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Abstract

Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a
variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for
oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron
transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-
scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction,
iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC
and a biomass equation based on experimental measurements. Both computational and experimental approaches were
used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production
and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are
substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by
the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing
excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron
transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas
predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to
further improve the resolution of intracellular flux values.
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Introduction

Cyanothece spp. are unicellular, diazotrophic cyanobacteria that

temporally separate light-dependent oxygenic photosynthesis and

glycogen accumulation from N2 fixation at night [1]. When grown

under nutrient excess, Cyanothece sp. strain ATCC 51142

(thereafter Cyanothece 51142) cells can accumulate significant

amounts of storage polymers including glycogen, polyphosphates,

and cyanophycin [2]. The inter-thylakoid glycogen granules are

significantly larger in size than those found in other cyanobacteria,

which points at an unusual branching pattern and packaging of

this compound. From a biotechnological perspective, this presents

an intriguing theoretical possibility to accumulate substantially

higher amounts of polyglucose without any significant increase in

the number of granules [3]. Cyanothece 51142 is also of interest for

bioenergy applications due to its ability to evolve large quantities

of H2. Remarkably, H2 production in this organism can occur

under light conditions in the presence of O2 and is mediated by

nitrogenase [4,5]

Sequencing of the Cyanothece 51142 genome [6] has enabled

application of high-throughput genomic approaches to study the

unique physiological and morphological features of this organism.

Transcriptomic and proteomic studies have been conducted to

analyze global gene expression patterns under a variety of

environmental conditions and infer regulatory pathways that

govern the organism’s diurnal growth [7,8]. The availability of

genomic information also provides means to construct genome-

scale constraint-based models of metabolism, which are powerful

tools for systems-level analysis and prediction of biological systems

response to environmental cues and genetic perturbations [9,10].

Such models have been developed for a variety of biological

systems [9] but only in a few studies has this approach been

applied to photosynthetic microorganisms, including Synechocystis

sp. PCC 6803 [11–13], Rhodobacter sphaeroides [14], and Chlamydo-
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monas reinhardtii [15,16]. However, the modeling of metabolism in

oxygenic photoautotrophs is an intriguing problem due to the

complexity of photosynthetic and respiratory electron transport

chains, and the potential effects of two distinct photosystems upon

the generation and fate of reductant and energy that drives the

remainder of metabolism.

In this work, we developed the first genome-scale metabolic

model of Cyanothece 51142 and used a combination of computation

and experimental approaches to investigate how photosynthetic and

respiratory fluxes affect metabolism. Discrete representation of PS II

and PS I and their integration with multiple respiratory pathways

enabled modeling of photon fluxes and electron flux distributions

under conditions of variable light quality and intensity. The

predicted changes in growth rates of Cyanothece 51142 in response

to changes in light input were experimentally tested using a

photobioreactor with controlled sources of monochromatic 630 and

680 nm light. We also carried out computational and experimental

analyses of light- and nitrogen-limited chemostat growth of

Cyanothece 51142 and used mRNA and protein expression data to

constrain model-predicted flux distributions. Both in silico and

experimental data suggest that respiratory electron transfer plays a

significant role in balancing the reductant (NADPH) and ATP pools

in the cells during photoautotrophic growth. This study is a first step

towards a systems-level analysis of cyanobacterial metabolism, as it

integrates information into a genome-scale reconstruction to

understand metabolism qualitatively and quantitatively through a

constraint-based analysis [9]. We also discuss strategies for

improving internal flux distributions through integration of in silico

simulations and data.

Results

Metabolic network reconstruction and initial model
validation

To build a constraint-based metabolic model of Cyanothece

51142, a genome-scale metabolic network was reconstructed using

the genome annotation and data from NCBI [6], SEED [17],

KEGG [18–20], and CyanoBase [21,22]. The resulting iCce806

network contains 806 genes and 667 metabolic and transport

reactions (see Dataset S1 and Tables S1, S2, S3 for network

details). Most of the 42 reactions without genes associated with

them were added to complete metabolic pathways needed for

biomass production. The final reconstruction encompasses central

metabolic pathways such as the Calvin-Benson cycle, the pentose

phosphate pathway (PPP), reactions within the tricarboxylic acid

(TCA) cycle, as well as, the complete set of anabolic pathways

involved in biosynthesis of glycogen, cyanophycin, amino acids,

lipids, nucleotides, vitamins, and cofactors. Pathways for glycolate

synthesis (via ribulose-1,5-bisphosphate carboxylase/oxygenase,

i.e., photorespiration), glycolate conversion to serine, and glycerol

catabolism are also included. Photosynthetic electron transfer

associated with the thylakoid membrane is represented as a set of

four separate reactions, including light capture by photosystem II

(PS II) and photosystem I (PS I), electron transfer between the two

photosystems, and cyclic electron transfer around PS I. Similarly,

respiratory electron transfer is represented by reactions catalyzed

by terminal cytochrome c oxidase (COX), quinol oxidases (QOX,

both bd- and bo-types), NADH dehydrogenases (NDH, type 1 and

2), and succinate dehydrogenase. In addition, two reactions

(NADP+- and ferredoxin- requiring) for flavin-dependent reduc-

tion of O2 (i.e., Mehler reactions) were included. A simplified

scheme of the photosynthetic and respiratory electron transfer

reactions in iCce806 is shown in Figure 1.

For initial testing, we examined the ability of the constraint-

based model of iCce806 to predict growth under photoautotrophic

(using light and fixing CO2), heterotrophic (using glycerol in the

dark), and photoheterotrophic (using glycerol and light) conditions

with different nitrogen sources. In silico calculated biomass yields,

which simulated carbon or light- limited growth (Figure S1),

qualitatively agreed with previously reported growth data for

Cyanothece 51142 [1,2,23]. Other non-growth conditions that were

simulated with the model, included nitrogen fixation as occurs

during the dark phase of Cyanothece’s ciracadian cycle [1]. In this

case, the oxidation of glycogen provides reductant and ATP for

nitrogenase, and we examined the model’s ability to quantitatively

predict the amount of nitrogen (N2) that could be fixed and stored

in the dark, by maximizing cyanophycin production from

glycogen. Although H2 is an obligate co-product of the nitrogenase

reaction, no H2 was produced in the initial simulations under dark

N2-fixing conditions, contradicting experimental observations.

Model examination revealed that all of the nitrogenase-generated

H2 was utilized by hydrogenases to reduce NAD(P) and

ferredoxin, which ultimately increased cyanophycin production.

When the three hydrogenase reactions (HDH_1, HDH_2, and

UPHYDR) were eliminated from the model, the predicted ratio of

fixed N2 to consumed glycogen depended on the non-growth

associated ATP requirement (NGAR), and was estimated to be 0.3

(NGAR = 2.8) or 0.67 (NGAR = 0) mole N2/mole glycogen, which

was in accordance with an experimentally measured value of 0.51

[2]. Under this condition, the model predicted that H2 production

would have same yields as fixed N2 (0.3 to 0.67 mole H2/mole

glycogen) due to the stoichiometry of the nitrogenase reaction.

We also evaluated how fluxes through electron transfer

reactions are affected by the nitrogenase flux under N2-fixing

dark conditions. With glycogen being the sole source of reductant

for both ATP-generating oxidative phosphorylation and N2

reduction, a balance between fluxes through respiratory pathways

and nitrogenase reaction is needed. In the absence of the

hydrogenase reactions, the model predicted that O2 reduction

via COX, QOX, or Mehler reactions are required to consume

Author Summary

Cyanobacteria have been promoted as platforms for
biofuel production due to their useful physiological
properties such as photosynthesis, relatively rapid growth
rates, ability to accumulate high amounts of intracellular
compounds and tolerance to extreme environments.
However, development of a computational model is an
important step to synthesize biochemical, physiological
and regulatory understanding of photoautotrophic me-
tabolism (either qualitatively or quantitatively) at a systems
level, to make metabolic engineering of these organisms
tractable. When integrated with other genome-scale data
(e.g., expression data), numerical simulations can provide
experimentally testable predictions of carbon fluxes and
reductant partitioning to different biosynthetic pathways
and macromolecular synthesis. This work is the first to
computationally explore the interactions between compo-
nents of photosynthetic and respiratory systems in detail.
In silico predictions obtained from model analysis provided
insights into the effects of light quantity and quality upon
fluxes through electron transport pathways, alternative
pathways for reductant consumption and carbon metab-
olism. The model will not only serve as a platform to
develop genome-scale metabolic models for other cyano-
bacteria, but also as an engineering tool for manipulation
of photosynthetic microorganisms to improve biofuel
production.

Metabolic Modeling of Cyanothece
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NADH resulting from glycogen catabolism (Figure S2). The model

predicts that the COX reaction is required to achieve the

maximum N2 fixation rate since it generates more ATP than the

QOX or Mehler pathways (,9 O2 are needed per N2 fixed). This

is consistent with the results from recent proteomic studies showing

the CoxB1 (cce_1977) subunit of COX is more predominant

during the dark [24,25]. These results suggest terminal oxidases

are important under dark N2-fixing conditions not only to

generate an intracellular anaerobic environment for nitrogenase,

but also to provide ATP for nitrogenase activity.

As photosynthesis and respiratory electron transport chains are

interconnected in cyanobacteria [26], these pathways were

allowed to interact in the iCce806 model. To perform model

robustness analysis, we computationally explored the impact of key

photosynthetic and respiratory pathways on growth rate and

intracellular flux distributions under varying photon uptake flux

for PS I, while the photon uptake flux for PS II was fixed at

20 mmol?g21 AFDW?h21 (Figure 2). First, the model was

evaluated assuming only linear photosynthetic electron transfer.

In this case, all alternative reductant sinks including the proton

and O2 reduction as well as cyclic photosynthetic reactions around

PS I were eliminated from the model (Figure 2A). Under this

condition, growth only occurred at one value of photon uptake

flux for PS I and extracellular organic products (ethanol, lactate

and/or alanine with trace amounts of formate) would have to be

secreted in order to generate enough ATP to support biomass

production. Second, when cyclic photosynthetic reactions were

added back, the photon uptake flux for PS I could vary with a

fixed photon uptake flux for PS II, but significant amounts of

extracellular products were still formed until the photon uptake

flux for PS I exceeded ,85 mmol?g21 AFDW?h21 (Figure 2B).

No growth occurred unless PS I photon uptake flux was greater

Figure 1. Schematic representation of the electron transport and reductant partitioning pathways in Cyanothece 51142. Linear
photosynthetic electron transfer: electrons from photosystem II (PS II) to photosystem I (PS I) are transferred through plastoquinone (Pq), cytochrome
b6f complex (Cyt b6f), plastocyanin (Pc) and cytochrome c6 (Cyt c6). From PS I electrons can be transferred to ferredoxin (Fd) via ferredoxin:NADP+

reductase (FNR) and subsequently to generate reductant in the form of NADPH. Cyclic photosynthetic electron transport: electrons can flow from Fd to
Pq (FdPq reaction). Respiratory electron transfer: includes two cytochrome oxidases (COX), two cytochrome-quinol oxidases (QOX), and two types of
NADH dehydrogenases (NDH-1 and NDH-2). Alternative sinks for reductant beyond CO2 fixation: reduced Fd can be used by the nitrogenase (Nif) and
by Mehler reactions to reduce O2. Bidirectional hydrogenase (Hox) can reversibly produce H2 using NAD(P)H as an electron donor, while the uptake
hydrogenase (Hup) consumes H2 using Fd as an electron acceptor. Protons transferred across the thylakoid membrane are used by the ATPase to
drive ATP synthesis.
doi:10.1371/journal.pcbi.1002460.g001

Metabolic Modeling of Cyanothece
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Figure 2. Impact of electron transport pathways on growth and metabolism of Cyanothece 51142. (A) Effects of removing cyclic
photosynthesis (via NDH-1, NDH-2, FdPq, G3PD_PQ, and SUCD_PQ) and alternative reductant sinks (H2 production, COX, QOX, and Mehler reactions).
(B) Effect of removing alternative reductant sinks but including all routes for cyclic photosynthesis. Shaded regions indicate that multiple flux values
can achieve maximal growth rate. (C) All photosynthetic and respiratory electron flow routes operate, except H2 production.
doi:10.1371/journal.pcbi.1002460.g002

Metabolic Modeling of Cyanothece
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than or equal to the photon uptake flux for PS II. Only when the

model was allowed to use both cyclic photosynthesis and O2

reduction reactions were no extracellular products predicted and

the photon uptake flux for PS I could be less than that for PS II

(Figure 2C). Since experimental data does not indicate that any

by-products including H2 or organic acids are produced by

Cyanothece 51142 at a detectable level during photoautotrophic

growth with excess ammonium, a plausible mechanism for

balancing growth through the generation of additional ATP may

involve activity of the cytochrome oxidases.

Effect of light quality on cellular growth and pathway
utilization

The discrete representation of PS II- and PS I-mediated

reactions and their interactions with multiple respiratory reactions

in iCce806 enabled further in silico analysis of growth and electron

flux distributions under photoautotrophic conditions of variable

light quality and intensity. In this case, the complete model was

used to explore which reactions would be used to support maximal

photoautotrophic growth rates for different levels of PS II and PS I

photon uptake fluxes. To predict the corresponding growth rates

under light-limited conditions, we constrained the photon uptake

fluxes (ranging from 0 to 60 mmol?g21 AFDW?h21) through each

photosystem. The resulting phenotypic phase plane (PhPP)

contained three distinct regions (Figure 3A): in two regions growth

was limited only by fluxes through PS II (region 1) or PS I (region

3), while in region 2 growth was limited by both PS II and PS I

photon uptake fluxes (i.e., increases in either flux would improve

growth rate). By adding artificial ATP or NADPH generating

reactions (ADP+HPO4+HRATP+H2O and NADP+HR
NADPH) to the model and analyzing changes in predicted

maximal growth rates, we were able to identify that in regions 1

and 3 growth was NADPH/reductant-limited, while in region 2 it

was limited by energy supply (Figure 3A).

To analyze the effect of photon uptake rates on electron flux

distributions, we calculated the flux ranges using flux variance

analysis (FVA) for all photosynthetic and respiration reactions

within each PhPP region (Figure 3B). In this instance, PhPP FVA

was run with constraints that restrict the model to a given region

and to the maximum growth for each point in the region (in

contrast, standard FVA is used at a single point in a region). Using

PhPP FVA, we identified active (both minimum and maximum

flux values are positive or negative), inactive/blocked (minimum

and maximum fluxes are both zero), and optional (which could

have at least one zero and one non-zero flux value somewhere in

the region) reactions leading to optimal solutions in each PhPP

region. This new analysis technique allowed classification of

reaction usage across entire regions of the PhPP and is not

restricted to fixed points within a region. While linear photosyn-

thesis was active and Mehler reactions were blocked across the

entire PhPP, there were differences in the usage of photosynthetic

and respiratory reactions observed within all three regions

(Figure 3B). Surprisingly, while generation of NADPH from

reduced ferredoxin via linear photosynthesis is the key source of

reductant, ferredoxin-NADP+ oxidoreductase (FNR) was predict-

ed to be active in region 2, but optional in regions 1 and 3. Closer

examination of in silico calculated electron flux distributions

revealed that, in addition to FNR, the model utilized a cycle

involving glutamine synthetase, glutamate synthase and transhy-

drogenase, resulting in ATP-driven NADPH production. In

regions 1 and 3, the model predicts there is excess ATP, and so

this cycle can be used instead of FNR to move electrons from

ferredoxin to NADPH. However, this cycle is unlikely to be of any

physiological relevance since there has been no experimental data

supporting this route for making NADPH, and FNR is essential for

photoautotrophic growth in unicellular cyanobacteria such as

Synechococcus 7002 [27]. Differences in the predicted usage of

respiratory reactions were also found. In region 1, where growth is

limited by the flux through PS I, at least one of the COX and

QOX reactions must be active to oxidize excess electron carriers

(Pc, Cyt c6, or Pq) generated from PS II. Similarly, in region 3

under PS II flux limitation, excess electron carriers (Pq, Fd) must

be reduced via NDH-1 or –2 or ferredoxin-dependent cyclic

electron transfer (FdPq). Conversely, due to ATP limitation in

region 2, the model favored reactions with higher proton pumping

capacities and so both the QOX and FdPq reactions were inactive.

The usage of COX was optional in region 2 and depended on

photon uptake rates (e.g., COX reaction was inactive at the

boundary between regions 2 and 3).

The model predictions (Figure 3A) were compared to batch

growth experiments in the LED-photobioreactor which allowed

instantaneous measurements of initial growth and photon uptake

rates by Cyanothece 51142 cells exposed to different intensities and

ratios of 630 and 680 nm light (Table 1). When Cyanothece 51142

cultures were illuminated with both 630 nm and 680 nm light,

initial growth rates generally correlated with the total photon flux

through PS II and PS I, with higher growth rates observed at

80 mmol?g21 AFDW?h21 total photon flux and 630 nm:680 nm

light ratio of 2:1. When cultures were exposed to only a single

wavelength of light (batch experiments 6–10), i.e., either 630 or

680 nm, Cyanothece 51142 cells displayed a similar trend with

higher growth rates observed at higher photon flux intensities. The

predicted growth rates were within 7% of the experimentally

measured values, except for the two cases where single 630 nm

wavelength irradiances were used (Table 1). The reasons for this

are unclear but may be due to other physiological and/or

biochemical phenomena such as state transitions that are not

contained within the model but are operating in vivo.

Data from these batch experiments (batch experiments 1–5,

Table 1) were also used to estimate the growth (GAR) and non-

growth (NGAR) associated ATP requirements. NGAR is the

amount of energy spent to maintain the cell (i.e., maintenance

energy). GAR is defined as energy expenditures used on protein

and mRNA turnover or repair, proton leakage, and maintenance

of membrane integrity; it does not include ATP spent on

polymerization reactions, which are already accounted for in the

macromolecular synthesis pathways of the network. The time-

averaged growth and photon uptake rates were used to constrain

the model and the maximal amount of ATP hydrolysis was

calculated (Figure S3) for each batch experiment. A plot of growth

rate versus maximum ATP hydrolysis flux was generated and a

linear fit used to estimate the GAR and NGAR values [28].

Specifically, the slope of the fitted line is the GAR (544 mmol?g21

AFDW?h21), and the y-intercept is NGAR (2.8 mmol?g21

AFDW?h21). The estimated GAR value is significantly higher

than those reported from other bacteria [29]; however, these

model estimates assume that all absorbed photons lead to

photosynthetic fluxes (100% quantum efficiency) and that the

overall efficiency of ATP production via all electron transfer

reactions (photosynthetic and respiratory) are accurate. Depending

on the growth condition the quantum yields can change, and for

Cyanothece 51142 this value was reported to be between ,70–100%

for photoautotrophic growth [23]. Upon further analysis, we

found the estimated Cyanothece ATP requirements were most

sensitive to reductions in quantum efficiency and the amount of

ATP generated by photosynthesis and respiration (Table S4).

Since neither quantum efficiency nor combined photosynthetic

and respiratory ATP production were experimentally measured

Metabolic Modeling of Cyanothece
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Figure 3. Predicted effects of varying photon uptake rates on growth and electron transport pathways. (A) 2-D phenotypic phase plane
(PhPP) displaying maximum growth rates for varying photon uptake rates. The PhPP has 3 distinct regions – in regions 1 and 3, flux through a single
photosystem limit growth rates, whereas in region 2 flux increases through either photosystem will increase growth rate. (B) Pathway maps of
electron transfer reactions in different PhPP regions. PhPP flux variability analysis was performed to see which flux is always required (red arrows),
optional (green arrows), and blocked (blue arrows) across each of the three PhPP regions.
doi:10.1371/journal.pcbi.1002460.g003
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for Cyanothece 51142, the original estimates, GAR = 544 and

NGAR = 2.8 were used in all growth simulations.

Experimental analysis of ammonium- and light-limited
growth

Chemostat cultures grown under light and ammonium

limitations were used to calculate metabolic fluxes and further

understand reductant partitioning pathways in Cyanothece 51142.

The differences in biomass composition between these growth

conditions indicated a major shift in carbon partitioning pathways

(Figure 4; and Table S5). In ammonium limited cultures,

carbohydrates comprised almost half of cell biomass; in contrast,

under light limitation, Cyanothece 51142 cells contained higher

amounts of protein, nucleic acids, and approximately 10%

cyanophycin. The quantitative biomass composition measure-

ments were used to generate two separate biomass equations for

the metabolic model; experimentally measured growth rate,

photon uptake rates, and O2 production rates were included as

additional model constraints (Table S6, in this case no mRNA or

protein expression data is used by the model). Using FBA and

through minimization of the overall flux magnitude, we calculated

representative flux distributions under light and ammonium

limitations (values listed in Table S1). As expected, changes in

flux values were consistent with differences in measured biomass

compositions used in the simulations: under light limitation, fluxes

increased for reactions involved in biosynthesis of amino acids,

nucleotides and cyanophycin, while ammonium limitation resulted

in flux increases for glycogen biosynthesis.

Comparisons of global transcriptome profiles displayed by

Cyanothece 51142 during ammonium- and light-limited chemostat

growth also reflected the rewiring of cellular metabolism (Table

S7). Under ammonium limitation, significant increase in relative

mRNA abundances was observed for genes involved in N2 fixation

(cce_0198, cce_0545–0579), iron acquisition (cce_0032–0033,

cce_1951, cce_2632–2635), respiratory electron transport

(cce_1665, cce_3410–3411, cce_4108–4111, cce_4814–4815) as

well as peptide transport, synthesis, and protein repair (cce_0392,

cce_1720, cce_3033, cce_3054–3055, cce_3073–3075). Among

the most highly expressed genes in ammonium-limited Cyanothece

51142 cells was the one encoding 6-phosphogluconate dehydro-

genase (cce_3746), a key PPP enzyme. Under light limitation, the

major changes in the transcriptome of Cyanothece 51142 included

upregulation of genes encoding: components of the photosynthetic

apparatus and electron transport chain (cce_0776, cce_0989–

0990, cce_1289, cce_2485, cce_2959, cce_3176, cce_3963);

pigment biosynthesis (cce_0920, cce_1954, cce_2652–2656,

cce_2908, cce_4532–4534); CO2 uptake and fixation machinery

(cce_0605, cce_3164–3166, cce_4279–4281); ATP synthase

(cce_2812, cce_ 4485–4489), and protein synthesis machinery

(cce_ 4016–4030) (Table S7).

Global proteome profiles of Cyanothece 51142 corroborated the

shifts in gene expression (Table S8). The abundance of proteins

from central metabolism (glycolysis, TCA, and pentose phosphate

pathway) all had significant differences between cells grown under

ammonium- and light-limited conditions. Enzymes of the

oxidative PPP branch, namely glucose-6-phosphate dehydroge-

nase (cce_2535–2536), 6-phosphogluconolactonase (cce_4743) and

6-phosphogluconate dehydrogenase (cce_3746), showed increased

abundances under ammonium limited conditions. Similarly, two-

fold increase in abundance levels was observed for gluconeogenesis

proteins, including fructose 1,6-bisphosphatase (cce_4758), glu-

cose-6-phosphate isomerase (cce_0666), glyceraldehyde-3-phos-

phate dehydrogenase (cce_3612), and phosphoglycerate kinase

(cce_4219). In contrast, relative abundances of proteins catalyzing

the conversion of glycerate-3P to pyruvate (cce_1789 and

cce_2454) were unchanged or up-regulated (pyruvate kinase

cce_3420) in light-limited cells. Consistent with the results from

global mRNA profiles was the up-regulation of Cyanothece 51142

proteins involved in photosynthesis and carbon fixation under

light-limited conditions (Table S8). Notably, two key components

involved in the electron transfer to PS I, namely plastocyanin

(cce_0590) and cytochrome b6 (cce_1383), displayed elevated

peptide abundances in light-limited cells.

Using experimental measurements and in silico mutage-
nesis to restrict the range of predicted flux distributions

Since there may be more than one flux distribution that is

consistent with the experimentally measured rates of growth,

Table 1. Comparison of growth rates predicted by simulation model to those experimentally measured in batch cultures.

Experiment

Photon uptake rate* at
630 nm, mmolNg21

AFDWNh21

Photon uptake rate* at
680 nm, mmolNg21

AFDWNh21

Total photon uptake
rate mmolNg21

AFDWNh21

Experimentally
measured growth rate,
h21

Predicted growth rate,
h21

1# 19.061.1 15.560.9 34.5 0.03560.0068 0.03560.0022

2# 15.661.1 26.061.6 41.6 0.04160.0076 0.04360.0032

3# 33.461.0 13.660.4 47.0 0.05160.0053 0.04960.0018

4# 34.661.4 35.061.3 69.6 0.07960.0062 0.07460.0033

5# 53.662.8 26.461.0 80.0 0.08060.0052 0.08560.0044

6** 0 32.162.0 32.1 0.03260.0012 0.03260.0025

7** 0 33.062.1 33.0 0.03760.00014 0.03360.0026

8** 0 37.261.5 37.2 0.04060.00032 0.03860.0017

9** 21.161.7 0 21.1 0.01660.010 0.02060.0021

10** 28.061.7 0 28.0 0.03660.014 0.02860.0021

*Average and standard deviation of the instantaneously measured growth rate and photon uptake rates were calculated over the first 5 hours. (See Text S1 for more
detail about batch growth rate simulation).
**For computational predictions of the growth rate for batches 6–10, the total photon uptake flux measurements at 630 nm and 680 nm was used to constrain the total
photon uptake flux in the model (EX_photon PSI_e+EX_photon PSII_e).
#Experimental photon uptake and growth rates from batches 1–5 were used to calculate ATP requirement parameters GAR and NGAR.
doi:10.1371/journal.pcbi.1002460.t001
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photon uptake, and O2 production we used FVA to identify

required (flux must be non-zero), optional (flux may or may not be

zero), or inactive (flux must be zero) reactions under light- and

ammonium-limited growth conditions. As our initial simulations

(Table 2) produced a large number of optional reactions (170 out

of 667 for both growth conditions), that represent uncertainty

regarding usage, we subsequently used the transcriptome and

proteome data (TPD) to further constrain the model. Using a

modification to a previously developed approach [30], we

obtained a flux distribution that was consistent with measured

rates and TPD while reducing the overall flux magnitude (Table

S1). In this analysis, flux was favored through reactions for which

proteins were detected and disfavored through reactions associated

with undetected proteins and transcriptome data less than a given

threshold (e.g., log2 of mRNA expression level is less than 8). The

model constrained by TPD predicted that the majority of reactions

in central metabolism would be active under both chemostat

conditions (Figure 5). In addition, we subsequently applied FVA

employing additional constraints arising from the TPD. Compar-

ison between FVA results with and without TPD constraints

demonstrated a significant decrease in the number of ambiguities

(the optional reaction set) when TPD is used (Table 2).

While the number of optional reactions was reduced by

incorporating TPD into the model, the flux spans (difference

between maximum and minimum values) of individual fluxes was

still large (.30 mmol?g21 AFDW?h21 for some central metabolic

reactions, Table S1). These large flux spans could arise from cycles

or alternative pathways in the model, and deleting these features

from the model could subsequently reduce the flux spans. FVA

was repeated using measured growth, photon uptake, and O2

release rates under light-limited conditions as constraints and with

optional reactions were deleted (similar results were found for

ammonia limited conditions, data not shown). Flux spans for

reactions in central metabolism (Figure 5) were then calculated for

a series of single or double reaction deletions in silico. The purpose

of this analysis was to identify those reactions that exert the

greatest impact on the flux span in central metabolism (Figure 6A).

Single deletions of glyceraldehyde-3-phosphate dehydrogenase

(GAPD or GAPD_NADP) or hydrogenase (HDH_1) reduced the

average central metabolic flux span the most (from 74 to

22 mmol?g21 AFDW?h21). Other single deletions with significant

effects included FNR and NDH-1, which are involved in

photosynthesis and respiration. The reaction deletions shown in

Figure 6A all had a larger impact on reducing average central

metabolic flux span than did imposition of constraints based on

TPD. There were cases where single deletions had large effects on

other specific reactions, but only modest effects on overall central

metabolic flux spans. For example, a single deletion in phospho-

gluconate dehydrogenase (PGDHr) reduced the span for glucose-

6-phosphate isomerase flux (PGI) to 0 (Figure 6B), but only

reduced the average central metabolic flux span by

,0.7 mmol?g21 AFDW?h21. The in silico analysis of double

reaction deletions did not yield any new double deletions that

would reduce the average central metabolic flux span significantly.

However, some double deletions strategies did reduce flux spans of

individual reactions.

Discussion

Several cyanobacterial metabolic models (all for Synechocystis

PCC 6803) have been published, which represented photosynthe-

sis as two lumped reactions [12,31] for linear (PSII, Cyt b6f, PSI,

and FNR) and cyclic (PS I and Cyt b6f) pathways. In this study, we

modeled photosynthesis as a larger set of separate reactions [13] as

this structuring allowed analysis of the effects of different

illumination on the production and partitioning of reductant

through photosynthetic and respiratory reactions, as well as the

contribution of different electron transfer pathways to growth. Our

PhPP FVA results showed how different photosynthetic and

respiratory electron transport chain components are used to

maximize biomass production under different lighting regimes. It

was not surprising that linear photosynthesis was active in all three

regions because the cell needs photons from both PSI and PSII to

grow under photoautotrophic conditions. However, the Mehler

reactions were inactive in all three regions when we only consider

maximal growth rate solutions. In regions 1 and 3, reducing

Figure 4. Effect of nutrient limitation on biomass composition
(normalized to ash-free dry weight).
doi:10.1371/journal.pcbi.1002460.g004
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Figure 5. Predicted chemostat flux distributions in central metabolism including transcriptome and proteome data as constraints.
The flux values (mmol?g21 AFDW?h21) are those where the flux distribution best matches the transcriptome and proteome data (TPD) while also
minimizing the magnitude of all fluxes in the network. The flux values in red and green represent ammonia-limited (AL) and light-limited (LL)
conditions, respectively. Arrow colors indicate relative flux ratios between AL and LL conditions.
doi:10.1371/journal.pcbi.1002460.g005
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equivalents (e.g., NADPH) limit growth and the Mehler reactions

would lower the amount of reducing equivalents available for

growth. The Mehler reactions are less energetically efficient than

NADH dehydrogenase and cytochrome oxidase so the model

would not use them in region 2, where ATP is limiting. So while

the Mehler reactions can carry flux in the model, using these

reactions lowers the maximum growth rate making them inactive

(blocked reactions) in our PhPP analysis. A recent study showed

that the Mehler reactions are operational in Synechocystis sp. PCC

6803, serving as a sink for excess electrons [32]. These reactions

are also likely to be active in Cyanothece 51142, since the associated

proteins were detected in the proteomic data (Table S8). As a

result the model only predicted non-zero Mehler fluxes when the

proteomic data were used to constrain the model (Table S1).

In the absence of cyclic photosynthesis, other products including

water (produced by COX, QOX or Mehler reactions), H2 (via

hydrogenase), or small organic compounds (alanine, ethanol,

lactate and formate) were predicted to be necessary in order to

balance the electrons and ATP needed to support growth. In the

presence of linear and cyclic photosynthesis reactions, these

products must also be produced unless significant amounts of

cyclic photosynthesis occurs (.3 times the amount of linear

photosynthesis). Since H2 and small organic compounds are not

generally produced under photoautotrophic conditions with excess

ammonium, any additional energy is most likely supplied by

cytochrome oxidase activities that reduce photosynthetically

produced O2. Interestingly, in the absence of cytochrome oxidase

activities in the model, the PS I fluxes must always be greater than

or equal to the PS II fluxes. It was shown that the marine

cyanobacteriium Synechococcus has a PS I/PS II protein ratio .1,

which has been explained as a mechanism to protect PS II from

photo-damage [33]. Under conditions with high levels of PS II

activity, cytochrome oxidase activity may ensure an adequate

supply of oxidized plastoquinone (needed for PS II) and reduce O2

concentrations to limit photorespiration.

Similarly, cyclic electron flow via NADH dehydrogenase- or

ferredoxin-dependent routes have also been experimentally

demonstrated to play important roles in balancing the amount

of NADPH and ATP produced via photosynthesis. Synechocystis

6803 mutants lacking ndhD genes (encoding subunits of NDH-1)

had significantly lower cyclic photosynthesis activity [34].

Although the mechanism of electron transfer from ferredoxin to

the plastoquinone pool (without using NDH) is still unclear, its

activity has been demonstrated in green algae [35] and higher

plants [36]. Our computational simulations also showed that,

under light-limited photoautotrophic conditions, cyclic electron

transfer involving NADH dehydrogenase (NDH-1) is needed for

maximal growth if ATP (rather than NADPH) is limiting. In an

environment where PS I photon availability is high relative to PS

II, cyclic electron transport is needed (Figure 2) to increase

availability of PS I substrates (reduced PC or Cyt c6) and protect

against photo-damage. Cyclic electron flow has been experimen-

Table 2. Flux variability analysis for model simulations in light-limited and ammonium-limited chemostat conditions.

With protein and mRNA expression data Without protein and mRNA expression data

Category Light-limited NH4- limited Both conditions

Required reactions 364 366 287

Optional reactions 74 76 170

Inactive reactions 229 225 210

doi:10.1371/journal.pcbi.1002460.t002

Figure 6. Effects of in silico reaction deletions on flux spans
under light-limited conditions. (A) Effects of deletions are compared
to the cases where no reactions were deleted (red bar), or TPD were used
as constraints (green bar). The values represent the average flux span
across all reactions in central metabolism. Only deletions which lower the
flux span by at least .1 mmol?g21 AFDW?h21 are presented. (B) Changes
in flux spans for specific reactions catalyzed by ribulose bisphosphate
carboxylase (RBC) and phosphoglucose isomerase (PGI) between
simulations that (i) use TPD data as a constraint (green bars), (ii) delete
single reactions (blue and purple bars), (iii) delete two reactions (yellow
bar) or (iv) impose no additional constraints (red bars). Reaction
abbreviations match those listed in Table S1.
doi:10.1371/journal.pcbi.1002460.g006
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tally shown to help protect the photosynthetic apparatus from

photo-damage [37–39]

In addition to studying the interactions between components of

the photosynthetic and respiratory components computationally,

we also experimentally evaluated cells grown under continuous

light conditions in light- and ammonia-limited chemostats. The

measured 630 nm and 680 nm photon uptake and O2 production

rates suggests that reductant was being directed towards O2 via the

Mehler, QOX, and/or COX reactions. In both chemostat

conditions, the model predicted that steady-state growth rate

could have been achieved using lower photon uptake rates by

decreasing the amount of reductant generated by PS II that was

predicted to reduce O2.

A limitation to flux balance analysis is that a wide range of flux

values may be consistent with the constraints in the computational

model. An iterative application of computational and experimen-

tal methods is an important strategy to improve the comprehensive

understanding of cyanobacterial metabolism. We have begun to

apply this iterative approach, by including mRNA and protein

expression datasets as additional constraints beyond biomass

composition and physiological rate measurements. Experimental-

ly-measured TPD were successfully used to further constrain the

model, and thereby reduce uncertainty and increase the number

of required (that is, metabolically active) reactions (Table 2).

However, there remained discrepancies in that the model did not

predict flux through all reactions for which proteins were

experimentally detected. Such discrepancies can be used to

subsequently improve the model with previously developed

approaches [40–42]. For example, an earlier version of the model

did not predict flux through proline oxidase, even though

proteome data demonstrated that proline oxidase was synthesized.

This prediction arose because the model did not contain a reaction

in which FADH2 (a product of the proline oxidase reaction) could

be reoxidized to FAD. After experimental confirmation that

proline can be used as a nitrogen source (implying activity of

proline oxidase) by Cyanothece 51142 (data not shown), a FADH2

recycling reaction was included in the final iCce806 model.

Even with these additional TPD constraints, a wide range of

flux values remained feasible (Figure 6). We should note that we

did not take real enzymatic activities into account (which can be

affected by post-translational modifications), as we did not have

this type of data for the two conditions examined. Such data, if

available, could be used as additional factors for determining

whether to favor or disfavor fluxes through associated reactions

(See Material and Methods). Other constraint-based methods for

incorporating gene expression data use similar Boolean on/off

type of constraints to restrict fluxes [30,43,44] and would be

expected to yield results similar to those described herein. Thus,

novel computational methods which can more quantitatively

constrain the metabolic flux values are still needed. The strategy of

evaluating fluxes for reaction deletions in silico can be used to

identify knockout mutants that can potentially improve the

resolution of intracellular flux distributions. A flux that is well

resolved would have a small span meaning we can more

definitively state its value. If the mutants show no growth defects

then the corresponding reactions may not be used under the

conditions tested, or alternative pathways not included in the

model may occur. Either way, this information could be used to

better resolve the intracellular flux distribution or improve the

metabolic model. For Cyanothece 51142, this would require

development of a genetic system (such a system already exists for

another Cyanothece strain [45]) as experiments with mutants would

have the most potential to improve resolution of central metabolic

fluxes during photoautotrophic growth. Also, as a complement to

the in silico reaction knockouts that our simulations predict would

reduce the flux spans associated with central metabolic reactions,

the photobioreactor employed here provides a system whereby

cultivation conditions can be rigorously controlled and some

aspects of physiological state monitored continuously. In addition,

cells from steady-state or perturbed cultures can be interrogated

via physiological or biochemical analyses to experimentally test the

predictions of the computational models for wild type or mutants.

As the number of available cyanobacterial models continues to

grow, cross-species physiological, genomic, and metabolic com-

parisons will enable the identification of core networks and

contribute towards improving our understanding of metabolic

processes in cyanobacteria.

Material and Methods

Culture and growth conditions
Cyanothece 51142 was grown in modified ASP2 medium [46]

amended with 0.75 mM K2HPO4, 0.03 mM FeCl3N6H2O, and

17 mM NH4Cl which substituted NaNO3 as the nitrogen source.

Routinely, the cells were maintained under continuous white light

illumination (50 mmol photons?m22?s21) in 1-L Roux bottles

sparged with CO2-enriched air (0.3% vol/vol). Culture purity was

confirmed by plating on DIFCO Bacto Tryptic Soy Broth and

DIFCO Luria-Bertani solid media (BD Diagnostic Systems,

Franklin Lakes, NJ) as well as by phase contrast or acridine

orange fluorescent microscopy.

Controlled cultivation
Controlled batch and chemostat cultures of Cyanothece 51142 were

grown in a 7.5-L borosilicate glass vessel operated at 5.5-L working

volume under the control of New Brunswick Bioflo 3000 bench-top

bioreactor (New Brunswick Scientific, Edison, NJ). The vessel was

housed in a custom-made black anodized aluminum enclosure

equipped with light-emitting diodes (LED) generating 680 nm and

630 nm light for the preferential excitation of chlorophyll a and

phycobilin pigments, respectively. Built-in sensors allowed for

automatic adjustment of incident and transmitted light intensities

using custom-designed control module. Both hardware and software

components of the LED enclosure and the control module were

developed at Pacific Northwest National Laboratory (US Patent

Application # 20100062483; http://appft1.uspto.gov). All exper-

iments were carried out under continuous illumination in modified

ASP2 medium sparged with CO2-enriched argon (Ar) (0.2% vol/

vol). Agitation, temperature, pH, and gas flow rates were

maintained at 250 rpm, 30uC, 7.4, and 2.8 L/min, respectively.

Incoming and off-gas composition was constantly monitored by an

in-line mass spectrometry based gas analyzer MGA iSCAN

(Hamilton Sundstrand, Pomona CA). Cell density was monitored

spectrophotometrically at 625, 678, and 730 nm.

To establish a light-limited chemostat culture, the photobior-

eactor was inoculated with 10 mL of mid-log phase Cyanothece

51142 cells and maintained as a batch culture under 630 nm and

680 nm illumination at 40 and 70 mmol photon?m22?s21,

respectively, until the culture reached late logarithmic stage.

Chemostat mode was initiated by continuous inflow of medium at

a dilution rate of 0.05 hr21 that resulted in a steady-state optical

density (OD730) of 0.20. Similarly, a nitrogen-limited continuous

culture of Cyanothece 51142 was established using low-nitrogen ASP

medium containing 0.75 mM NH4
+. The ammonium-limited

chemostat was maintained under identical operating conditions in

regard to the culture dilution rate and optical density under

incident light at 38.5 and 73.5 mmol photon?m22?s21 for 630 nm

and 680 nm wave lengths, respectively).

Metabolic Modeling of Cyanothece

PLoS Computational Biology | www.ploscompbiol.org 11 April 2012 | Volume 8 | Issue 4 | e1002460



The light uptake fluxes (mmol?g21 AFDW?h21) were deter-

mined by multiplying the light consumption rates (mmol photon

m22s21) by the surface area of cell culture exposed to light (m2)

and dividing by the amount of biomass in the reactor (g AFDW).

The light consumption rates were determined by subtracting the

transmitted light intensity from the values of incident light intensity

after corrections were made for the abiotic consumption of light to

account for the gas bubbles and probes in the reactor. Cells in the

5.5 L working volume were assumed to be equally exposed to the

light at all times. Based on the inner diameter and height of the

liquid culture at working volume, the surface area was 0.1403 m2.

The amount of biomass in the reactor was determined from the

working volume and biomass concentrations.

Analytical methods
Biomass ash-free dry weight (AFDW) was measured using

centrifuged (11,0006 g, 4uC) cell pellets as described previously

[29]. Total protein, reducing carbohydrates, RNA, and DNA were

assayed using standard analytical techniques [47–49]. The total

lipid fraction was measured gravimetrically after an extraction from

a known volume of freeze-dried culture using previously published

methodology [50]. Total reducing carbohydrates were quantified

using the anthrone method [51] with glycogen as the standard.

Chlorophyll concentrations were measured as described elsewhere

[52,53]. Amino acid composition was analyzed in acid-phenol

hydrolyzed samples prepared using Eldex hydrolysis/derivatization

station (Eldex Laboratories, Inc., Napa, CA) [29]. The derivatized

samples were resolved on a 4-mm AccQ-Tag Nova-Pak C-18

column (3.9 mm6150 mm, Waters Corp., Milford, MA, USA),

eluted using a linear gradient of acetonitrile (from 1.2% to 4.2%

over 15 min.; from 4.2% to 6% over 4 min.; from 6% to 20% over

12 min.; at 20% over 1 min.; from 20% to 60% over 1 min.) with a

flow rate of 1.0 ml/min at 37uC, and detected at 254 nm (HPLC

system and UV detector by Shimadzu, Tokyo, Japan). Cyanophycin

was estimated based on relative amino acid values and total protein

measurements (see Text S1 for details).

Microarray expression analysis
Previously developed whole-genome oligonucleotide microar-

rays of Cyanothece 51142 [7] were manufactured by Agilent

Technologies (Santa Clara, CA). RNA isolation, labeling,

hybridization, and data analysis were performed by MOgene,

LC (St. Louis, MO) using published protocols [7].

Proteomic analysis
Cell lysis and tryptic digestion followed a previously described

‘‘global protein preparation’’ scheme [54]. A reference peptide

database was prepared using strong cation exchange fractionation

(10 fractions) of a portion of each global digest, as previously

reported [55–57]. The methods for capillary liquid chromatography

and mass spectrometry have been described in detail elsewhere

[54,58,59]. Here, the HPLC mobile phase was 0.1% formic acid in

water (A) and 0.1% formic acid in acetonitrile (B). A Finnigan LTQ

ion trap mass spectrometer (ThermoFinnigan, San Jose, CA) was

used for MS/MS analysis of SCX fractions and an LTQ-Orbitrap

(Thermo) was used for high-resolution MS analysis of the global

unfractionated samples. Each of the 10 SCX fractions was analyzed

once, while each global digest was injected four times.

To build an accurate mass and time (AMT) tag database,

SEQUEST analysis software was used to match the MS/MS

fragmentation spectra to sequences from the annotation of the

Cyanothece 51142 proteome [6]. Peptide identifications from the

SCX fractions were combined with identifications from unfrac-

tionated samples to create a reference database of calculated mass

and normalized elution time for each identified peptide. This

database was used for subsequent high-sensitivity, high-throughput

analysis of Cyanothece 51142 samples using the AMT tag approach

[60]. LC-MS features from the unfractionated global samples were

matched to the rich database built from the fractionated samples

to give accurate peptide IDs. The area of each LC elution peak

was used as a measure of peptide abundance.

Data from the AMT output were imported into the software

MDART (Burnum et al., unpublished results), for filtering using a

mass error tolerance of ,5 parts per million, delta match score .0

(a measure of peptide uniqueness), match score .21, and absolute

normalized elution time error ,10,000. The resulting 7450

peptides were imported into the software tool DAnTE [61] for

further filtering and analysis. Peptide abundances were trans-

formed to log base 2 and mean-centered. A linear regression-based

normalization method available in DAnTE was then applied

within each replicate category. Peptide abundances were used to

infer the corresponding protein abundances through the ‘Rrollup’

algorithm in DAnTE [61]. During the Rrollup step, peptides were

excluded if not present in at least 3 of the eight datasets, and

Grubbs’ outlier test was applied with a P-value cutoff of 0.05 to

further remove outlying peptides. For increased confidence in

protein identifications, each protein was required to be identified

by at least 2 unique peptides, resulting in a total of 865 proteins.

The minimum observed relative protein abundance value (14,465)

was imputed as a crude surrogate for missing data for statistical

calculations. Statistical differences between the two samples (4

technical replicates of each) were determined using ANOVA with

a P-value cutoff of 0.05 (q,0.03) in DAnTE [61].

Metabolic network reconstruction: iCce806
A draft metabolic network of Cyanothece 51142 was reconstructed

in SimPheny (Genomatica, San Diego, CA) using a previously

described automated model-building process [62]. Metabolic

reactions and gene-to-protein-to-reaction (GPR) associations from

other models were incorporated into the reconstruction if good

BLAST hits could be found between genes in Cyanothece 51142 and

genes in other modeled organisms. Additional reactions were

added as necessary to produce known biomass constituents or

utilize known nutrients; detailed literature, database, and BLAST

searches were then carried out to find genes encoding these

reactions in Cyanothece 51142 genome. This resulted in several new

GPR associations that were incorporated into the reconstruction.

Constraint-based analysis of flux distributions
Based on the metabolic reconstruction, a constraint-based

metabolic model for Cyanothece 51142 was developed as described

in [63]. Fluxes are limited based on several different types of

constraints: steady-state mass balance constraints (Eq. 1), enzyme

capacity and thermodynamic constraints (Eq. 2) [10], given by:

S:v~0 ð1Þ

aƒvƒb ð2Þ

where S is a stoichiometric matrix for the reaction network, v is a

flux vector, and a and b are parameters that limit the capacity and

directionality of individual reactions. Flux balance analysis (FBA)

uses these constraints to identify a flux distribution which

maximizes or minimizes an objective function, such as growth

rate [10]. Flux variability analysis (FVA) can also be used to

determine the range of values each flux can take that are consistent
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with Eq. 1 and 2, by maximizing and minimizing each flux

individually [64].

To further constrain the models based on mRNA or protein

expression data, a modified version of the method developed by

Shlomi et al. [30] was used. Here, we identified a single flux

distribution that best agreed with measured transcriptome and

proteome data (TPD) and minimized flux usage. Reactions with

experimentally measured fluxes belong to set RE (which included

biomass production and exchange fluxes for oxygen, 630 nm and

680 nm photons) and were constrained to their measured values.

Reactions associated with detected proteins were included in the

high reaction set (RH). Reactions associated with undetected

proteins and genes with low mRNA expression levels (whose

mRNA expression was less than the lowest mRNA expression of

detected proteins) were included in the low reaction set (RL). The

method finds a flux distribution that maximizes the number of

active reactions (v?0) and inactive reactions (v = 0) in reaction sets

RH and RL, respectively. For reactions in set RH, binary variables

x and y indicate whether a reaction is active, meaning its flux is

greater than a positive threshold e (x = 0 and y = 1), or smaller than

a negative threshold -e (x = 1 and y = 0) for reversible reactions. If

both x and y are zero then the reaction is inactive and its flux value

is zero. Likewise, a binary variable z is used for reactions in set RL

such that if z = 1 then the reaction is inactive (v = 0). The original

method [30] has alternate solutions, which can contain unrealis-

tically high flux values due to the presence of cycles (e.g., futile

cycles and circulations) in the network. To identify a solution that

minimizes the use of these cycles, the objective function was

modified to also minimize the sum of squared fluxes through the

network.

The mixed integer quadratic programming formulation to

identify a flux distribution that best matches TPD while

minimizing flux magnitude is given below (Eq. 3).
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X

j[RH

xjzyj

� �
z
X

j[RL

zj{
X

j[R

v2
j

s:t: S:v~0

ajƒvjƒbj j[R

vj~v
exp
j j[RE

vjzxj bjze
� �

ƒbj j[RH

vjzyj aj{e
� �

§aj j[RH

xjzyjƒ1 j[RH

1{zj

� �
ajƒvjƒ 1{zj

� �
bj j[RL

xj ,yj ,zj[ 0,1f g

ð3Þ

Additionally, to find the flux ranges consistent with the TPD, flux

variability analysis (FVA) was performed by minimizing and

maximizing the flux through each reaction in the network. In these

FVA simulations, the same constraints described above were

included and the binary variables (x, y, and z) were further

constrained by their optimal values (xopt, yopt, and zopt) found in the

original problem (formulation below, Eq. 4). In this study, all

model simulations were performed in GAMS software (General

Algebraic Modeling System, GAMS Development Corporation,

Washington, D.C.

max (or min) vj

s:t: S:v~0

ajƒvjƒbj j[R

vj~v
exp
j j[RE

vjzxj bjze
� �

ƒbj j[RH

vjzyj aj{e
� �

§aj j[RH

xjzyjƒ1 j[RH

1{zj

� �
ajƒvjƒ 1{zj

� �
bj j[RL

xj ,yj ,zj[ 0,1f g

xjzyj~x
opt
j zy

opt
j j[RH

zj~z
opt
j j[RL

ð4Þ

Supporting Information

Dataset S1 SBML file of the model iCce806 which stores
reactions and GPR associations.

(XML)

Figure S1 In silico predictions for biomass yields under
photoautotrophic, heterotrophic and photohetero-
trophic conditions. Comparison of maximal biomass yields

per g of C substrate when different nitrogen sources are used.

Under photoautotrophic conditions CO2 uptake flux was fixed at

1 mmol.g21 AFDW.h21 and photon uptake fluxes at PSI and PSII

were fixed at 10 mmolNg21 AFDWNh21. In the heterotrophic

simulations glycerol was the limiting nutrient. Glycerol uptake was

fixed at 1 mmolNg21 AFDWNh21 and maximal biomass yields were

calculated under dark conditions. In photoheterotrophic simula-

tions both glycerol and light were limiting (so an increase in either

would improve growth rates). In this case, glycerol uptake rate was

fixed at 1 mmolNg21 AFDWNh21, while photon uptake fluxes for

PSI and PSII were both fixed at 10 mmolNg21 AFDWNh21. Since

light was limiting in the photoheterotrophic condition CO2 was

predicted to be secreted and not used as an additional carbon

source.

(EPS)

Figure S2 Effects of distribution of fluxes through
electron transport chains (ETC) on nitrogenase flux.
Nitrogen fixation (nitrogenase) flux was varied while fluxes

through ETC reactions were maximized and minimized under

dark N2-fixing condition with all hydrogenase reactions eliminated

from the model. Under this condition the amount of H2 produced

is equal to the nitrogenase flux. A glycogen demand reaction was

added to the model (RGlycogen; allowing for glycogen consump-

tion) and its flux was limited to 0.171 mmolNg21 AFDWNh21. A)

Effects of distribution of fluxes through cytochrome c oxidases

(COX) and cytochrome-quinol oxidases (QOX) on nitrogenase

flux. B) Effects of distribution of total flux through COX and

QOX, and flux through Mehler reactions on nitrogenase flux. C)

Effects of distribution of fluxes through NADH dehydrogenase

reactions (NDH) and Fd-dependent cyclic reaction (FdPq) on

nitrogenase flux. Shaded regions indicate ETC reactions can have

multiple values for a particular nitrogenase flux.

(EPS)
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Figure S3 Estimating ATP requirements from batch
data. Average growth rates and photon uptake fluxes from batch

experiments were used to constrain the model. The maximum

ATP hydrolysis flux (flux through the ATPM reaction) was

calculated using these measurement constraints. The data points

represent the calculated maximal ATP hydrolysis values for

different batch experiments. The growth-associated ATP require-

ment (GAR, slope) and non-growth associated ATP requirement

(NGAR, y-intercept) were estimated by linear regression of these

data.

(EPS)

Table S1 Reactions in the genome-scale metabolic
network iCce806.

(XLSX)

Table S2 Metabolites in the genome-scale metabolic
network iCce806.

(XLSX)

Table S3 Genome-scale metabolic network statistics for
iCce806. Number of genes, reactions, metabolites, and network

gaps in iCce806.

(XLSX)

Table S4 Effects of changing simulation conditions on
ATP requirement parameters, GAR and NGAR.

(XLSX)

Table S5 Biomass compositions under ammonia-limit-
ed (AL), and light-limited (LL) chemostat conditions.

(XLSX)

Table S6 Experimental measurements for two chemo-
stat conditions.
(XLSX)

Table S7 Transcriptomic data. Fold change in mRNA

expression levels between light-limited and ammonia-limited

chemostats.

(XLSX)

Table S8 Proteomic data. Protein expression levels measured

in light-limited and ammonia-limited chemostats.

(XLSX)

Text S1 Supplemental methods for A) biomass calcula-
tions and B) batch growth rate calculations.
(PDF)
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