (in alphabetical order) 3-hydroxybuty-

rate, acetate, acetoacetate, alanine, arginine, aspartate, cit-

rate, creatine, creatinine, formate, glucose, glutamate,

glutamine, glycerol, histidine, isoleucine, lactate, leucine,

lysine, methyl isobutyrate, myo-inositol, N-acetyl-aspar-

tate, phenylalanine, proline, scyllo-inositol, taurine, threo-

nine, trimethyl-amine, tyrosine and valine.

Determining concentration of the
NMR metabolite biomarkers

NMR metabolite measures, in relative units, were converted

to absolute concentrations in SI units using an internal ref-

erence standard (1 mM maleic acid). In order to validate

the quantification of the metabolites by NMR, the glucose

and lactate levels in all CSF samples were measured using

a CobasVR 8000 modular analyzer (Roche Diagnostics,

Switzerland) and the Gluc3 and LAC2 assays, respectively.

There was a significant correlation between the NMR-

determined concentration and the laboratory chemistry

determined concentration for both glucose (Pearson’s

R¼ 0.91, P-value < 0.001) and lactate (Pearson’s R¼ 0.90,

P-value < 0.001) (Supplementary Fig. 4A and B) and

Bland–Altman plots revealed excellent agreement between

the two methods (Supplementary Fig. 4C and D).

Protein profiling by SomaScanTM

Protein biomarker profiling in CSF samples was per-

formed using the SomaScanVR platform from SomaLogic

Somalogic Inc, Boulder, Co).

SomaScanVR is multiplexed proteomic tool that measures

more than 5000 protein analytes including 4783

SOMAmers (slow off-rate modified aptamers) that recog-

nize 4137 distinct human gene targets. The SOMAmers

are constructed with chemically modified nucleotides that

expand the physicochemical diversity of the large

randomized nucleic acid libraries from which the

SOMAmer reagents are selected. The SomaScanVR assay

measures native proteins in complex matrices by trans-

forming each individual protein concentration into a cor-

responding SOMAmer reagent concentration, which is

then quantified in customized DNA microarrays. The

assay takes advantage of SOMAmer reagents’ dual nature

as both protein affinity-binding reagents with defined

three-dimensional structures, and unique nucleotide

sequences recognizable by specific DNA hybridization

probes.31,32

The CSF samples were stored at �80�C and shipped to

SomaLogic (Boulder, CO) on dry ice for SomaScanVR

analysis.

Metabolomics & proteomics
statistical analysis

Multivariate orthogonal partial least squares discriminant

analysis (OPLS-DA) was performed in R software (R

foundation for statistical computing, Vienna, Austria)33

using in-house R scripts and the ropls package.28 OPLS-

DA is a dimension reduction technique that can extract

correlated patterns from complex data sets. This method

is ideally suited for large ‘omics datasets (as used in other

similar aforementioned studies), such as those studied

here, because it helps reduce the dimension of such data-

sets by extracting a subset of most salient biomarkers

(described as a linear equation) that can subsequently be

used to predict the class of interest—in this instance clin-

ical converters and non-converters. OPLS-DA models

were validated using an external 10-fold cross-validation

strategy with repetition coupled with permutation testing

as previously described.34 We have previously published

an in-depth description of this analysis approach35 and

further detail can be found in the Supplementary mater-

ial. In brief, the data are corrected for unequal class sizes

before being randomly split into a training set (90%) and

an independent test set (10%). The training set is used to

build the OPLS-DA model the R2 and Q2 values are then

used to assess the model performance (the goodness of fit

and prediction, respectively) on the training data. The

model generated is then applied to the test set (to which

the OPLS-DA model is blinded) to determine the predict-

ive accuracy, sensitivity, and specificity of the model (on

previously, unseen data). This process of model training

and testing is repeated for a total of 1000 times, thereby

creating an ensemble of models. It has been shown that

in cases where the sample sizes are small, one can

achieve a prediction accuracy of up to 70% or higher by

chance alone in differentiating two-classes.36 Thus, to
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further validate our prediction accuracy, we compare our

ensemble of models to an ensemble of randomly per-

muted models (generated by randomly permuting the

class identities). For a 2-class classification problem, the

expected accuracy of a randomly permuted model is

50%. If the model ensemble significantly outperforms the

randomly permuted models (as quantified using a two-

sided Kolmogorov–Smirnov test, significant if P-value

0.05 or less), then the discriminatory variables responsible

for the observed class separation are extracted by inspec-

tion of the average variable importance (VIP) scores. The

VIP score of a given variable represents the mean de-

crease in accuracy which occurs when that variable is

removed from the model. Thus, a variable which is high-

ly significant and plays a large role in the diagnostic ac-

curacy of the model will result in a large decrease in

accuracy when removed from the model resulting a large

VIP score. Conversely, variables which do not play a role

in discriminating between groups have very little effect

on model accuracy when removed and have a low VIP

score.

Elastic Net feature selection was applied to the proteo-

mics data using the glmnet package37 prior to each iter-

ation of the OPLS-DA method to reduce the number of

predictor variables (by removing irrelevant or redundant

variables), which helps improve model inference and low-

ers computational time.38,39 Both the a and k for use in

each elastic net feature selection were determined using 7-

fold cross validation to optimize the mean squared error

on the training data alone.

In order to identify the combination of clinical chemis-

try, metabolomics and proteomics variables with the

highest predictive accuracy a combined multi-omics strat-

egy was applied to the selected discriminatory variables

(all variables from the clinical chemistry, proteomics, and

metabolomics data combined) by applying the OPLS-DA

cross-validation strategy (described above) to every com-

bination of one to six variables and performing a ROC

analysis on each model to assess the performance. The

linear combination of metabolites which resulted in the

highest performing model (determined by AUC, accuracy,

sensitivity and specificity) are then reported. There was

no significant increase in AUC or accuracy between five

and six variables and so linear combinations of variables

containing greater than 6 were not pursued.

Univariate and ROC analysis

All analysis was performed in R software (R foundation

for statistical computing, Vienna, Austria). Two-sample t-

tests were used for continuous variables while Chi-square

tests were used for categorical variables as appropriate. A

Bonferroni correction, to account for multiple compari-

sons, was applied throughout. Two-tailed P-values <

0.05 were considered statistically significant. Receiver op-

erator curves (ROC), area under the curve (AUC), 95%

confidence intervals, optimal thresholds for diagnosis and

P-values (relative to a null distribution ROC curve with

AUC ¼ 0.5) were calculated for each discriminatory vari-

able using the pROC package.40 The diagnostic odds

ratio for each biomarker identified is reported. Where

one group in the contingency was empty the Haldane–

Anscombe correction was used.41

Protein pathway analysis

Pathway enrichment analysis was performed on the dis-

criminatory proteins identified by the multivariate ana-

lysis (described above) using Metascape [http://metascape.

org].42 Metascape is updated monthly and combines over

40 independent knowledgebases including GO, KEGG

and MSigDB for enrichment and gene membership ana-

lysis. All genes in the genome were used as the enrich-

ment background. Terms with a P-value < 0.01, a

minimum count of 3 and an enrichment factor (the ratio

of observed counts to the counts expected by chance)

>1.5 were collected and grouped into clusters based on

their membership similarities. Kappa scores43 were used

to define the extent of ‘similarity’ when performing hier-

archical clustering on the enriched terms, and sub-trees

with a similarity of >0.3 are considered a cluster. The

most statistically significant term within any given cluster

was chosen to represent that cluster. Cytoscape was used

to visualize the results of the protein enrichment net-

work.44 The DisGeNet discovery platform45 (www.disge-

net.org last accessed 27/04/2021) and Enrichr46 (https://

maayanlab.cloud/Enrichr/ last accessed 27/04/21) was

used to perform enrichment analysis on the identified

proteins which were up/down regulated in the converter

cohort relative to the non-converter cohort in an effort to

identify disease specific pathways associations.

Data and code availability

Anonymized data and code will be shared by request

from any qualified investigator.

Results

While useful in diagnosis, baseline
OCGB positivity is unable to
predict clinically defined conversion

A total of 54 patients with symptoms consistent with CIS

were included in this study. CSF samples were collected

within one year of CIS onset [mean time to sample col-

lection from onset 3.5 (1–11) months] and followed up

for up to 10 years. Twenty-two patients converted to clin-

ically defined MS (hence forth referred to as ‘converters’)

while 32 patients had no signs of further relapses during

follow-up (hence forth referred to as ‘non-converters’).

The median time to sample collection in both the con-

verter and non-converter groups was 3 weeks and there
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was no significant difference in the means (P-value 0.82).

All converter CSF samples were collected before the se-

cond attack. Patient demographics and clinical chemistry

results for both converters and non-converters are

reported in Table 1. Length of follow-up was longer in

the non-converter group [mean, 6.5 years; median,

7.1 years; range, 2.0–9.7 years; interquartile range (IQR),

5.6–8.1 years] relative to the converter group (mean,

4.6 years; median, 4.2 years; range 1.6–8.7 years; IQR,

3.1–5.3 years) to ensure that sufficient time elapsed for

relapses to occur. As the majority of CIS patients experi-

ence a second attack within two years of onset with the

median and mean time to second attack ranging from

11–14 months and 8–11 months, respectively,13,20,47,48

patients were only included in the non-converter group if

a minimum of two years of follow-up was available.

Indeed, the average time to conversion in the converter

group was 1.7 years (median, 0.9 years; IQR, 0.4–

2.1 years). Thus, the length of follow-up in the non-con-

verter group (median 7.1 years) was significantly greater

than the time to conversion in the converter group (me-

dian 0.9 years), suggesting the length of follow up in the

non-converters is sufficient. There were no significant dif-

ferences in the gender distributions, age, or grade of dis-

ability as per EDSS score at onset between the converter

and non-converter groups.

While useful in the diagnosis of MS in the context of

the revised McDonald criteria, the presence/absence of

OCGB was not predictive of transition to clinically

defined MS. Although more of the converters tested posi-

tive for OCGB (100%) still the majority (69%) of the

non-converters also tested positive at onset (Fig. 1A). As

a result, OCGB are extremely sensitive (100%) for the

prediction of a second clinical attack, but specificity is

very low (31%) resulting in an AUC and accuracy of

only 0.66 and 59%, respectively. It should be noted that

the average length of follow-up in the OCGBþve non-

converters (mean, 4.6 years; median, 4.2 years; range, 2–

10 years; IQR, 3.1–5.3 years) was, again, significantly

greater than the median time to conversion (0.9 years) in

the converter group, indicating that the absence of a se-

cond attack in these OCGBþve was not a result of fol-

low-up duration.

Baseline CSF leukocyte and

mononuclear cell counts predict
clinically defined conversion with
greater overall accuracy than

OCGB status

In addition to OCGB, several clinical chemistry parame-

ters were measured at CIS onset including leukocyte [fur-

ther divided into mononuclear and polymorphonuclear

(PMN) cell counts], total CSF protein levels and Qalb.

There was no significant difference in the Qalb or total

CSF protein concentration between converters and non-

converters at onset. Twenty-nine patients (54%) had ‘nor-

mal’ (< 4 cell/mm3) CSF leukocyte cell counts at baseline.

The highest leukocyte cell count was 28.7 cell/mm3 and

13 (24%) patients (nine converters and four non-convert-

ers) exhibiting a cell count above 10 cell/mm3 at onset.

The leukocyte cell count was increased (>4 cell/mm3) in

a larger proportion of converter patients (72%) than

non-converters (41%) (Chi-Squared P-value 0.02).

Interestingly, the mononuclear cell sub-population was

elevated in the converter group relative to non-converters,

while the PMN subset was not significantly altered

(Fig. 1B–E). Indeed, ROC analysis reveals that the CSF

leukocyte cell count and, particularly, the monocular cell

population outperform OCGB for the prediction of a se-

cond clinical attack with AUC values of 0.74 and 0.73,

respectively (Fig. 1G). Mononuclear cell counts were

strongly correlated with leukocyte levels (Pearson’s r

0.96, P-value < 0.001 corrected for multiple compari-

sons) and weekly correlated with PMN although this cor-

relation did not reach significance following correction

for multiple comparisons (Pearson’s r 0.35, P-value 0.12

Table 1 Patient demographic and clinical data, at the point of CSF sampling, grouped by converter status.

Converter [n 5 22] Non-converter [n 5 32] P-value

Female, No. [%] 17 [77] 21 [66] 0.36

Age, mean [SD], years 31.3 [9.9] 36.4 [11.2] 0.08

EDSS, median [range] 2.5 [0–4] 1.5 [0–4] 0.06

Time to conversion, mean [SD], years 1.7 [2.0] NA NA

Follow-up, median [IQR], years 4.2 [3.1–5.3] 7.1 [6.0–8.1] <0.001

Immune modulating therapies None None NA

OCGB positive, No. [%] 22 [100] 22 [69] <0.001

Leukocytes, mean [SD], cells/mm3 10.9 [9.1] 4.9 [4.9] <0.001

Mononuclear, mean [SD], cells/mm3 10.7 [8.8] 4.7 [4.7] <0.001

Polynuclear, mean [SD], cells/mm3 0.27 [0.65] 0.21 [0.64] 0.73

Total protein, mean [SD], mg/dl 3367.7 [96.0] 374.7 [96.0] 0.83

CSF/serum albumin ratio, mean [SD] 4.9 [2.0] 5.2 [1.6] 0.58

P-values from Student’s t-test for continuous variables and Chi-squared test for categorical variables are reported.

EDSS, expanded disability status scale; IQR, interquartile range; OCGB, oligoclonal bands; SD, standard deviation.
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Figure 1 Clinical chemistry results. (A) Confusion matrix illustrating the low sensitivity of OCGB status for the prediction of clinically

defined conversion to MS. Box plots of CSF clinical chemistry parameters (B) mononuclear cells, (C) leukocyte cells, (D) CSF/serum albumin

ratio (Qalb) and (E) total protein measured in clinically defined converters and non-converters. Dashed lines represent the optimal threshold to

achieve the greatest accuracy as determined by ROC analysis. A significant increase in mononuclear and leukocytes cell counts was observed in

the converter group. (F) Heat map illustrating all correlations (Pearson’s R) between the CSF clinical chemistry measures and OCGB. (G)

Predictive performance of CSF clinical chemistry parameters compared to the performance of OCGB status. Biomarkers are listed from highest

to lowest AUC. Acc, Accuracy; AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value;

ROC, receiver operator curve; Sens, sensitivity; Spec, specificity. Clinically defined converter n¼ 22, clinically defined non-converter n¼ 32.

Two-sample t-tests were used for continuous variables while Chi-square tests were used for categorical variables as appropriate. A Bonferroni

correction to account for multiple comparisons was applied throughout. Two-tailed P-values <0.05 were considered statistically significant.

P-values <0.001 following correction for multiple comparisons are represented by ***.
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corrected for multiple comparisons). As expected, a

strong correlation (Pearson’s r 0.94, P-value < 0.001 cor-

rected for multiple comparisons) between total protein

levels and Qalb was observed (Fig. 1F).

Myo-inositol and glucose CSF
concentrations outperform OCGB
status for prediction of clinical
conversion to MS

To uncover further predictive biomarkers of conversion,

NMR metabolomics analysis was used to simultaneously

measure �50 small molecule, soluble metabolite levels in

the baseline CSF samples. OPLS-DA revealed significant

differences in the CSF metabolome of converters com-

pared to non-converters (Fig. 2A), and external cross-val-

idation confirmed that the accuracy of the multivariate

metabolomics model (determined on independent test

data) significantly outperformed the randomly permuted

models (Supplementary Fig. 2). The metabolites driving

the separation observed in the multivariate model

included lactate and glucose, which were elevated in the

converter CSF samples, and myo-inositol and creatine,

which were decreased in converter CSF samples relative

to non-converters (Fig. 2B–E). As the multivariate model,

dominated by glucose, lactate, creatine and myo-inositol,

was able to significantly predict conversion to CDMS

(two-sided Kolmogorov–Smirnov test P-value < 0.001)

we then investigated how each of these metabolites would

perform in isolation, to determine if measuring a single

biomarker could produce sufficient predictive accuracy

for use in a clinical setting. Both myo-inositol and glu-

cose CSF levels showed greater specificity for predicting

the occurrence of a second clinical attack resulting in

improved overall accuracy and AUC compared to OCGB

status alone (Fig. 2F). By contrast, lactate and creatine

did not perform better than OCGB status as predictors

of conversion when measured in isolation. In addition,

while lactate and creatine were important for discrimin-

ation in the multivariate model each of these metabolites

in isolation did not reach significance by univariate ana-

lysis following correction for multiple comparisons.

Multivariate proteomics analysis of
baseline CSF samples identifies
several proteins which outperform
OCGB status, in terms of both
sensitivity and specificity, for
prediction of clinical conversion to
MS

The SomaScanVR platform was used to measure over 5000

CSF protein concentrations in both converters and non-

converters. Multi-variate analysis confirmed significant

separation between the converter and non-converter pro-

teomes (Fig. 3A), which was validated by external cross-

validation and permutation testing (Kolmogorov–Smirnov

P-value < 0.001, Supplementary Fig. 3). The multi-vari-

ate analysis uncovered a panel of 89 proteins driving the

discrimination between converter and non-converter in

CIS CSF samples, 72 of which predict occurrence of a se-

cond attack with greater AUC (>0.66) than OCGB alone

(Supplementary Table 1). Of the 89 protein biomarkers

identified, 27 were elevated in converters at onset while

the remaining 62 were elevated in the non-converter CSF

samples relative to converters. Representative boxplots of

the 12 most significant biomarkers are shown in Fig. 3B–

I, while boxplots of the remaining discriminatory proteins

can be found in Supplementary Fig. 5. ROC analysis was

used to determine the optimum thresholds to produce the

greatest predictive accuracy for each discriminatory pro-

tein identified.

DNA repair protein XRCC1 was significantly decreased

in the converter CSF samples relative to non-converter

(Fig. 3I) and was the highest performing biomarker over-

all; predicting conversion with an AUC, accuracy, sensi-

tivity and specificity of 0.84, 80%, 73% and 84%,

respectively. The top 20 most sensitive proteins are listed

in Supplementary Table 2 while the top 20 most specific

proteins are listed in Table 2. Both Tropomyosin a3-

chain (TPM3) and EF-hand calcium-binding domain-con-

taining protein 14 (EFCAB14) CSF levels were decreased

in the converter cohort (Fig. 3H and C, respectively) and

predicted conversion with 100% sensitivity (rivalling

OCGB). Of note, TPM3 predicted conversion with a spe-

cificity, accuracy and AUC of 63%, 78% and 0.78, re-

spectively, significantly outperforming OCGB. Eighty-

eight of the identified protein biomarkers predict conver-

sion with greater specificity than OCGB (top twenty illus-

trated in Table 2 full list Supplementary Table 1). In

particular, muscle-skeletal receptor tyrosine-protein kinase

(MUSK) levels were significantly decreased in converter

samples relative to those of non-converters (Fig. 3E), and

predicted conversion in this cohort with 100% specificity

suggesting that this protein could be used in combination

with OCGB to better predict the risk of a second clinical

attack in CIS patients.

A linear combination of baseline
CSF protein, metabolite and
leukocyte concentrations predicts
clinical conversion with an AUC of
0.94 and accuracy of 83%

As clinical chemistry, metabolomics and proteomics ana-

lysis of onset CSF samples revealed several predictive bio-

markers of conversion which perform well individually,

we next investigated whether a multivariate combination

of the identified biomarkers and/or combining with

OCGB provided improved predictive accuracy. Five
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variable multivariate models provided the greatest predict-

ive accuracy (83%) with an AUC of 0.94; the addition

of further variables provided no significant increase in ac-

curacy. The variables selected by the multivariate model

with greatest accuracy included MUSK, Ribosomal

protein S6 kinase alpha-5 (RPS6KA5), Dynein light chain

Tctex-type 1 (DYNLT1), CSF myo-inositol and mono-

nuclear cell levels. While inclusion of mononuclear cell

counts gave the highest performance, replacing this meas-

ure with leukocyte cell counts resulted in a decrease in

Figure 2 Metabolomics results. (A) Representative OPLS-DA scores plot illustrating discrimination between clinically defined converters

(square) and non-converters (circle) CSF metabolite profiles. (B–E) Boxplots of the significant discriminatory metabolites identified by the

OPLS-DA analysis in clinically defined converters and non-converters. Dashed lines represent the optimal threshold to achieve the greatest

accuracy as determined by ROC analysis. For univariate analysis, two-sample t-tests were used for continuous variables while Chi-square tests

were used for categorical variables as appropriate. While for multivariate analysis a two-sided Kolmogorov–Smirnov test was used to determine

the significance of the OPLS-DA performance on independent test data relative to the null distribution. A Bonferroni correction to account for

multiple comparisons was applied throughout. Univariate P-values below 0.05, 0.01 and 0.001 are represented by *, ** and ***, respectively. (F)

Predictive performance of identified CSF metabolite biomarkers compared to the performance of OCGB status. Biomarkers are listed from

highest to lowest AUC. Acc, Accuracy; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; ROC, receiver

operator curve; NPV, negative predictive value; Sens, Sensitivity; Spec, specificity. Clinically defined converter n¼ 22, clinically defined non-

converter n¼ 32.
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Figure 3 Proteomics and multi-omics results. (A) Representative OPLS-DA scores plot illustrating discrimination between clinically

defined converters (square) and non-converter (circle) using CSF proteomics measurements. (B–I) Representative boxplots of the highest

ranked significant discriminatory proteins identified by the OPLS-DA analysis in clinically defined converters and non-converters. Dashed lines

represent the optimal threshold to achieve the greatest accuracy as determined by ROC analysis. For univariate analysis, two-sample t-tests were

used for continuous variables while Chi-square tests were used for categorical variables as appropriate. While for multivariate analysis a two-

sided Kolmogorov–Smirnov test was used to determine the significance of the OPLS-DA performance on independent test data relative to the

null distribution. A Bonferroni correction to account for multiple comparisons was applied throughout. Univariate P-values below 0.05, 0.01 and

0.001 are represented by *, ** and ***, respectively. (J) ROC curves illustrating the performance of the multivariate model (solid black)

compared to each component of the model alone. Protein markers RSK like protein kinase (dashed red), MUSK (dashed light blue), DYLT1

(dashed dark blue) along with myo-inositol (dashed pink) and CSF mononuclear levels (dashed purple) combined afford greater predictive

accuracy than OCGB status (solid grey) alone. The AUC and accuracy of each ROC curve is displayed in brackets. Clinically defined converter

n¼ 22, clinically defined non-converter n¼ 32.
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accuracy of only 2%. The predictive accuracy of the

multivariate multi-omics model greatly outperforms the

accuracy of each identified biomarker in isolation

(Fig. 3J). Interestingly, OCGB was not selected in the top

performing model, likely due to the increased overall ac-

curacy of baseline mononuclear and leukocyte cell counts

in this cohort. Indeed, replacement of mononuclear cell

count with OCGB in the multivariate model results in a

decrease in predictive accuracy of 11%.

Protein pathway enrichment
analysis reveals perturbations in
cytokine, TNF and leukocyte
proliferation pathways in converters
while proteins upregulated in non-
converters are consistent with
dysregulated cellular assembly and
rheumatoid arthritis

Protein pathway enrichment analysis revealed that the

top 89 discriminatory variables are linked through several

pathways and physiological functions. The discriminatory

proteins upregulated in the converter group relative to

the non-converter group are consistent with perturbations

in cytokine, TNF, and interferon-gamma signalling path-

ways along with leukocyte proliferation, leukocyte medi-

ated immune response and chemotaxis (Fig. 4A). In

contrast, those proteins elevated in the non-converters are

consistent with cellular assembly, proliferation, and sur-

vival pathways including regulation of the MAPK cascade

in addition to immune activation and chemotaxis path-

ways (Fig. 4B). These results point to distinct protein

pathway perturbations in the converter and non-converter

groups at baseline, suggesting potentially discrete underly-

ing pathology. Of note, the proteins upregulated in the

converters were enriched in disease pathways consistent

with viral infection, retinal detachment, MS and athero-

sclerosis (Fig. 5A) suggesting that the proteome of the

converter patients was representative of MS at onset. In

contrast, the proteins upregulated in the non-converters

are enriched in disease pathways consistent with rheuma-

toid arthritis, degenerative polyarthritis, coronary artery

disease, and prostatic neoplasms (Fig. 5B).

Discussion
This study provides a detailed exploration of predictive

biomarkers in a prospective cohort of 54 individuals with

CIS. Due to differences in past McDonald diagnostic cri-

teria and the fact that the 2017 McDonald criteria have

low specificity, the occurrence of a second attack was

used to define clinical conversion in this cohort. This not

only ensures that the predictive biomarkers identified are

applicable to the ‘gold standard’ definition of MS, but

also ensures clinical utility as those individuals who have

a second clinical attack are more likely to develop severe

permanent disability than those with ‘silent’

Table 2 Predictive performance of the top 20 identified CSF protein biomarkers with highest specificity compared

to the performance of OCGB status.

AUC [95% CI] Acc Sens Spec PPV NPV ROC

threshold

Odds

ratio

P-value

MUSK 0.68 [0.54–0.83] 0.74 0.36 1 1 0.7 118.1 36.57 0.02

MMP13 0.71 [0.57–0.86] 0.74 0.41 0.97 0.9 0.7 93.5 21.46 0.02

CCL17 0.69 [0.54–0.84] 0.76 0.5 0.94 0.85 0.73 106 15 0.03

CXCL1 0.72 [0.57–0.86] 0.72 0.41 0.94 0.82 0.7 1289.6 10.38 0.03

RARRES2 0.72 [0.58–0.86] 0.74 0.5 0.91 0.79 0.73 4102.7 9.67 0.01

SMDT1 0.72 [0.58–0.86] 0.74 0.5 0.91 0.79 0.73 23 9.67 0.02

THBS4 0.66 [0.51–0.81] 0.7 0.41 0.91 0.75 0.69 229.3 6.69 0.03

RPS6KA5 0.79 [0.66–0.92] 0.78 0.64 0.88 0.78 0.78 24.9 12.25 0.002

MFAP4 0.78 [0.65–0.91] 0.78 0.64 0.88 0.78 0.78 8757.5 12.25 0.003

IL22RA2 0.74 [0.6–0.88] 0.76 0.59 0.88 0.76 0.76 185.1 10.11 0.01

LCN10 0.74 [0.6–0.88] 0.74 0.55 0.88 0.75 0.74 58.7 8.4 0.004

SGCB 0.72 [0.58–0.86] 0.72 0.5 0.88 0.73 0.72 110.2 7 0.01

XRCC1 0.84 [0.72–0.95] 0.8 0.73 0.84 0.76 0.82 69.6 14.4 <0.001

MZF1 0.7 [0.55–0.85] 0.74 0.59 0.84 0.72 0.75 187.3 7.8 0.03

CCDC80 0.71 [0.56–0.85] 0.72 0.55 0.84 0.71 0.73 293.1 6.48 0.03

PLEKHA1 0.77 [0.63–0.9] 0.78 0.73 0.81 0.73 0.81 39.2 11.56 0.01

MZT1 0.74 [0.6–0.88] 0.76 0.68 0.81 0.71 0.79 68.8 9.29 0.01

TSSK2 0.74 [0.6–0.88] 0.72 0.59 0.81 0.68 0.74 79.8 6.26 0.005

PPIL2 0.72 [0.57–0.86] 0.72 0.59 0.81 0.68 0.74 94.1 6.26 0.03

COL6A2 0.71 [0.57–0.86] 0.72 0.59 0.81 0.68 0.74 28.8 6.26 0.01

OCGB status 0.66 [0.5–0.81] 59% 100% 31% 50% 100% 0.5 21 0.01

Proteins are listed from highest to lowest specificity.

Acc, Accuracy; AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; ROC, receiver operator curve; Sens, sensitivity;

Spec, specificity.
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demyelinating events and, thus, should be treated as early

as possible.

In total, only 41% of the patients recruited had a se-

cond attack and converted to clinically defined MS over

the course of follow-up, which is somewhat lower than

figures reported in a 20-year follow-up study where 63%

of patients experienced a second clinical event.3 This is

likely due to the maximum length of follow-up in this

study, which was 10 years. The average time to conver-

sion was 1.7 years and 72% of the converters had a

second clinical attack within 2 years. As a result, only

non-converters with a minimum of 2 years of follow-up

were included in this study. No significant difference was

observed in either the gender, age, or EDSS at onset be-

tween the converter and non-converter groups.

Previous reports suggest that between 61 and 68.9% of

patients with CIS test positive for OCGB49 and 50% of

these have a second clinical attack within 4 years of

onset.16 In line with this, 81% of the CIS patients in our

cohort tested positive for OCGB at baseline, of which,

Figure 4 Protein pathway enrichment analysis. Top significant pathways associated with the identified proteins which are upregulated in

clinically defined (A) converters and (C) non-converters. P-values <0.01 were considered significant. Visualization of the enrichment network

associated with proteins upregulated in (B) converters (D) and non-converters. Nodes are coloured according to pathway while larger nodes

represent smaller P-values. Similar and related pathways are grouped together. Clinically defined converter n¼ 22, clinically defined non-

converter n¼ 32.
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50% converted to clinically defined MS. In contrast,

none of the patients in the converter group tested nega-

tive for OCGB at baseline. As a result, the use of OCGB

in isolation predicted occurrence of a second clinical at-

tack with 100% sensitivity but only 31% specificity

resulting in an overall accuracy and AUC of 59% and

0.66, respectively.

CSF leukocyte cell count was moderately elevated (>4

but < 30 cells/ml) in 54% of the cohort at baseline. A

larger proportion of the patients who went on to have a

second clinical attack (72%) exhibited elevated leukocyte

cell counts at baseline when compared to those who did

not clinically convert over the follow up period (41%).

As a result, a significant elevation in leukocyte cell counts

was observed in converter CSF samples relative to non-

converters, which is consistent with an increased immune

response at baseline in these individuals. Interestingly,

when the total leukocyte population was evaluated at the

cell-type level, a significant elevation in the mononuclear,

but not PMN cells, was observed in the converter group

suggesting that the elevated leukocyte levels are domi-

nated by changes in mononuclear cells. Leukocytes are

known to be moderately elevated (4–50 cells/mm3) in up

to 60% of MS cases50 while relapsing remitting (RR) MS

patients with pleocytic CSF (>5 cells/mm3) are known to

have increased annualized relapse rates.51 Indeed, using

leukocyte levels >4 cells/mm3 predicted transition to clin-

ically defined MS with an accuracy of 65%, although

ROC analysis revealed that a threshold of 3.5 cells/mm3

was optimal (Fig. 1G). Interestingly, the mononuclear cell

population had greater predictive value than leukocyte

cell count. While less sensitive, both CSF mononuclear

and leukocyte levels predicted the occurrence of second

clinical attack with higher accuracy than OCGB (70%

and 67%, respectively). As these parameters are routinely

measured in order to rule out other potential diagnoses,

this suggests that inclusion of mononuclear cells as an

adjunct to MRI parameters and OCGB could improve

identification of those at high risk of clinically converting

to clinically defined MS without the requirement for an

additional biochemical test.

Changes in the concentration of soluble, small molecule

metabolites in biofluid samples, including CSF, are

known to be associated with CNS pathology, increased

Figure 5 Clustergram of associations of significantly enriched disease pathways with proteins upregulated in clinically defined

(A) converter CSF and (B) non-converter CSF. The proteins upregulated in converters were consistent with viral infection, retinal damage, and

MS disease pathways while the proteins upregulated in non-converters suggest atypical rheumatoid arthritis presentation. Red squares represent

a significant enrichment of the identified gene (rows) with a given pathological pathway (columns) while white squares represent no significant

interaction. Fisher exact test, corrected P-values <0.05 were considered significant. Clinically defined converter n¼ 22, clinically defined non-

converter n¼ 32.
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inflammation, and an elevated immune response. We and

others have demonstrated that relatively subtle differences

in the pathological mechanisms of inflammatory and

demyelinating CNS disease are detectable in the periph-

eral metabolome.35,52,53 Multivariate analysis revealed

that myoinositol, glucose, creatine and lactate levels dis-

criminate between converters and non-converters.

Converters had significantly higher average CSF myo-in-

ositol and glucose levels. While lactate and creatine did

not reach univariate significance when corrected for mul-

tiple comparisons the average lactate levels were higher

and creatine levels lower in converters compared to non-

converters at baseline. Perturbations in glucose and lac-

tate CSF levels in the converter group are consistent with

dysregulated CNS energy metabolism. Perturbed energy

metabolism in MS patients has been previously reported54

and linked to oxidative damage, mitochondrial function

imbalance, and neuroaxonal degeneration. Increased CSF

lactate levels have been observed in RRMS patients and

correlate with markers of neuroaxonal damage.55 Under

healthy conditions, the brain utilizes 25% of the body’s

total glucose56 which is converted to lactate by anaerobic

glycolysis within glial cells and shuttled to neurons as the

primary energy source. Ineffective nerve conductance as a

result of demyelination coupled with CNS inflammation

in MS results in an increased neuronal energy demand.57

Thus, the metabolite changes observed may represent

increased neuronal energy metabolism dysfunction in

those who go on to have a second clinical attack.

Myo-inositol is a component of plasma membranes and

myelin58 and thus the increased levels of myo-inositol

observed in the converter cohort may be a direct result

of myelin breakdown in the CNS. In addition, an

increased level of myo-inositol is known to be a marker

of gliosis59 and elevated levels of myo-inositol have been

observed in MS and CIS lesions.60 This could suggest

that CIS patients, who go on to have a second clinical at-

tack, have greater demyelination and glial activation at

baseline relative to non-converter which, while detectable

biochemically, is not yet distinguishable radiologically or

clinically.

Over 5000 proteins were measured in the baseline CSF

samples using the SomaScanVR platform to uncover novel

predictive biomarkers of clinically defined conversion.

Multivariate pattern recognition identified 89 protein bio-

markers. Protein pathway enrichment analysis confirmed

that the proteins upregulated in the clinically defined con-

verter group were consistent with increased inflammation

and an altered immune response. Significant enrichment

in pathways regulating leukocyte proliferation and im-

munity is consistent with the elevated white blood cell

counts and increased gliosis observed in these patients.

Furthermore, the protein biomarkers identified were sig-

nificantly enriched in regulation of cytokine production

and receptor signalling, TNF signalling, and response to

interferon gamma. Investigation of disease associated pro-

tein pathways revealed that the proteins elevated in the

converter CSF were significantly enriched in MS suggest-

ing that the proteins identified are indeed able to identify

MS at the point of first attack. In addition, viral infection

pathways were significantly enriched in the converter co-

hort which may correspond to virus-associated onset that

is observed in many MS cases. In contrast, the proteins

upregulated in the non-converter cohort were significantly

enriched in pathways associated with cellular assembly,

proliferation, and survival. Pathways associated with acti-

vation of the immune response were also significantly

enriched in the non-converters at baseline. Interestingly,

disease pathways associated with the proteins elevated in

the non-converter group were associated with rheumatoid

arthritis and degenerative arthritis as well as coronary ar-

tery disease, suggesting some individuals in this group

may have atypical presentation of peripheral inflamma-

tory, immune-mediated disease. Indeed, recent evidence

suggests that chronic peripheral inflammation can lead to

blood brain barrier dysfunction and CNS involvement in

diseases such as rheumatoid arthritis.61

The proteins with greatest overall predictive power

were DNA repair protein XRCC1 (XRCC1), dynein light

chain Tctex-TYPE 1 (DYNLT1), and natural cytotoxicity

triggering receptor 1 (NCR1) with AUC values of 0.84,

0.84 and 0.83, respectively. Partial loss of XRCC1 ren-

ders brain cells vulnerable to oxidative damage62 suggest-

ing that the decreased levels of XRCC1 in the converters

could reflect an increased propensity to CNS oxidative

damage in this cohort. This is consistent with oxidative

damage and demyelinating induced perturbations in en-

ergy metabolism observed in the metabolomics analysis.

DYNLT1 regulates neuronal morphogenesis and, during

cortical development, inhibits neurogenesis.63 Thus,

increased levels of DYNLT1 in converter CSF may reflect

increased inhibition of neurogenesis in this group or dys-

regulation of neuronal architecture. Increased levels of

NCR1 in the converter group may represent increased ac-

tivation of natural killer (NK) cells.64 The majority of

NCR1 expression in the CNS is localized to astrocytes65

supporting the metabolomics results which were suggest-

ive of increased gliosis in the converter cohort. While NK

cell activation in the CNS had been implicated in several

autoimmune diseases66 their role in MS remains to be

elucidated.

The extensive biomarker discovery employed here suc-

cessfully identified clinical chemistry, metabolite, and pro-

tein biomarkers of conversion to clinically defined MS,

each of which perform well in isolation and provide

novel insight into the different pathological mechanisms

in converters and non-converters at baseline. Future

work, on larger prospective cohorts, will investigate

whether the biomarkers identified here could be included

in the McDonald criteria to improve specificity when

identifying patients at high risk of second clinical attack.

In particular, the data presented suggest that a larger fol-

low-on study investigating the impact of leukocyte and

mononuclear cell counts on prediction of clinical
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conversion would be particularly attractive as these meas-

ures are routinely available. Ongoing work will validate

the identified biomarkers in the further independent

cohorts, develop a method to measure the identified bio-

markers using a single, cost-effective, assay for use in a

clinical setting, and compare this test with other recently

identified predictive biomarkers including baseline MRI

findings, clinical variables, NfL and IgG/M levels.

Supplementary material
Supplementary material is available at Brain

Communications online.
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