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Conventional digital computers can execute advanced operations
by a sequence of elementary Boolean functions of 2 or more bits.
As a result, complicated tasks such as solving a linear system or
solving a differential equation require a large number of comput-
ing steps and an extensive use of memory units to store individual
bits. To accelerate the execution of such advanced tasks, in-
memory computing with resistive memories provides a promising
avenue, thanks to analog data storage and physical computation
in the memory. Here, we show that a cross-point array of resistive
memory devices can directly solve a system of linear equations, or
find the matrix eigenvectors. These operations are completed in
just one single step, thanks to the physical computing with Ohm’s
and Kirchhoff’s laws, and thanks to the negative feedback connec-
tion in the cross-point circuit. Algebraic problems are demon-
strated in hardware and applied to classical computing tasks,
such as ranking webpages and solving the Schrödinger equation
in one step.
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Linear algebra problems, such as solving systems of linear
equations and computing matrix eigenvectors, lie at the heart

of modern scientific computing and data-intensive tasks. Tradi-
tionally, these problems in forms of matrix equations are solved
by matrix factorizations or iterative matrix multiplications (1, 2),
which are computationally expensive with polynomial time
complexity, e.g., O(N3) where N is the size of the problem. As
conventional computers are increasingly challenged by the scal-
ing limits of the complementary metal-oxide-semiconductor
(CMOS) technology (3), and by the energy and latency bur-
dens of moving data between the memory and the computing
units (4), improving the computing performance with increasing
hardware resources becomes difficult and noneconomic. To get
around these fundamental limits, in-memory computing has re-
cently emerged as a promising technique to conduct computing
in situ, i.e., within the memory unit (5). One example is com-
puting within cross-point arrays, which can accelerate matrix-
vector multiplication (MVM) by Ohm’s law and Kirchhoff’s
law with analog and reconfigurable resistive memories (5–8). In-
memory MVM has been adopted for several tasks, including
image compression (5), sparse coding (6), and the training of
deep neural networks (7, 8). However, solving matrix equations,
such as a linear system Ax = b, in a single operation remains an
open challenge. Here, we show that a feedback circuit including
a reconfigurable cross-point resistive array can provide the so-
lution to algebraic problems such as systems of linear equations,
matrix eigenvectors, and differential equations in just one step.
Resistive memories are two-terminal elements that can change

their conductance in response to applied voltage stimuli (9, 10).
Owing to their nonvolatile and reconfigurable behavior, resistive
memories have been widely investigated and developed for
storage-class memory (11, 12), stateful logic (13–15), in-memory
computing (5, 6, 16, 17), and neuromorphic computing applica-
tions (7, 8, 18, 19). Resistive memories include various device
concepts, such as resistive switching memory (RRAM, refs. 9–
12), phase-change memory (PCM, ref. 20), and spin-transfer

torque magnetic memory (21). Implemented in the cross-point
array architecture, resistive memories can naturally accelerate
data-intensive operations with enhanced time/energy efficiencies
compared with classical digital computing (5, 6, 17). It has also
been shown recently that iterated MVM operations with resistive
cross-point arrays can solve systems of linear equations, in
combination with digital floating-point computers (22). The
higher the desired accuracy of the solution, the more iterations
are needed to complete the operation. However, iteration raises
a fundamental limit toward achieving high computing perfor-
mance in terms of energy and latency.

Results
Cross-Point Circuits for Solving a System of Linear Equations. Fig. 1A
shows the proposed feedback circuit for solving a system of linear
equations in one step, and the hardware circuit on a printed
circuit board is shown in SI Appendix, Fig. S1. The circuit is a
cross-point array of RRAM devices, each consisting of a metal-
insulator–metal stack with a HfO2 layer between a Ti top elec-
trode and a C bottom electrode (15). The devices show a set
transition from high resistance to low resistance when a positive
voltage above the threshold Vset is applied to the Ti electrode,
and a reset transition from low resistance to high resistance when
a negative voltage above the threshold Vreset is applied to the Ti
electrode. Multilevel operation is also possible by executing the
set transition at variable maximum (compliance) current IC, or
executing the reset transition at variable maximum voltage Vstop
(23), as shown in SI Appendix, Fig. S2. The 3 × 3 cross-point array
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in the figure can perform MVM with open loop, i.e., by applying a
voltage vector V to the columns and measuring the current vector
I at the rows without the row-column connections enabled by the
operational amplifiers (OAs), which is shown in SI Appendix, Fig.
S3. The measured currents yields the dot product I = A·V between
the applied analog voltages and the matrix A of the RRAM
conductance values in the cross-point array. The results evidence a
small error generally below 8%, mostly arising from the non-
linearity of conductance in cross-point resistive devices. This is in
line with previous results, where the MVM accuracy appeared
satisfactory (5), although not aligned with single- and double-
precision full digital operation.
The MVM operation is a consequence of physical Ohm’s law

I = G·V, where G is the device conductance, V is the applied
voltage, and I is the measured current (Fig. 1B, Top). On the
other hand, the inverse operation V = −I/G can be obtained for a
given I and G, simply by forcing the current I at a grounded node
of the resistive device and measuring the potential V at the
second node. This physical division is accomplished by the
transimpedance amplifier (TIA) in Fig. 1B (Bottom), where
the current is injected at the inverting-input node of an OA, and
the feedback conductance G connects input and output nodes
of the OA. The differential input voltage V+ − V− at the OA is
minimized by the high gain of the OA, thus establishing a virtual
ground (V− = 0) at the inverting-input node (24, 25) and en-
abling the physical division. This provides the basis for the circuit

in Fig. 1A, which solves a system of linear equations expressed by
the matrix formula:

A x= b, [1]

where A is a nonsingular square matrix mapped with conduc-
tance values of cross-point RRAM devices, b is a known vector,
and x is the unknown vector. In this circuit, the input currents
I = −b are applied to cross-point rows connected to the virtual-
ground nodes of the OAs. As a result, currents are forced to
automatically distribute among the resistive elements in the
cross-point array, to establish an output potential V satisfying

A·V + I = 0, [2]

which implies V = −A−1·I = x. A circuit similar to the one in Fig.
1A was previously presented in the report of the International
Roadmap for Devices and Systems (25) and suggested by ref. 26,
although no demonstration was shown regarding the ability to
solve a linear system by either experiments or simulations.
To demonstrate the concept of Fig. 1A, we measured the

output voltages in the 3 × 3 RRAM cross-point array of Fig. 1A,
where the conductance matrix is also shown. All of the matrices
adopted in the experiments of this work are reported in SI Ap-
pendix, Table S1. A current vector [I10; I20; I30] with I10 = 20 μA,
I20 = 100 μA, and I30 = 100 μA, was applied to the array rows,
and the resulting potential at the array columns, i.e., [V10; V20;
V30], was measured, as shown in Fig. 1C. The good agreement
(with relative errors within 3%) with the analytical solution
supports the functionality of the feedback circuit of Fig. 1A for
solving the matrix equation in Eq. 1. The circuit was further
demonstrated by linearly changing the input currents according
to Ii = β Ii0, where i = 1, 2, or 3, and β was changed uniformly in
the range from −1 to 1. Results are reported in Fig. 1D, showing
the measured output voltages compared with the analytical so-
lutions x = A−1b. The error remains below 10% for jβj > 0.5 (SI
Appendix, Fig. S4). Notably, Eq. 1 is physically solved in just one
step thanks to the physical MVM in the cross-point array and to
the feedback connection forcing the virtual ground at cross-
point rows.
The same concept can be extended to compute the inversion of

a matrix A satisfying AA−1 = U, where U is the unit matrix. The ith
column of A−1 can be measured as the output voltage when the ith
column of U is applied as an input, thus realizing matrix inversion
in N steps. Fig. 1E shows the measured elements of A−1 compared
with the analytically solved inverse-matrix elements, and the rel-
ative errors are calculated in SI Appendix, Fig. S5. Fig. 1E (Inset)
shows that the experimental product AA−1 well approximates U,
which further supports the computed matrix inversion.
The circuit of Fig. 1A is essentially a matrix-inversion opera-

tor, which can be utilized to solve linear systems and matrix in-
versions, while a cross-point array without feedback is a matrix
operator, which can be naturally used to perform MVM. Since
the matrix-inversion circuit is a negative feedback system, the
stability of the output voltage requires that the loop gain (Gloop)
of every feedback loop is negative (27). The analysis reveals that
the condition Gloop < 0 is satisfied when the signs of the diagonal
elements of A−1 are all positive (SI Appendix, Fig. S6). Following
this guideline, a system of linear equations and the inversion of a
5 × 5 matrix have been solved, with the matrix implemented in a
cross-point array of discrete resistors. The small relative error
around few percent in this ideal case with discrete resistors evi-
dences that a high accuracy might be achieved with accurate and
linear resistive memory devices (SI Appendix, Fig. S7).

Solving a Linear System with Positive and Negative Coefficients.
Since conductance can only be positive in a resistive element,
the scheme of Fig. 1 can only solve linear systems with a positive

A B

C D E

Fig. 1. Solving systems of linear equations with a cross-point array of re-
sistive devices. (A) Cross-point circuit for solving a linear system or inverting a
positive matrix. RRAM elements (red cylinders) are located at the cross-point
positions between rows (blue bars) and columns (green bars). (Inset, Right)
Experimental conductance values mapping the elements of matrix A. The
transformation units between the real-valued matrices/vectors and the
physical implementations were G0 = 100 μS, V0 = 1 V, and I0 = 100 μA for
RRAM conductance, input/output voltage, and output/input current, re-
spectively. The other cases also follow this convention if not specified. (B)
Circuits to calculate a scalar product I = G·V by Ohm’s law, and to calculate a
scalar division V = −I/G by a TIA. (C) Measured solution to a linear system
with an input current vector I = [0.2; 1; 1]I0. The experimental output volt-
ages give a solution very close to the analytical one. (D) Measured solution
to the linear systems, namely output voltages, as functions of parameter β
controlling the input current given by I = β·[0.2; 1; 1]I0 with −1 ≤ β ≤ 1. The
experimental solutions (color circles) are compared with analytical solutions
(color lines) of the system, supporting the accuracy of the physical calcula-
tion. (E) Experimental matrix inverse A−1, namely measured output voltages
in three subsequent experiments with input current I = [1; 0; 0]I0, [0; 1; 0]I0,
and [0; 0; 1]I0, respectively. The analytical solution is also shown. (Inset)
Matrix product AA−1 is very close to the unit matrix U, thus supporting the
experimental inversion.
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matrix of coefficients. To solve linear systems with nonpositive
coefficients, the mixed-matrix circuit in Fig. 2 shall be adopted.
Here, the matrix A is split into two cross-point arrays according
to A = B − C, where B and C are both positive. Fig. 2A shows the
two cross-point-array implementation, where the input current I
is split by the circuit into two components IB and IC = I − IB,
being submitted to virtual-ground rows of B and C, respectively.
Analog inverters enable voltage inversion between the columns
of B and C. Based on Ohm’s law and Kirchhoff’s current law, the
output voltage V of the OAs is given by

B·V +Cð−V Þ+ I = 0, [3]

or A·V + I = 0, which solves the linear system of Eq. 1 with I = −b.
We experimentally demonstrated the inversion of a 3 × 3

mixed matrix A with the two matrices B and C implemented in an
RRAM array and a resistor array, respectively. The values of A,
B, and C are shown in Fig. 2B, while Fig. 2C shows the measured
elements of A−1 as a function of the analytical results, demon-
strating good accuracy. To further support physical matrix in-
version, we inverted A−1, which is a positive matrix, with a single
cross-point array. For that purpose, the elements of A−1 were
first mapped as conductance values in an RRAM array by
employing a program-and-verify algorithm with error below 5%
(SI Appendix, Fig. S8). Although the program-and-verify algo-
rithm was applied to an individual RRAM device at a time, a
cross-point array is suitable for parallel programming to signifi-
cantly reduce the array initialization time (28, 29). Fig. 2D shows
the measured RRAM conductance values as a function of the
target values obtained from the experimental A−1 in Fig. 2C. The
inversion of A−1, i.e., (A−1)−1, was computed by the matrix-
inversion circuit of Fig. 1A, yielding the results in Fig. 2E. The
computed (A−1)−1 is compared with the original matrix A in Fig.
2F, which supports the good accuracy of the double inversions

(A−1)−1 = A. The relative errors of the above operations are
reported in SI Appendix, Fig. S9.
Similar to the single cross-point-array circuit of Fig. 1A, the

condition for negative feedback applies to the mixed matrix A.
Besides, since cross-point array B is directly involved in the
closed-loop feedback with the OAs, matrix B also has to satisfy
the condition Gloop < 0. As a proposal for practical applications,
a reference matrix B satisfying the Gloop condition can be
adopted in the mixed-matrix circuit, while matrix C can be freely
arranged with an RRAM cross-point array with the condition
C = B − A. To demonstrate the generality of this concept, the
one-dimensional steady-state Fourier equation for heat diffusion
was solved with a cross-point-array circuit (SI Appendix, Figs. S10
and S11). By using the finite difference method, the differential
equation is first converted into a system of linear equations,
where the characteristic matrix A is a mixed tridiagonal matrix.
Input currents correspond to the known term, namely the dissi-
pated power in the one-dimensional structure. The solution
yields the temperature profile along the reference structure,
which solves the numerical Fourier equation.
A key parameter to describe the stability of the solution of a

linear system is the condition number κ of matrix (30). The
condition number reflects the stability of the solution x upon
small variations of the known term b in Eq. 1, where the sensi-
tivity to perturbations increases with the condition number. To
study the impact of the condition number on the solution of
linear systems in resistive memory arrays, we simulated the
circuit-based inversion of three 10 × 10 matrices with increasing
condition number. To test the stability of the solution, a random
variation of 0.1 or −0.1 was added to each element in the term b
of the equation Ax = b, where b is the ith column of the unit
matrix U, x is the ith column of A−1, and i was swept from 1 to 10
to calculate the whole inverse matrix. The results are reported in
SI Appendix, Fig. S12, indicating that the computing error in-
creases with the condition number of the matrix.

A B C

E

D

F

Fig. 2. Inversion of a mixed matrix. (A) Schematic of two cross-point-array circuit for matrix inversion, where two cross-point arrays contain the elements of
matrices B (Bottom) and C (Top) with A = B − C. The voltage in matrix C is inverted in the other by analog inverters, while the input current is injected in
virtual-ground lines and split in the two matrices. (B) Measured values of the matrices A, B, and C, with A = B − C. In the experiment, matrix B was
implemented by a cross-point array of RRAM, while matrix C was implemented by a cross-point array of discrete resistors. (C) Measured values of the inverse
matrix A−1 as a function of the analytically calculated elements of A−1. As A−1 is a positive matrix, it can be inverted by a single cross-point array as in Fig. 1. (D)
Conductance values for matrix A−1 implemented in RRAM elements, as a function of the experimental values of A−1 in C. To make the devices work in the
high-conductance region, the matrix A-1 was implemented with G0 = 500 μS for RRAM conductance. (E) Measured elements of matrix (A−1)−1 as a function of
analytical calculations. I0 = 500 μA and V0 = 1 V were used for input current and output voltage, respectively. (F) Measured elements of matrix (A−1)−1 as a
function with the original matrix A, showing a remarkable accuracy despite the accumulated errors over the two sequential inversion processes and the
device-programming process.
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The impact of the condition number was also tested in ex-
periments, by performing a double inversion of a matrix with a
larger condition number (κ = 16.9), compared with the one with
κ = 9.5 in Fig. 2. Condition numbers for all of the matrices in
experiment are summarized in SI Appendix, Table S1. As shown
in SI Appendix, Fig. S13, the matrix with a larger κ is successfully
inverted twice, although the computing errors are larger than the
case in Fig. 2 (SI Appendix, Fig. S14). It should be noted that the
matrices addressed in this work are well conditioned. For an ill-
conditioned matrix with extremely high condition number, ad-
ditional schemes should be required, possibly including iterative
refinement algorithms that can be either supported by a con-
ventional digital computer (22) or implemented in a resistive
memory array (26). The error caused by the thermal noise and
shot noise of the components in the cross-point circuit also in-
creases with the condition number, although representing a
much less significant concern (SI Appendix, Fig. S15).

Cross-Point Circuits for Computing Eigenvectors. The solution of a
linear system in Eq. 1 can be further extended to the calculation
of eigenvectors via physical computing in a cross-point array. The
eigenvector equation reads

Ax= λx, [4]

where A is a real square matrix, λ is its eigenvalue, and x is the
corresponding eigenvector. Fig. 3A shows the eigenvector circuit,
consisting of a self-operated feedback circuit where the voltage
vector V developed at the cross-point columns develops a current
vector I = A·V, with the conductance of a cross-point array map-
ping the matrix A. The output currents are converted into voltages
by TIAs with the feedback resistors Gλ mapping the known eigen-
value λ. The outputs of the TIAs are then inverted and fed back
to cross-point columns. Combining Ohm’s law and Kirchhoff’s
law, one gets −A·V/Gλ = −V, hence A·V = GλV, which satisfies
Eq. 4. As physical voltages and currents can only have real val-
ues, the eigenvector circuit only applies to real eigenvalues and
eigenvectors. For a positive matrix, according to the Perron–
Frobenius theorem (31), the highest eigenvalue must be a posi-
tive real number, and its eigenvector also consists of positive real
numbers. As a result, the eigenvector of the highest eigenvalue of
a positive matrix can always be solved with a cross-point circuit.

If the eigenvector of the lowest negative eigenvalue is real, it can
also be measured by removing the analog inverters in the feed-
back circuit (SI Appendix, Fig. S16A). Note that the eigenvector
circuit in Fig. 3A works in a self-sustained manner, similar to a
positive-feedback oscillator, thanks to the active TIAs establish-
ing the voltage vector V.
The eigenvector circuit in Fig. 3A was experimentally dem-

onstrated for an RRAM cross-point array with conductance
values Gmapping the matrix A (Fig. 3A, Inset), by computing the
eigenvectors for the highest positive eigenvalue (λ+ = 9.41) and
the lowest negative eigenvalue (λ− = −3.31). Fig. 3B shows the
measured values of the eigenvectors as functions of the nor-
malized eigenvectors obtained by the analytical solutions. The
proportionalities between experimental and calculated eigen-
vectors in the figure indicate the correct physical computation of
the eigenvectors.
While the restriction of the solution to the highest/lowest ei-

genvalues might seem inconvenient, it turns out that for many
applications only the highest positive or the lowest negative ei-
genvalues are concerned. For instance, in the PageRank algo-
rithm (32, 33), which yields the importance scores of webpages
for their ranking, the eigenvector of a link matrix is calculated for
the highest positive eigenvalue. The latter is always equal to 1,
since the link matrix is a stochastic matrix (33). Fig. 3C shows an
example of four pages with their respective links while Fig. 3D
shows the corresponding link matrix which was implemented as
the conductance values of a 4 × 4 RRAM cross-point array.
Using the eigenvector circuit of Fig. 3A, the eigenvector of the
link matrix was solved to compute the importance scores of the
pages. Fig. 3E shows the experimental scores compared with
the analytical scores, demonstrating good accuracy of physically
computing the eigenvector. A real-world case of PageRank is
reported in SI Appendix, Fig. S17.
The analysis of the eigenvector circuit of Fig. 3A shows that

Gloop should be ideally equal to 1 (SI Appendix, Fig. S18), which
however can never be exactly satisfied in practical circuits. In
practice, Gλ can be experimentally chosen such that Gloop is
slightly larger than 1, which enables the correct solution of the
eigenvector with an acceptable error. In fact, although the output
initially increases due to Gloop > 1, the circuit nonlinearity arising
from the saturation of the TIA output reduces the Gloop to 1. On
the other hand, setting Gloop smaller than 1 results in vanishing

A B

C D

E

Fig. 3. Eigenvector and PageRank calculations. (A)
Cross-point circuit for the solution of the eigenvector
equation Ax = λx, where x is the eigenvector and λ is the
highest positive eigenvalue of a positive matrix A repor-
ted in the inset. To prevent set/reset disturb to the RRAM
conductance, the output voltages of the OAs were lim-
ited to ±0.2 V. (B) Measured eigenvectors corresponding
to the highest positive eigenvalue and the lowest nega-
tive eigenvalue, as a function of the normalized eigen-
vectors obtained by analytical solutions. The highest
positive eigenvalue and the lowest negative eigenvalue
were stored as the feedback conductance Gλ of the TIAs
with conductance of 940 and 331 μS, respectively. (C) A
system of four webpages with their respective links. An
arrow pointing from page i to page j indicates a citation
of j in page i, thus the importance of a webpage can be
stated from the number of arrows pointing at that page.
(D) The link matrix for the system in C. The elements in
each column sum to 1, while diagonal elements are all
null as pages do not cite themselves. The transformation
unit was G0 = 684 μS for RRAM conductance, to min-
imize RRAM nonlinearity. The highest positive eigen-
value is 1, corresponding to feedback resistors with
conductance G0. (E) Measured eigenvector, represent-
ing the importance scores of four pages, as a function
of the analytically solved normalized eigenvector.
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output voltages, which should thus be avoided. Similar to Fig.
2A, the eigenvector solution can be extended to a mixed matrix A
by the splitting technique with two cross-point arrays connected
by analog inverters (SI Appendix, Fig. S16B).
We validated the physical computation of eigenvectors for the

solution of the one-dimensional time-independent Schrödinger
equation:

HΨ=EΨ, [5]

where H is the Hamiltonian operator, E is an energy eigenvalue,
and Ψ is the corresponding eigenfunction. Eq. 5 can be numer-
ically solved by the finite difference method, yielding an eigen-
vector problem given by Eq. 4, where A is a tridiagonal matrix of
coefficients, x is the vector of Ψ values at discrete positions, and λ
is the highest/lowest eigenvalue. The Schrödinger equation was
solved for a square potential well shown in Fig. 4A, which was
divided equally into 32 segments (SI Appendix, Figs. S19 and
S20). Fig. 4B shows the 33 × 33 tridiagonal mixed matrix A de-
scribing the eigenvector equations. The matrix A is split into two
positive tridiagonal matrices B and C, which are mapped into the
conductance values of two cross-point arrays, respectively. The
eigenvector was calculated for the ground state with energy
E = −4.929 eV, corresponding to the lowest negative eigenvalue
of the problem. The eigenvalues and eigenvectors obtained by
numerical solution in a digital computer are also reported in
SI Appendix, Fig. S19. Fig. 4C shows the eigenvector obtained
by a simulated eigenvector circuit, compared with the analyt-
ically computed eigenvector. The physically computed wave
function agrees well with the numerical solution, which further
supports physical computing in cross-point circuits for real-
world applications.

Discussion
Cross-point arrays allow solutions of a broad set of algebra
problems, from linear systems to eigenvector problems, thus
enabling the physical solution of differential equations describing

real-world problems in industry, economy, and health. The so-
lution relies on extremely simple circuit elements, such as com-
mercially available OAs and state-of-the-art resistive memories
such as RRAM and PCM. In comparison, previous solutions of
linear systems by using a quantum-computing approach (34, 35)
are less attractive, since quantum circuits generally operate at
cryogenic temperature and require dedicated instrumentation
and noncommercial technology. Other proposed solutions with
neural network architectures (36) or CMOS-based analog ac-
celerators (37) rely on iterative operations, resulting in poly-
nomial computation time and cost. In contrast, the cross-point
array allows for fast solution in just one step without iteration.
The computing time is limited by the settling time of the OA,
which can reach the few-nanosecond range in advanced CMOS
technology (38).
To fulfill the expectations of practical applications, the cross-

point circuit should be scaled up to demonstrate the circuit fea-
sibility. To demonstrate the scalability of the cross-point circuit,
solving a system of linear equations for a 100 × 100 model co-
efficient matrix in simulation is shown in SI Appendix, Fig. S21.
The results show that the linear system is precisely solved by the
circuit, which supports the suitability of the cross-point circuit to
address real-world problems. Since the matrix coefficients are
stored in real nanoscale devices with inherent stochastic varia-
tions, the cross-point circuit only provides an approximate solution
to the linear problem. To evaluate the impact of device variations,
we included a random deviation to the conductance of each cross-
point device for the 100 × 100 matrix and calculated the relative
errors of the output voltages (SI Appendix, Fig. S22). The simu-
lation results show relatively low errors (around 10%), even with a
variation of 10%. High-precision storage of conductance values by
program-and-verify techniques is thus essential to improving the
accuracy of the solution, depending on the specific applications.
Nonlinear conduction in the resistive element, physically arising
from hopping conduction and local Joule heating, also affects the
accuracy of the solution. Conduction linearity can be maximized
by increasing the device conductance (5), which however leads to
a higher energy demand for reconfiguring and operating the cross-
point circuit. Advancing the technology of resistive memories,
aiming at a higher accuracy of multilevel placement and better
linearity of conduction, can boost the cross-point circuit for in-
memory computing of linear algebra.
As the cross-point circuit scales up, the parasitic resistance due

to the dense interconnect wiring in the memory array can be-
come an additional concern. To assess the impact of the parasitic
resistance, we simulated the same 100 × 100 linear system of SI
Appendix, Fig. S21 with an additional parasitic wire resistance (SI
Appendix, Fig. S23). As a reference, the interconnect parameters
were taken from the International Technology Roadmap for
Semiconductors at the 65- and the 22-nm technology nodes (39).
The relative errors are found to be within ∼10 and 30% for 65-
and 22-nm nodes, respectively. These results suggest that there is
a tradeoff between scaling and accuracy of circuit-based solu-
tions of algebra problems. It should also be noted that the
computing errors are essentially dictated by the resistance ratio
between the device resistance and the parasitic resistance. As a
result, the computing accuracy might be improved by increasing
the resistances of memory devices, which in turn might raise an
issue about the conduction nonlinearity that also affects the
computing accuracy. We conclude that there is a complex
tradeoff between scaling, parasitic resistance, and device non-
linearity, to optimize the operations (40, 41). In this scenario, 3D
integration of the cross-point memory, where density does not
necessarily cause an increase of interconnect resistance, may
improve the immunity of computing accuracy to the parasitic
resistance (42).
While the lack of iteration is a highly attractive feature for fast

computation, the time needed to program individual matrix

A C

B

Fig. 4. Solution of the Schrödinger equation in a cross-point circuit. (A)
Rectangular well of potential V(x) adopted in the Schrödinger equation. The
potential well has a depth of −5 eV and a width of 2 nm, while the solution is
conducted on an overall width of 3.2 nm, discretized in 32 equal intervals. (B)
Matrix A with size 33 × 33 obtained from the space discretization of the
Schrödinger equation, and the two positive matrices B and C implemented in
the cross-point arrays, with A = B − C. A conversion unit of 100 μS for 7.6195 eV
was adopted in matrices B and C. The two conductance matrices share
the same color bar. The ground-state eigenvalue is −4.929 eV, which was
mapped into the conductance (65 μS) of the TIA feedback resistors. (C)
Discrete ground-state eigenfunction obtained as the simulated output
voltage in the cross-point circuit compared with the analytical solutions.
Note that the peak voltage is around the supply voltage 1.5 V of the OA due
to saturation.
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coefficients in the memory should also be considered for a com-
prehensive assessment of the technology. Although the write time
in our devices was relatively long for the purpose of a tight tuning
of conductance values (see, e.g., SI Appendix, Fig. S8), the pro-
gramming time in a real application might be strongly accelerated
thanks to the parallel programming (28, 29), analog programming
schemes (43), in addition to the subnanosecond switching of
RRAM devices (44) and PCM devices (45). Also, according to the
concept of in-memory computing, the same data can be frequently
reused for computation (42), thus the programming time can play
a negligible role in the overall computing time.
Although the accuracy of our scheme cannot be compared

with that of a floating-point solution in a high-precision digital
computer, it is important to note that the required accuracy
might not be high for all applications. There are in fact many
cases where a linear algebra problem must be solved in a short
time, with a low energy budget, and with sufficient tolerance to
errors. For instance, in machine-learning algorithms, the coeffi-
cients for classification/recognition can settle with a certain
amount of inaccuracy. The network coefficients can be obtained
by a pseudoinverse matrix (46), the calculation of which can
be accelerated by our approach. Another example is webpage
ranking, where the computed website scores should appear in the
correct order, although some amount of inaccuracy might still be

tolerated for the individual scores. For similar types of applica-
tion, our circuits can provide a solution with an excellent tradeoff
between accuracy, speed, and energy consumption.
In conclusion, solutions of linear algebra problems in cross-

point resistive arrays have been presented. Problems such as
systems of linear equations, matrix eigenvectors, and differential
equations are solved (i) in one step (and matrix inversion in N
steps), (ii) in situ within the cross-point memory array, and (iii)
via physical laws such as Ohm’s law, Kirchhoff’s law, and feed-
back mechanisms in closed-loop circuits. The proposed in-memory
computing paves the way for future in-memory approximate
computing systems to solve practical big-data problems with
huge savings of time and energy for a wide range of real-world
applications.

Methods
Details of device fabrication and characterization, circuit design and mea-
surement techniques are reported in SI Appendix.
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