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Locating single-point sources 
from arrival times containing large 
picking errors (LPEs): the virtual 
field optimization method (VFOM)
Xi-Bing Li, Ze-Wei Wang & Long-Jun Dong

Microseismic monitoring systems using local location techniques tend to be timely, automatic and 
stable. One basic requirement of these systems is the automatic picking of arrival times. However, 
arrival times generated by automated techniques always contain large picking errors (LPEs), which may 
make the location solution unreliable and cause the integrated system to be unstable. To overcome the 
LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In 
contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective 
function to search the space for the common intersection of the hyperboloids, which is determined by 
sensor pairs other than the least residual between the model-calculated and measured arrivals. The 
results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable 
solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the 
impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity 
and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources 
using passive techniques such as passive sonar detection and acoustic emission.

Passive location techniques, in which signals travel from a source whose location is estimated to sensors whose 
positions are known, is widely used in different areas. Researchers employ passive location techniques for whale 
tracking1,2, structural health monitoring3–5, seismic/microseismic source inversion6–9, and seismic tomogra-
phy10–13. Microseismic source location is a typical application of the passive location technique and, in conjunc-
tion with other geophysical tools such as muography14, can potentially provide valuable information about the 
lithosphere. Because of the characteristics of the received signals, the microseismic source location techniques in 
local monitoring operations generally use P-wave or S-wave or both arrival times to locate sources. Although sev-
eral advanced picking-free techniques have been proposed, such as the source-scanning algorithm (SSA) by Kao 
and Shan6, the envelope stacking-based method by Gharti et al.15, the waveform coherence analysis by Grigoli 
et al.16, and many others17,18, these methods use a whole or partial seismic waveform and are therefore time con-
suming. Moreover, due to the complexity of the location procedure, these non-standard picking-free techniques 
often use grid-searching algorithms instead of the fast local searching algorithms, which can further decrease the 
location efficiency and resolution.

The picking quality of arrival times directly affects the accuracy of source location. At local scale, the near-field 
effects that exist in the seismic wavefield cannot be ignored, and therefore, the P-wave and S-wave are often inter-
twined19. This issue complicates picking and identifying seismic phases. Using current techniques, P-wave arrival 
times can be accurately picked for relatively high signal-to-noise ratio signals, such as the STA/LTA method20 
and the higher order statistics method21; however, reliable picking of the S-wave is still problematic for local 
events in which the P coda overlaps with the S-wave16. Considering the low signal-to-noise ratio, even the picking 
of the P-wave is not satisfactory because the beginning of the P-wave may be concealed by the noise. Practical 
applications have also reported that sensors are likely to be triggered by S-waves but are wrongly assigned P-wave 
velocities22. These cases illustrate that the arrival times of both P- and S-waves may contain large picking errors 
(LPEs), especially when using automated picking programs.
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LPEs can lead to dramatically inaccurate locations using existing location methods23 because the LPEs con-
tribute to the final location result24. To be of practical value in an industrial environment, the microseismic 
monitoring system should produce information that is both reliable and timely25,26. However, it is impossible to 
improve the picking quality using manual methods, especially when a large number of events are received every 
day. The difficulty in arrival time picking and the harm of accumulated LPEs has motivated efforts to develop 
picking-free techniques. In addition, developing an LPE-tolerant picking-based location method is another strat-
egy to address this issue and is crucial for automated local source locations.

The existing picking-based source location algorithms typically utilize forward modelling and iterative esti-
mation techniques to determine the optimal location by globally minimizing a predefined objective function in 
the three-dimensional solution space26. The objective function is usually defined as the residuals between the 
theoretical and observed arrival times of the main seismic phases16. Many commonly used methods follow this 
procedure, such as Geiger’s method27 and the double-difference algorithm28. Various iterative techniques have 
been introduced to search for the optimum solution, including the simplex algorithm29, differential evolution 
algorithm30, genetic algorithm31, and LSQR algorithm32–34. In most cases, L1 and L2 norms are adopted to define 
the residuals. Although the L1 norm is strongly recommended by many researchers for its relative insensitivity 
to LPEs29,35,36, both L1 and L2 methods may lead to possible mislocations when the input data contain LPEs23,24.

An LPE-tolerant location method should not only be able to eliminate the solution distortion caused by LPEs 
but should also have the ability to send a warning when the arrival times contain too many LPEs rather than pro-
ducing an unreliable solution. In this paper, we design a new method called the virtual field optimization method 
(VFOM) to meet these requirements. Compared with traditional methods, the VFOM searches the 3D-space for 
the common intersection of the hyperboloids determined by station pairs. As only the hyperboloids related to 
LPEs deviate from the source and the remaining hyperboloids still intersect at the source, the VFOM can elimi-
nate the location error caused by LPEs. More importantly, by maximizing a continuously differentiable objective 
function (the so-called virtual field), the VFOM can be easily introduced into standard monitoring systems.

Results
Synthetic tests.  We use synthetic tests to verify the performance of the VFOM. Because of the non-repeat-
ability and non-verifiability of real events in an opaque medium, it is difficult to measure the error between calcu-
lated and real sources. Therefore, synthetic tests, with controllable errors in their input data, such as arrival times 
and velocity structures, are flexible when comparing the performance of location methods under different condi-
tions. Specifically, we arrange a 400 m ×  400 m ×  400 m cubic array with 8 sensors (or stations) at its corners to 
receive signals. Two “real sources”, one inside the array and the other outside the array ( ( , , )O 100 200 2001  and 
( , , )O 200 200 5002 , respectively), generate the microseismic signals. To simulate the uncertainty of the velocity 

along different paths, the velocity of each path is generated randomly in the range from 4875 to 5125 m·s−1. In 
addition, to simulate the small systemic picking errors, an extra random error term from − 2 ms to 2 ms is added 
to each arrival time. In the case of measured arrival times containing LPEs, a dramatic error (± 100 ms), which is 
far larger than the systemic picking error, is added to the arrival times with different probabilities. Thus, the sim-
ulated arrival times consist of velocity uncertainty, systemic picking errors and different LPE probabilities.

Four traditional location methods are applied for comparison with the VFOM. The objective functions of 
these four methods are given by equations (1–4). For the sake of brevity, we define the four methods as TL2, TL1, 
DL2 and DL1, respectively. The TL2 and TL1 methods both use the residuals between the observed and theo-
retical arrival times to define their objective functions, and the only difference between them is that TL2 uses L2 
norm whereas TL1 uses L1 norm. Differing from TL2 and TL1, DL2 and DL1 minimize the residuals between the 
observed and theoretical travel-time differences of station pairs. DL2 and DL1 are similar to the double-difference 
method in the form, but in fact are very different as DL2 and DL1 use the station pairs while the double-difference 
method uses event pairs28.
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where ( , , )l x y zi 0 0 0  is the distance between the source and the ith triggered sensor, ( , , )x y z0 0 0  are the coordinates 
of the potential source, vp is the constant propagation velocity, and n is the number of triggered sensors.

The quasi-Newton algorithm, one of the most efficient and effective algorithms for solving unconstrained 
optimization problems, is employed to search for the optimum solutions. As is well known, when the objective 
function has more than one peak, local searching algorithms may converge to local solutions if improper initial 
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values are settled. Thus, the result depends on the initial value. To eliminate this dependence, 50 initialize-search 
tries are made in each location process, and the solution with the least objective value is selected as the final solu-
tion. Like many optimization algorithms requiring derivatives, the searching algorithm used in this paper is time 
saving. For instance, one may require several hours for a grid searching process16 but less than 1 second for an 
entire VFOM process using a popular PC machine.

To obtain reliable statistical conclusions, we repeat each event location process by changing the picking errors 
and the propagation velocity along each path randomly 100 times and then collect the absolute location errors. 
The results of the 100 simulations without LPEs are shown in the boxplots in Fig. 1a. The location errors for 
both the VFOM and traditional methods are very similar for both the in-array and out-array sources. In other 
words, the VFOM performs as well as traditional location methods when no LPEs are present in the arrival times. 
However, the performance of the VFOM differs from that of traditional methods in the presence of LPEs, as 
shown in Fig. 1b. The VFOM can still locate accurately and stably, whereas the results from the traditional meth-
ods become unreliable. For example, the average location error obtained by the VFOM stays 10~20 m while that 
of traditional methods reaches to hundreds even thousands of meters. These synthetic tests demonstrate that for 
a single-source location using arrival times with LPEs, the VFOM, due its stability and accuracy, performs better 
under these circumstances.

Moreover, the VFOM offers a self-evaluation strategy for picking quality by calculating the valid ratio, which 
is defined as the percentage of events successfully located using stopping criteria A (SC-A, as described in 
“Methods”). The valid ratio is the proportion of the optimized objective values greater than the pre-determined 
threshold. The relationship between the valid ratio and the probability of LPEs is displayed in Fig. 1c. Clearly, the 
valid ratio declines rapidly as the probability of LPEs increases. This condition offers an easy way to estimate the 
picking program’s quality, i.e., a higher valid ratio indicates better pickings.

In-site explosion events.  The data are obtained from a rock phosphorous ore mine located in Guizhou 
Province, China. After approximately 50 years of excavation, the mining depth has reached approximately 500–
800 m below the ground surface. The high in situ stresses lead to a series of engineering problems, such as difficul-
ties in the rock support of the main laneway and rock fall, spalling, slabbing and floor heaving in the permanent 
laneways after the installation of support37. A microseismic monitoring system including 26 single-component 
sensors and 2 three-component sensors are built to monitor microseismic events (Fig. 2a). We performed explo-
sions of the emulsion explosive 6 times to test the proposed method. These explosion positions were measured 
as real sources.

Figure 1.  Results of synthetic tests. (a) Is the comparison of location errors of the VFOM and the four 
traditional locators using arrival times with only a 5% velocity variation and a ± 2 ms small picking error. (b) Is 
similar to (a) except an additional 5% and 20% LPEs are added to the arrival times. (c) Is the location errors and 
location valid ratios of the VFOM using arrival times that are contaminated by different probabilities of LPEs. 
Stopping criterion A (SC-A) is used for the location process of the VFOM. The colour version of this figure is 
available only in the electronic edition.
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The frequencies of the received signals ranged from 0 to 200 Hz. The sampling frequency was set to 6000 Hz 
to cover the signals’ frequency domain without distortion. In fact, many factors can affect the picking quality 
of arrival times in practical applications. For example, a 50 Hz power line interference can lead to LPEs both in 
P-wave picking and S-wave picking, especially for arrivals with low signal-to-noise ratios, as shown in Fig. 2b. To 
solve this problem, an LPE-tolerant location method was investigated.

Using the method proposed in this paper, we located the 6 explosion events conducted during August 
20–22, 2014. For each event, we used both VFOM and traditional methods to obtain comparable results. The 
Quasi-Newton algorithm was employed as the searching process for all the location methods. The arrival times 
of the P-wave and the S-wave were picked manually to ensure a high picking quality. Furthermore, additional 
LPEs were added to a small part of the manually picked arrival times to simulate the picking deviation caused by 
automated programs. We set the P-wave and S-wave velocities to 5200 m·s−1 and 3300 m·s−1, respectively, after 
attempting several times to obtain the best velocity structure for all of the location methods. The stopping crite-
rion B (SC-B) was used to ensure that the VFOM could always locate the source.

Table 1 shows the location errors for both the VFOM and traditional methods for the 6 explosion sources. As 
the location results from input data with LPEs are typically much worse than those from input data without LPEs, 
the methods using the L2 norm, i.e., DL2 and TL2, are obviously susceptible to LPEs. Compared to DL2 and TL2, 
DL1 and TL1 perform much better in terms of LPE tolerance, as the results obtained with LPEs were as accurate 
as those without LPEs using both P- and S-waves. However, these two methods are still too sensitive to LPEs 
in scenarios in which the picking of the S-wave is problematic and only P-wave arrival times are available. The 
VFOM stands out from these location methods because of its stable performance in both the P-based location 
and the PS-based location, as shown in Table 1. The location errors that use input data with LPEs are quite similar 
to those that use input data with LPEs using P arrival times only, making LPEs an unlikely cause of extra location 
errors. Regarding PS-based locations, the VFOM can locate at the same position with or without LPEs because 
the S-waves increase the number of hyperboloids intersecting at the source, which can make the location more 
stable. Additionally, we display the location errors for the 6 explosion events using two migration-based methods 
in Table 1. The picking-free migration-based method utilizes the passive kurtosis derivative waveform and the 
migration process to search for the source17. Because the passive kurtosis derivative waveform fails to clearly char-
acterize the arrival time of the waveform for the signals, the result of the picking-free migration-based method 
was unsatisfactory in our case. We then manually generated a pulse at each arrival time to replace the passive 
kurtosis derivative waveform and execute the migration process. No significant improvement was achieved in the 
location result compared to the VFOM (shown in the last row of Table 1).

The stability of the VFOM under the wrong velocity model, e.g., arrival times of the S-wave are assigned P 
velocity, was also examined. In fact, the test has similar results when adding large delays (LPEs) into the arrival 
times of the P-wave, which confirms the superior location stability of the proposed method.

We used the jackknife method to estimate the algorithm stability and the location uncertainty of the VFOM. 
The TL1, the most stable of the traditional methods, was used for comparison (Table 1). We investigated the loca-
tions of the two location methods both with and without LPEs, and the results are shown in Fig. 3. The location 
uncertainty shows that the VFOM can always give stable results with or without LPEs, whereas the TL1 method 

Figure 2.  Geometry of the sensor array of the local microseismic monitoring system and a 
typical signal obtained by the system. (a) The array is set under the topography with a spatial span of 
2370 m ×  760 m ×  200 m. The array consists of 26 single-component sensors and 2 three-component sensors. 
Six explosion events are shown as red points. The line between a real source and a sensor indicate that the event 
on one side has triggered the sensor on the other side. (b) A typical signal with low energy and signal-to-noise 
ratio. The arrival times picked by automatic programs contain LPEs due to noise, such as that from power line 
interference.
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faces considerable uncertainty when the number of sensors is small and the input data are contaminated by 
LPEs. For instance, in the VFOM, the uncertainty of E1 changes less than 10 m after the contamination of LPEs, 
whereas the uncertainty of TL1 increases from 36 m to 218 m. In reality, the in-site microseismic monitoring 
operation frequently encounters situations in which only a few sensors are triggered, especially for events with 
very low energy, and these low-energy events often generate signals with a low signal-to-noise ratio, which leads 
to LPEs. As a consequence, the VFOM is of great practical value for improving the applicability of microseismic 
monitoring systems.

Method
LPEs/Phases 

used

Absolute location error (m)

E1(5) E2(14) E3(6) E4(17) E5(12) E6(13)

VFOM

No/P 31.1 49.4 30.8 49.0 48.8 42.8

Yes/P 44.9 39.1 38.2 47.3 58.5 42.4

No/PS 37.9 38.3 30.7 46.9 57.4 97.7

Yes/PS 37.9 38.3 30.7 46.9 57.4 97.7

DL2

No/P 41.3 52.4 39.0 45.5 47.0 96.3

Yes/P >1000 222.4 >1000 192.6 307.9 379.7

No/PS 21.9 48.3 19.3 43.2 51.1 110.5

Yes/PS 134.3 86.0 >1000 61.7 121.6 213.2

DL1

No/P 33.3 40.7 37.2 47.3 46.6 38.5

Yes/P >1000 34.8 >1000 39.0 48.8 142.6

No/PS 15.9 42.8 39.6 45.8 50.1 73.4

Yes/PS 19.9 39.0 30.3 43.0 51.9 44.0

TL2

No/P 41.3 52.3 39.3 45.6 46.9 95.8

Yes/P >1000 222.4 >1000 192.6 307.9 379.7

No/PS 35.6 94.4 41.8 21.2 83.1 205.8

Yes/PS 184.8 74.8 >1000 84.9 184.4 263.3

TL1

No/P 37.7 54.4 33.6 121.2 47.2 22.0

Yes/P 306.2 35.8 89.4 93.6 52.1 81.4

No/PS 12.3 91.2 85.1 39.3 68.2 179.6

Yes/PS 23.0 60.8 95.4 34.2 67.7 214.5

Migration based method
Piking free 131.6 231.4 88.7 257.2 129 215.3

P arrival time 82.2 45.0 33.5 45.0 47.4 33.5

Table 1.   Location errors of VFOM and traditional methods for the explosion events. Numbers in the 
brackets are the numbers of triggered sensors. Location errors in bold represent those significantly affected by 
LPEs.

Figure 3.  Location uncertainty estimated by the jackknife method. The results from the TL1 method, the 
best of the four traditional locator methods (see Table 1), are also displayed in the figure for comparison. The 
black and red circles represent the locations obtained by VFOM using arrival times with and without LPEs, 
respectively. Similarly, the black and red crosses are the locations obtained by the TL1 locator using arrival times 
with and without LPEs, respectively. The colour version of this figure is available only in the electronic edition.
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Discussion
Many researchers have attempted to improve the solution by introducing a series of searching algorithms with 
better capacities30,31. These techniques achieve their purpose by keeping the searching process from converging 
to local solutions. However, LPEs dramatically change the objective functions of traditional methods. For exam-
ple, local solutions may turn into the global solution after LPEs are added to the arrival times (Fig. 4a–d). In this 
case, one would fail to locate the source using any searching algorithm. Figure 4 shows the objective functions of 

Figure 4.  Changes of the objective functions before (a,c,e) and after (b,d,f) LPEs are included. (a,b) Are 
for the TL1 method, (c,d) are for the TL2 method, and (e,f) are for the VFOM. The circle is the real source, the 
black dot is the global solution (the main peak), and the square is one of the local solutions (secondary peaks). 
For traditional locators, the secondary peak may take the place of the main peak after the LPEs are added to the 
arrival times, whereas this phenomenon rarely occurs with the VFOM.
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both the VFOM and traditional methods for a 2D source location problem. The objective functions of traditional 
methods are significantly different before and after the input data are contaminated by LPEs; the global solution 
shifts from the source to somewhere far away. Moreover, LPE amplitude affects the shift: the larger the LPEs are, 
the more serious the shift. In contrast, the VFOM has an important advantage for avoiding this impact. As shown 
in Fig. 4e,f, LPEs remove only the related hyperboloids from the source, and they do not prevent the rest of the 
hyperboloids from intersecting at the source. This mechanism is why the VFOM can always obtain more stable 
solutions than traditional methods, even when using input data with LPEs.

A predetermined velocity structure is typically needed for the majority of source location methods using 
arrival times. It is normal that some error exists between the measured and real velocities in the propagation 
medium, particularly in media containing fissures, e.g., rock mass. Therefore, we should pay more attention to the 
velocity sensitivity when a new location method is proposed. Using a series of velocities ranging from 4000 m·s−1 
to 6000 m·s−1, the location errors for a set of synthetic tests were collected. The results showed that the VFOM 
has a similar velocity sensitivity as traditional methods. It should be noted that all these location methods are 
less sensitive to velocity errors for the events in the sensor array compared with events out of the array. To obtain 
a suitable velocity, the production explosion events that are very common in the mining site can be utilized. 
The positions of these production explosions can be measured as the “real locations” to obtain the best velocity 
that minimizes the location error. Moreover, the velocity estimated in this way evolves over time in response to 
the velocity change caused by human activities such as mining. Developing location methods and related work 
without a pre-determined velocity is another approach to overcoming the issue of velocity errors, which is often 
treated as an unknown variable38–42. It will be important to introduce this idea into the VFOM in the future.

Two stopping criteria are available in the VFOM, i.e., SC-A and SC-B. SC-A tends to obtain more stable and 
accurate results, whereas SC-B ensures the success rate of the location program. Synthetic tests show that the 
errors of the majority of the results obtained by SC-A are smaller than 20 m. With regard to SC-B, although most 
of the errors are below 20 m, some locations have errors greater than 50 m. However, SC-A can only succeed 
for 40%–50% of events in the case of 20% LPEs, whereas SC-B is able to provide a location for all the events. In 
summary, both SC-A and SC-B have advantages and disadvantages, and they can serve as optional choices for 
practical applications in the presented work.

Methods
In mathematics, the problem of source location is concerned with solving an over-determined system of equa-
tions, i.e., more equations than unknowns43,44:

∫ = − = , , ...
( )v

ds t t i n1 1 2
5s

i 0
i

where si is the wave propagation path from the source to the ith triggered sensor; v is the velocity field in space; and 
t0 and ti represent the event’s original time and the arrival time of the wave phase (P–wave or S-wave) measured by 
the ith sensor, respectively. The system of the classical single-source in homogeneous medium problems is given by

( , , ) = ( − ) = , , ... , ( )l x y z v t t i n1 2 6i i0 0 0 0

where ( , , )l x y zi 0 0 0  is the distance between the source and the ith triggered sensor; ( , , )x y z0 0 0 are the coordinates 
of the source; t0 and ti represent the event’s original time and the arrival time of the wave phase (P–wave or 
S-wave) measured by the ith sensor, respectively; and v is the constant propagation velocity (vp or vs). The most 
commonly used method to solve the system is to minimize the sum of the square differences between the left side 
and the right side. Thus, the location problem is transformed into optimizing an objective function. We can 
obtain the solution by searching the space and time for a point by minimizing the total residual. However, there 
is a fatal weakness in this method: when there are serious input errors in arrival times (i.e., LPEs, such as mis-picks 
and outliers), the solution will quite possibly be ruined because all the LPEs contribute to the final location23,24. 
This is an important reason why the sources located by many automated microseismic monitoring systems cannot 
agglomerate into larger clusters in space.

Instead of minimizing the total residuals between the theoretical and observed arrival times, the VFOM 
searches the space for the position through which the greatest number of hyperboloids pass (Fig. 5a). The hyper-
boloid described here is expressed by

( , , ) − ( , , ) = ( − ) ( )l x y z l x y z v t t 7j i j i0 0 0 0 0 0

We obtain this expression by subtracting the ith equation of Equation. (6) from the jth equation. Note that 
Equation. (7) denotes the geometric definition of a hyperboloid (assuming the right hand is positive) if we treat 
the source coordinates (i.e., , ,x y z0 0 0) as unknowns. Theoretically, all these hyperboloids in a multi-sensor array 
should intersect at the source if the arrival times are accurate and the velocity structure is correct. The fact is, 
unfortunately, that different levels of errors, such as small systematic errors in arrival times, exist even if 
high-quality picking programs are used. These inevitable errors will cause the hyperboloids to swerve off the 
source. In consequence, it is difficult to find a point that is on all of the hyperboloids.

To prevent the small errors from misrepresenting the location, we introduce a spatially continuous function 
called closeness basis (CB) to measure the closeness between a point in space and a hyperboloid. Instead of indi-
cating a spatial point on/off a hyperboloid, CB describes the closeness between a point and the corresponding 
hyperboloids by its value at the point. Generally, the source has a relatively high closeness to all the hyperboloids; 
thus, the sum of CBs at the source should reach a higher level than that at other positions. Therefore, by maximiz-
ing the sum of CBs, we can locate the source. Briefly, we describe the VFOM as follows:
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Step 1: �Establish a CB for each sensor pair; its value increases when approaching the corresponding 
hyperboloid.

Step 2: �Superimpose all the CBs to obtain a spatially continuous function, which is called the total closeness 
field (TCF).

Step 3: �Search the space for the position by maximizing the TCF value with a standard optimization algorithm.  
Thus, we find the position that is close to as many hyperboloids as possible.

Closeness basis.  The CB is an overall space function that is able to measure the closeness between a point 
and its corresponding hyperboloid. If we build a local coordinate system OXYZ with ith and jth sensors symmetri-
cally on the Z-axis, we can rewrite the hyperboloid in a standard form as
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. Correspondingly, the 
exact position and shape of the hyperboloid change in a certain range (the shadowed area in Fig. 5b). Generally 
speaking, the closer to Equation. (8) a point is, the greater the likelihood that the point is the source. Here, we 
establish a virtual field (i.e., CB) to quantify the closeness and the possibility. In particular, a feasible CB is given 
by

σ
( , , ) =





−




,

( )
f X Y Z Exp d

9ij

2

where = + + −d a Z1X
b

Y
b

2

2

2

2
, denoting the Z-direction distance between a point ( , , )X Y Z  and the hyper-

boloid of Equation. (8), and σ is a constant controlling the shape of the CB (the determination of σ can be found 
in Fig. 5b). The value of the CB ranges from 0 to 1. With the CB’s value increasing, the possibility that the source 
appears at the position increases.

CBs assemble into the TCF.  To superimpose the CBs in a global system, the relation between local systems 
and the global system should first be established. In fact, the transformation from the local system OXYZ to the 
global system oxyz is the key step in building the TCF, and several rotations and transitions can achieve this trans-
formation. For example, an available transformation consisting of two rotations and one translation is given by

Figure 5.  Theoretical explanation of the VFOM. (a) The VFOM’s target—the common intersection of the 
great majority of the hyperboloids (hyperbolic curves in 2D view). The LPE-contaminated arrival time can bias 
the related hyperboloids but cannot stop the rest of the hyperboloids intersecting at the source. (b) Is a virtually 
established closeness basis for each hyperboloid of (a) in the local system. The selection of σ determines the 
shape of fij. A relatively gentle shape is suggested when lacking confidence in the picking quality, e.g., select a σ 
to let fij equal 0.8 at = ∆d v t (blue dashed line in Fig. 5b). The stack of the closeness basis generates the largest 
TCF value at the source.
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where Rij denotes a 3 ×  3 matrix whose elements are determined by the position of the sensor pair. Rij combines a 
y-axis-based rotation and an x-axis-based rotation and is given by
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ij

where, ′ =
−

x
x x

2
i j ′ =

−
y

y y

2
i j ′ =

−
z

z z

2
i j = ′ + ′g y z2 2 , and = ′ + ′ + ′h x y z2 2 2 . By using Equation. (10) and 

Equation. (11), ( , , )f X Y Zij  in the local system is transformed to ( , , )f x y zij  in the global system. Then, we obtain 
the TCF as

∑∑( , , ) =
( − )

( , , ).
( )= =

−
TCF x y z

n n
f x y z2

1 12i

n

j

i

ij
2 1

1

Note that the value of TCF also ranges between 0 and 1 because it is the mean of the CBs in the global system. If 
we use both the P- and the S-wave to locate, TCF can be extended as

∑∑( , , ) =
( − )



( , , ) + ( , , )
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.

( )= =

−
TCF x y z
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f x y z f x y z1

1 13i

n

j

i

ij
P

ij
S

2 1

1

Figure 6 illustrates the TCFs of 2D arrays containing 4, 5, 6 and 8 triggered sensors. As shown in Fig. 6, 
the TCF becomes increasingly complex and the number of local optimum solutions (secondary intersections) 
increases with the rising number of sensors. The rising number of sensors also increases the number of hyperbo-
loids intersecting at the source, which remains the main peak (i.e., the source) standing out against the secondary 
peaks. This characteristic provides convenience for distinguishing the global solution from local solutions, e.g., 

Figure 6.  Objective functions (TCF) of the VFOM for four 2D location problems. (a) Array consisting of 4 
sensors, (b) array consisting of 5 sensors, (c) array consisting of 6 sensors, and (d) array consisting of 8 sensors. 
The array of (d) is the same as Fig. 4.
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setting a threshold as the stopping criterion of the iteration process to estimate whether a solution found is the 
global solution or not.

Searching procedure.  Many iterative techniques have been used to search for the solution in source loca-
tion operations, including the grid search technique19, the differential evolution algorithm30 and the genetic algo-
rithm31. The most efficient optimization algorithms are unconstraint local algorithms that utilize the derivative 
information of the objective function, such as the Quasi-Newton method and nonlinear conjugate gradient meth-
ods. Moreover, these algorithms are typically in standard form and easy to obtain. Because of the continuity and 
differentiability of the TCF, we are able to use these standard optimization algorithms as the iterative technique 
in the VFOM procedure. In general, local optimization algorithms produce solutions that depend on the initial 
values used. To increase the stability of the solution, we select the best solution after running the iterative pro-
cess multiple times with different initial values. Thus, stopping criteria are needed to break the iterations. Two 
stopping criteria are optionally adopted by the VFOM, i.e., stopping criterion A (SC-A) and stopping criterion B 
(SC-B). SC-A is a threshold-based criterion that stops the loop with a failure message rather than an unsatisfying 
solution when no objective value exceeding the threshold is found. A recommended threshold is given by

= . ×
( − )( − − )

( − )
,

( )
THR n k n k

n n
0 8 1

1 14

where k meets ( − )( − − )/ /( − ) > /n k n k n n1 1 2 3 and n is the number of triggered sensors. The use of SC-A 
allows the VFOM to estimate the picking quality. The VFOM may refuse to give the result which is judged to be 
extremely unreliable when the arrival times contain too many LPEs (e.g., for the recommended threshold, the 
data with more than 33.3% arrival times containing LPEs will be considered as “unreliable”). Unlike SC-A, SC-B 
picks the best solution (with the largest objective value) from the results of multiple trials as its final location. The 
mechanism of SC-B ensures that the VFOM can always obtain the location.

Here we summarize the VFOM location process briefly. The VFOM location process includes three main 
parts: the initialization, the assembly and the stopping criteria. The assembly process is also divided into two 
parts: the basis process and the coordinate transform process. SC-A and SC-B are alternatives for the stopping 
criteria. By using the searching procedure described above, the VFOM can locate the sources quite efficiently. For 
example, the whole procedure takes less than 1 second even using a popular personal computer for hundreds of 
initialize-search processes.

Uncertainty estimation.  The jackknife resampling method is applied to estimate the location uncertainty 
of the VFOM. The procedure involves repeated relocation, each time subsampling the data by deleting one station 
at a time. The jackknife method is also employed to estimate the stability of the proposed location method by 
other researchers7,18. The standard deviation of Euclidean distances among the locations obtained by the resam-
pled stations of an event is taken as the uncertainties of the event.

Conclusions
We developed a novel method to locate single-source events from arrival times contaminated by LPEs. This 
approach, called VFOM, has been verified by both synthetic tests and in-site explosions. The numerical simula-
tions of synthetic tests show that the VFOM is superior to traditional methods for known sources using input data 
containing different probabilities of LPEs. Furthermore, in the location of explosion events, the VFOM demon-
strates its accuracy and stability with both P and P-S arrivals. Then, we discuss the LPE-tolerant mechanism of the 
proposed method, which is the resistance to the impact of LPEs on the objective function. The velocity sensitivity 
analysis shows that the VFOM has a similar sensitivity to velocity errors as traditional methods. In addition, we 
discuss the properties of the two optional stopping criteria suggested in this paper. The results reveal that the 
SC-A gives more accurate and stable results, whereas the SC-B ensures that every event is successfully located. 
The VFOM is suitable not only for local microseismic location but also for other passive location problems in a 
homogenous medium such as acoustic source localization.
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