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Abstract
Spatiotemporal patterns often emerge from local interactions in a self-organizing fashion. In

biology, the resulting patterns are also subject to the influence of the systematic differences

between the system’s constituents (biological variability). This regulation of spatiotemporal

patterns by biological variability is the topic of our review. We discuss several examples

of correlations between cell properties and the self-organized spatiotemporal patterns,

together with their relevance for biology. Our guiding, illustrative example will be spiral

waves of cAMP in a colony of Dictyostelium discoideum cells. Analogous processes take

place in diverse situations (such as cardiac tissue, where spiral waves occur in potentially

fatal ventricular fibrillation) so a deeper understanding of this additional layer of self-orga-

nized pattern formation would be beneficial to a wide range of applications. One of the most

striking differences between pattern-forming systems in physics or chemistry and those in

biology is the potential importance of variability. In the former, system components are

essentially identical with random fluctuations determining the details of the self-organization

process and the resulting patterns. In biology, due to variability, the properties of potentially

very few cells can have a driving influence on the resulting asymptotic collective state of the

colony. Variability is one means of implementing a few-element control on the collective

mode. Regulatory architectures, parameters of signaling cascades, and properties of struc-

ture formation processes can be "reverse-engineered" from observed spatiotemporal pat-

terns, as different types of regulation and forms of interactions between the constituents can

lead to markedly different correlations. The power of this biology-inspired view of pattern for-

mation lies in building a bridge between two scales: the patterns as a collective state of a

very large number of cells on the one hand, and the internal parameters of the single cells

on the other.

Author Summary

Pattern formation is abundant in nature—from the rich ornaments of sea shells and the
diversity of animal coat patterns to the myriad of fractal structures in biology and pattern-
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forming colonies of bacteria. Particularly fascinating are patterns changing with time, spa-
tiotemporal patterns, like propagating waves and aggregation streams. Bacteria form large
branched and nested aggregation-like patterns to immobilize themselves against water
flow. The individual amoeba in Dictyostelium discoideum colonies initiates a transition to
a collective multicellular state via a quorum-sensing form of communication—a cAMP
signal propagating through the community in the form of spiral waves—and the subse-
quent chemotactic response of the cells leads to branch-like aggregation streams. The the-
oretical principle underlying most of these spatial and spatiotemporal patterns is self-
organization, in which local interactions lead to patterns as large-scale collective”modes”
of the system. Over more than half a century, these patterns have been classified and ana-
lyzed according to a”physics paradigm,” investigating such questions as how parameters
regulate the transitions among patterns, which (types of) interactions lead to such large-
scale patterns, and whether there are "critical parameter values" marking the sharp, spon-
taneous onset of patterns. A fundamental discovery has been that simple local interaction
rules can lead to complex large-scale patterns. The specific pattern "layouts" (i.e., their spa-
tial arrangement and their geometric constraints) have received less attention. However,
there is a major difference between patterns in physics and chemistry on the one hand and
patterns in biology on the other: in biology, patterns often have an important functional
role for the biological system and can be considered to be under evolutionary selection.
From this perspective, we can expect that individual biological elements exert some con-
trol on the emerging patterns. Here we explore spiral wave patterns as a prominent exam-
ple to illustrate the regulation of spatiotemporal patterns by biological variability. We
propose a new approach to studying spatiotemporal data in biology: analyzing the correla-
tion between the spatial distribution of the constituents’ properties and the features of the
spatiotemporal pattern. This general concept is illustrated by simulated patterns and
experimental data of a model organism of biological pattern formation, the slime mold
Dictyostelium discoideum. We introduce patterns starting from Turing (stripe and spot)
patterns, together with target waves and spiral waves. The biological relevance of these pat-
terns is illustrated by snapshots from real and theoretical biological systems. The principles
of spiral wave formation are first explored in a stylized cellular automaton model and then
reproduced in a model of Dictyostelium signaling. The shaping of spatiotemporal patterns
by biological variability (i.e., by a spatial distribution of cell-to-cell differences) is demon-
strated, focusing on two Dictyosteliummodels. Building up on this foundation, we then
discuss in more detail how the nonlinearities in biological models translate the distribution
of cell properties into pattern events, leaving characteristic geometric signatures.

Introduction

Purpose of this review
Patterns in nature have attracted attention for centuries because of their complexity and regu-
larity. A great leap forward in the theoretical understanding of their development from simple
interacting constituents was made by Alan Turing in his classic work on morphogenesis [1].
The static "Turing" patterns that develop may take the forms of, among others, spots or stripes,
famously reminiscent of those found on animal coats. A simple reaction-diffusion model
that can display Turing patterns is the Schnakenberg model (Fig 1A) [2,3]. An analogous
mechanism has recently been identified in the form of a cellular interaction network in zebra-
fish, responsible for its skin patterns [4], and another involved in the mammalian palate [5].
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Turing patterns represent one of the major categories of patterns that may be observed.
Another important and widespread type is the travelling wave; such patterns are periodic and
vary dynamically with time. These wave patterns manifest in biology in situations such as the
circular "target" wavefronts produced by the sinoatrial node in the heart, or the open-ended,
spiral waves of signaling found in the development of the frog Xenopus laevis [8]. Examples of
both these wave types are shown in Fig 1A. While target waves require an oscillating "pace-
maker" cell in their center, spiral waves have a self-sustaining spiral core and typically originate
from the breaking of the wavefront of target waves. The deep link between excitability and
wave propagation allows us to look at the underlying mechanisms in an algorithmic fashion: A
highly stylized, minimal model of excitable dynamics can reproduce both the schematics of

Fig 1. Introduction to pattern types and spiral wave formation. A: (Left to right) spatial and
spatiotemporal pattern examples. Spot and stripe Turing patterns both in coupled Schnakenberg elements;
target wave formation from a central pacemaker and established spiral wave, both in coupled FitzHugh-
Nagumo oscillators. B: Snapshots of spiral wave patterns from diverse biological systems: (left to right) cAMP
signaling in a Dictyostelium discoideum colony, local contraction in neonatal rat cardiac monolayer cultures,
MinD protein density in a lipid bilayer and simulated cytokine levels in a two-dimensional grid of cells. See
Acknowledgments for image sources. C (upper row): The update rules of the minimal three-state cellular
automaton model lead to spiral wave formation, when applied to an open wave front (consisting of a layer of
excited cells, depicted in black, and an adjacent layer of refractory cells, depicted in gray). Lower row: a
similar numerical experiment for the model from [6,7].

doi:10.1371/journal.pcbi.1004367.g001
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wave propagation and the basic principle of the transition from an open wave front to a self-
sustained spiral (see Fig 1C). In this review, we are particularly concerned with understanding
aspects of such transitions: in particular, how they are regulated by features of the nonlinear
relationships governing the system at hand.

Spatiotemporal patterns have been a highly successful perspective in the study of complex
systems for two main reasons: (1) Patterns often fall into a small number of generic categories
(e.g., aggregation patterns or propagating waves [9]). They provide fundamental links between
local interaction rules and large-scale collective behaviors [10]. The types of interactions and
the nonlinearities of the reactions establishing such large-scale patterns are ubiquitous, with
reaction-diffusion systems providing the most prominent example; see, e.g., [11]. The predic-
tion derived from the observation of patterns of biochemical agents and corresponding bio-
chemical mechanisms implementing a reaction-diffusion system (e.g., in hydra development
and head-region regeneration [12]) constitutes another example of the enormous power that
lies in the observation of patterns in real systems and the subsequent dissection (or deconstruc-
tion) of these patterns towards an identification of local interaction rules guided by our under-
standing of self-organization. (2) Patterns are abstract, generic objects that can establish (or
make visible) unexpected parallels between diverse biological, technological, and social sys-
tems. The ubiquity of spiral wave patterns across many systems and many scales, from molecu-
lar-level interactions to ecosystem-wide responses [13], is a good example of this unifying
capacity of a pattern perspective. Fig 1B contains some examples of spiral waves in real biologi-
cal systems.

As high-throughput analysis techniques provide ever more quantitative and often spatially
resolved biological data (see, e.g., [14–16] as examples of such technological advances), we now
have the means to explore the merits of a biology-inspired view, in which the (statistical) details
of the patterns matter. The essential features of a biologically oriented perspective on pattern
formation are (firstly) that in the majority of pattern-forming biological systems, the patterns
often, though not exclusively (see, e.g., [17] for a critique of an indiscriminately adaptionist
perspective on biology), serve a purpose and therefore can be considered to be evolutionarily
optimized. A variety of examples exist: the size of spiral waves regulates the size of multicellular
aggregates in subsequent stages of aggregation in the slime mold Dictyostelium discoideum.
Bacteria stabilize themselves via aggregation against water flow. Another slime mold, Physarum
plasmodium, employs pattern formation to sample space for food sources. Even circadian
rhythms in plants can have a complex underlying spatiotemporal organization, leading to
propagating waves along leaves, coordinating photosynthetic activity [18]. The stomatal cells
of plants respond with complex patterns (termed "stomatal patchiness") to changes in the envi-
ronment, which effectively implement a density classification algorithm [19].

Noise has always been at the forefront of interest in the analysis of nonlinear systems. For
biological systems, over the last few years, intrinsic and extrinsic noise in gene expression [20–
22] and in cell fate decisions [23,24] has been investigated. While the variability we refer to
here represents fixed differences in cell-to-cell properties, varying, if at all, on a much larger
time scale than the resulting patterns, the "extrinsic noise" in these works contains both vari-
ability and the collective noise (dynamically) acting upon all cells simultaneously. This distinc-
tion is important, as the distribution of cell properties can thus be tuned to achieve certain
preferential collective states. Furthermore, some interesting theoretical work has emerged from
studying the interplay of noise and variability on pattern formation (see "Background"). Similar
to these influences of noise, variability can also shape patterns. As these differences between
the constituents are "hard-wired" into the system, we expect a tight evolutionary control on the
shaping of patterns by variability.
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Secondly, it is plausible, and supported by diverse evidence [25–29], that in biology, the
exact spatial layout of the patterns (among the diverse pattern arrangements possible in this
systemic configuration) is selected by the distribution of cell properties (i.e., by biological vari-
ability), rather than solely—like in physics or chemistry—by spontaneous fluctuations [30]. In
this way, spatiotemporal patterns are becoming ever more relevant for computational biology
and systems biology because the intracellular "implementation" of such optimized collective
states can be investigated. The patterns can serve as a "microscope" for the underlying single-
cell mechanisms of regulation.

Understanding how variability (i.e., the magnitude of cell-to-cell differences) shapes collec-
tive states (i.e., the emerging patterns) is instrumental to a biology-oriented view of self-organi-
zation. We here review the role of variability in the self-organization of biological systems. Our
key example is the establishment of spiral wave patterns in excitable media, which is used to
model such phenomena as, e.g., the self-organization of Dictyostelium discoideum [15,31–33],
cardiac arrhythmia [34] and even the epidemic spreading of infectious diseases (see, e.g.,
[35,36]). We thus explore the relationship between variability in cell properties and features of
spiral wave patterns for a variety of mathematical models.

Basic principles of spiral wave formation and the influence of biological
variability
In biology, variability in the form of cell-to-cell differences (in some biologically relevant
parameter) can be expected to contribute more significantly than stochastic noise to the hetero-
geneity in a biological system (see, e.g., [29] for experimental evidence and [37–39] for theoreti-
cal arguments). The potential importance of variability in biological pattern formation is one
of the most striking differences between biological systems and those in physics or chemistry,
where system components are essentially identical and random fluctuations are the only factor
determining the details of the self-organization process and the resulting patterns. This has far-
reaching implications for our understanding of biological systems, in which patterns are linked
to function. The patterns frequently constitute a (precursor of a) collective systemic mode and
are thus subject to evolutionary selection. Variability may be seen as a mechanism by which
individual elements shape these collective modes.

The authors in [33] have convincingly made this case for Dictyostelium, relating the strength
of a regulatory feedback loop to the spatial density of spiral-wave patterns. By studying mutants
in key components of this loop, the authors systematically varied this intrinsic parameter and
observed the corresponding changes in the patterns. Their main finding is that wild-type feed-
back strength is optimized to yield maximal aggregation territory size. This allows for optimally
sized basins of attraction for the consecutive aggregation process of the Dictyostelium cells in
the formation of the multicellular stage capable of spore generation, which completes the devel-
opmental cycle. It is also mechanistically plausible that variability in cell properties could be an
important driving mechanism behind spatiotemporal patterns in biological systems, as the
degree of such differences determines the capacity of the cells to locally synchronize and, con-
sequently, form patterns on a larger spatial scale. Variability, the existing pattern of cell-to-cell
differences, is constant in time. It gives rise to heterogeneity in pattern-forming substances
(e.g., in the distribution of a chemotactic substance). This heterogeneity, in turn, leads to the
establishment of self-organized patterns. In Dictyostelium, the concept of a genetically encoded
"developmental path," a starvation-induced transition of the individual cells through different
dynamical regimes of behavior, initially the excitable rest state, then oscillatory, before once
more becoming excitable, provides a framework through which the effects of heterogeneity can
be implemented in a realistic theoretical setup (see [40] and "Models").
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We start out with an example to illustrate how the distribution of cell properties can influ-
ence self-organized spatiotemporal patterns. Spiral waves can be generated in a variety of dif-
ferent ways: one of the most accessible basic mechanisms can be shown with an extremely
simple model of excitable dynamics. Fig 1 introduces the main mechanistic idea of spiral wave
pattern formation, illustrates their ubiquity in biological systems and provides a first example
of how they are influenced by biological variability. The model used is a three-state cellular
automaton on a two-dimensional lattice. Each lattice site is either susceptible S, excited E, or
refractory R. An excitable (susceptible) element S acquires the state E, if there is an excitation E
in its four-element neighborhood; a refractory element R returns to the susceptible state S after
one time step (see "Models" for details). In Fig 1C, upper row, an open-ended wave front (first
snapshot) curls up to form a spiral wave. In spite of the geometrical artifacts due to the simple
four-element neighborhood and the simplistic state space, the general principle is clearly visi-
ble: the initial conditions of a wavefront segment (black elements) directly followed by a layer
of refractory lattice sites (gray elements) trigger two forms of patterns, a propagating wave
front (oriented upwards in the figure) and the open end of the wave front giving rise to first an
additional excited element and then to a curved wave segment, which subsequently propagates
outwards in a spiral shape.

A more sophisticated model (by [7]), which we will refer to as the "Levine model," brings
the whole scenario much closer to biological reality. It was originally formulated to account for
the basic mechanisms behind spiral wave formation in Dictyostelium discoideum. Technically,
it is an ordinary differential equation (ODE)—cellular automaton hybrid. It uses effective
degrees of freedom (excitability, refractory phase), along with biologically plausible variables
(the local concentration of the intercellular signaling substance, cAMP) and parameters (e.g.,
the feedback strength, describing how an external cAMP signal affects cAMP production) to
account for the most important properties of the actual biological system. This model has also
been used in [37] and [33]. The lower row in Fig 1C shows a similar open-wavefront simulation
using the Levine hybrid model, indicating that even with this more complex model, the behav-
ior of spiral wave formation is qualitatively the same.

As these two examples demonstrate, spirals, and more generally any pattern in excitable
media, may arise through different mechanisms. In general, a propagating circular wavefront
must be interrupted. This may occur when such a wavefront encounters an obstacle in the
form of refractory or less excitable elements (S1 Fig), when a target wave is generated inside
another wave and can only partially propagate, or through special initial conditions which
mimic this process, as in our first examples. Though their origins are still not always fully
understood, spiral waves are ubiquitous in biological systems. Fig 1B gives examples of spatial
snapshots from diverse biological situations. The first is cAMP concentrations, spreading
through a colony of Dictyostelium cells prior to the aggregation phase of the amoeba’s life
cycle (image from the database described in [44]; see also [33]). The second snapshot shows a
spiral wave of electric activity forming in cardiac tissue: here, in neonatal rat cell cultures,
imaged using a dye-free modality that tracks local contraction (see [41]). Such spiral waves
are pathological, and their breakup appears to lead to cardiac arrhythmia. The third image
shows spiral waves of protein density at a sub-cellular scale: the proteins MinD and MinE,
which have a key function in Escherichia coli cell division, are here reconstituted in vitro on a
supported lipid bilayer in the presence of ATP as the energy source (see [42]). The last snap-
shot in Fig 1B shows a simulation of spiral waves occurring in the context of signaling in
mammalian tissue. The cytokine production of cells distributed on a regular 2-D lattice is
shown. Suitable amounts of noise change the wave structure to the point where spiral waves
appear in the tissue (see [43]).
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In Dictyostelium, such spiral waves represent a chemotactic signal guiding each cell towards
an aggregation site, at which the formation of a multicellular structure is initiated. The distribu-
tion of spiral waves thus directly affects the fate of each cell. The spiral wave density (qualita-
tively speaking) translates into the cell counts of the multicellular mounds. With spiral waves, a
pathological dynamical state of cardiac tissue, identifying the spatial distributions of cell prop-
erties that lead to reduced spiral wave probability would be advantageous.

The growing accessibility of Dictyosteliummutant data and their resulting pattern-level phe-
notypes, through studies such as [44], also enhance the prospects of gaining insight into pattern
formation in this model organism via mathematical models that incorporate detailed and real-
istic biological knowledge. Table 1 contains some examples of biological properties in Dictyos-
telium, with their corresponding methods of implementation in a computer model and the
potential effects on patterns that result.

These quantities are, of course, interdependent. Cell density [6] and excitability [33], for
example, vary with the current stage in the cell cycle [25,40]. That responses of Dictyostelium
to chemotactic stimuli are cell-specific has been shown in [29]. One method of incorporating
variability into Dictyosteliummodels is the use of agent-based models, with applications to pro-
cesses such as cell sorting [45]. The role of coupling strength was investigated in [46] and [47];
effects such as target-spiral competition were shown in [48].

Different cell properties will influence the exact layout of the emerging patterns in different
ways. Similarly, different forms of cellular interactions and signal processing will modulate the
effects of this biological variability in different ways. When such interdependences are well
understood, the statistical properties of the patterns can thus serve as a "microscope" for the
underlying principles of regulation.

Effect of Variability: A Model Study
The impact of variability on spiral wave patterns is best visualized by an event perspective, in
which target wave centers and spiral wave tips are considered "spatiotemporal pattern events."
The temporal sequences and spatial distributions of these pattern events can then be compared
with the spatial distribution of cell properties. A cluster of oscillatory elements is a likely candi-
date for emission of target waves. The additional pattern events emerging from this region are
then a consequence of the proximity to other such pacemaker regions and the "roughness" of
the propagating wave front, which is the result of the sequences of excitability encountered by
the propagating wave front—up to the point at which target waves break up into spirals, in one
possible mechanism.

As an illustration of the wide range of geometrical influences biological variability has on
the emerging layout of spiral wave patterns, we use different models of excitable media (with
varying levels of biological detail), simulate spiral wave patterns, reconstruct events (using the

Table 1. Sources of variability affecting details of macroscale patterns inDictyostelium and their representations in computer-basedmathematical
models.

Biological quantity Implementation in a computer model Potential effect on patterns Reference

cell density general fluctuations initialization of patterns [6]

cell cycle phase desynchronization on a "developmental path" transition from target to spiral waves [25,40]

excitability spontaneous firing change of spiral wave density with feedback strength [33]

cell motility agent-based simulations cell sorting [45]

response to chemotactic signal variability on coupling strength target-spiral competition [46–48]

doi:10.1371/journal.pcbi.1004367.t001
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methods from [49]), and thus translate the spatiotemporal patterns into a "pattern event plot,"
in which such underlying geometries are clearly discernible.

How do these "event plots" work? Using algorithms acting upon the space-time cube of the
(simulated or measured) data, the centers of target waves, as well as the centers and orienta-
tions of spiral waves are identified (details about the algorithm are provided in [49]). Such
"event plot" representations of spatiotemporal patterns as sequences of events are not new and
can be employed even in the case of homogeneous systems. In [50], they have been employed
to study spiral breakup in calcium dynamics. In [33], the identification of spiral wave tips via
phase singularities was a prerequisite for studying changes of pattern statistics with the strength
of the cAMP feedback loop. However, here, in the presence of variability, the geometric con-
straints on pattern events arising from the specific nonlinearities become visible. In [25], this
has been worked out in detail for the receptor desensitization-based ODE model of Dictyoste-
lium signaling, referred to here as the "Goldbeter model" [40].

We performed such pattern-based investigations for the "hodgepodge machine" [51,52], the
FitzHugh-Nagumo oscillator as a generic model of excitable dynamics (S2 Fig) [39,53,54] and
the Dictyosteliummodels from [7] and [40]. We discuss the results from the latter two models
in detail here. The underlying cell property is, on a general level, the level of excitability of the
individual elements forming the coupled system. The distribution of this property and its
dynamical features, possibly modulated by other properties, determine the development of spi-
ral waves.

The hodgepodge machine from [51] is a more gradual version of the three-state "forest fire"
cellular automaton. Its n states (a typical value of n is 100) are traversed in a monotonously
increasing fashion. Two parameters, the "excitability" and the "sensitivity," dictate the impact of
neighboring cells (sensitivity) and the steepness of the excitatory response (excitability), respec-
tively. This minimalistic cellular automaton model of excitable dynamics displays high positive
correlations between target waves and the distribution of excitability, as well as between spiral
waves and the distribution of sensitivity [52].

In [39] we showed that a systematic regulation of spatiotemporal patterns by biological vari-
ability can be found even in more minimal models than the Dictyosteliummodels discussed
here. As a simple and abstracted model of an excitable medium, we studied a lattice of diffu-
sively coupled FitzHugh-Nagumo (FHN) oscillators embedded into a "developmental-path"
framework. In this minimal model of spiral wave generation, we could explore the predictabil-
ity of spatiotemporal patterns from cell properties as a function of desynchronization (or
"spread") of cells along the developmental path and the drift speed of cell properties on the
path. These two parameters interact to result in systematically different routes towards fully
established patterns, as well as strikingly different correlations between cell properties and pat-
tern features [39]. The routes to spiral formation thus depend upon the magnitude and form of
variability entering the system. These findings can be seen as providing an event-oriented over-
view of pattern formation, arising from a symbolic encoding of two basic underlying pattern
elements, target waves and spiral waves, that direct this process. The simulation results shown
in S2A Fig have been obtained with a "static" version of a FHN lattice (i.e., a lattice of diffusively
coupled FHN oscillators without a developmental path). Spirals arise early on from the break-
ing of target waves at regions of lower excitability, as demonstrated in a similar, minimal setup
in S1 Fig. In contrast, S2B Fig contains one exemplary pattern of the diverse routes towards spi-
ral waves which can be obtained in the developmental path version of the FHN lattice. This
variant displays a similar sequence of events to the developmental-path Goldbeter Dictyoste-
liummodel and real Dictyostelium data in Fig 2B and 2C, respectively. A high density of spiral
tips results, apparently through the "wave-in-wave" mechanism. In both setups, the final pat-
tern is likely determined by the interacting effects of pattern elements in these complex event

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004367 November 12, 2015 8 / 25



landscapes (see [48]). These contrasting pattern event sequences illustrate the great versatility
of this simple model.

Figs 2 and 3 illustrate the main features of these results. In Fig 2 (see also S2 Fig) the general
method of pattern event reconstruction and pattern event plots is demonstrated, both for simu-
lated (A and B) and real (C) Dictyostelium data. The underlying geometry of the pattern events,
as well as similarities and differences between the spatiotemporal arrangements of events,
become clearly discernible in these event plots. The effects of the two different models for Dic-
tyostelium pattern formation are visible here: the striking geometrical shaping of the arrange-
ment of spiral wave in the Goldbeter model from [40] (2B) contrasts with the conversion of a
target wave pattern into a dense spiral wave pattern for the Levine model from [7] (2A). In the
latter, the cell property we vary is the capacity to spontaneously enter the excited state and the
mechanism of spiral development appears to be based on the breaking of a target wavefront by
an unexcitable region. The geometric details of the possible mechanism are explored in [37]. In
the experimental Dictyostelium data in Fig 2C, spirals form at a later stage, likely due to the
interacting target wavefronts that precede their appearance. This event sequence closely resem-
bles that in Fig 2B.

The two Dictyosteliummodels display very different geometric relationships between pat-
tern events. The pairwise appearance of (left- and right-handed) spirals is more pronounced in
Fig 2A than in Fig 2B. Both models, as well as the experimental data (Fig 2C), show a clear

Fig 2. Event identification in simulated and real spiral wave patterns. Left column: snapshots of the lattices; middle column: corresponding space-time
event plots; right column: top-down views of the event plots. Target wave origins are red asterisks, left- and right-handed spiral waves are blue and green
diamonds, respectively. A: In the "Levine" model, spiral waves evolve early on due to colliding wavefronts, without a sustained target-wave phase. B:
Development of spiral waves from the interaction of target waves in the "Goldbeter" model with a developmental path. C: Development of spiral waves from
target waves in experimentalDictyostelium discoideum data. All simulated lattices are 100x100 and experimental data is rescaled to the same size.

doi:10.1371/journal.pcbi.1004367.g002
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target wave phase preceding the spiral formation, although this phase is most pronounced in
the Goldbeter model in 2B. Also, there are strong differences in spiral wave density (the num-
ber of spiral waves per area). However, even at first glance, the biologically more detailed
model (Fig 2B) shows a much stronger geometric arrangement of spiral waves than the more
schematic model (Fig 2A).

In our previous work on the "Levine model" from [7], we observed a pronounced anti-corre-
lation between spiral waves and a key cell property, the firing rate, and particularly a clustering
of spiral wave tips in regions devoid of spontaneously firing "pacemaker" cells. Similar results
are shown here in Fig 3A: the spatial locations of the pacemakers remain fixed (grey crosses)
and we study the distribution of spiral wave tips across a large number of simulation runs (red-
scale signal plotted in the lower row). Although it is hard to discern any clear relationship
between pacemaker locations and spiral tip occupancy for single runs (upper row), averaging
occupancy over many runs shows the greater density in the central "avenue" free of pacemak-
ers: a clearly visible anticorrelation between the spatial distribution of pacemaker cells and the
spatial distribution of spiral wave probabilities. Some features of this distribution can also be
understood from a simple geometrical model based on triplets of pacemaker cells [37].

The clearest geometrical shaping of the spiral waves is observed in the Goldbeter model
from [40], where variability is coupled to the dynamics via a developmental path. The develop-
mental path moves each element through different dynamical regimes: (non-excitable) steady
state! excitable! oscillatory! excitable. There, spiral wave tips cluster at characteristic dis-
tances from their parent target wave centers: the tips map out the Voronoi diagram around a
specific fraction of cells functioning as effective pacemaker cells. These effective pacemakers

Fig 3. Effect of "pacemaker" location in the "Levine" model from [6,7]. Pacemaker locations are shown as grey or black crosses and spiral tip
occupancy in the red scale. A: A conserved pacemaker pattern leads to different spiral wave patterns of excitability (upper row). Spiral tip occupancy over
1,000 runs favors locations free of pacemakers. The probability of observing a spiral wave at a particular spatial site is determined by the spatial distribution
of cell properties. A simple pacemaker grouping gives rise to a less coherent, more variable tip occupancy in the Levine model compared to the clear
geometric shaping in the "Goldbeter" model (C), based on 250 runs. D: Quantification of the relationships between pattern types in the Goldbeter model: over
100 runs, the correlation coefficient of (left to right) target wave origins to time offsets on the developmental path, spiral tips to target origins and spiral tips to
time offsets; against the radius of the Gaussian filter.

doi:10.1371/journal.pcbi.1004367.g003
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are those cells that are in the oscillatory regime when the majority of other cells are already in
the excitable regime, thus ensuring wave propagation [25]. The pattern events accompanying
the evolution of a sample Goldbeter lattice are highlighted in the accompanying animation (S1
Video).

In the top-down (i.e., time-collapsed) views of the event plots, also shown in Fig 2, these
geometrical constraints among the pattern elements become apparent. In particular, in the
Goldbeter model, the Voronoi diagram-like relationship between the spiral tips and their par-
ent target wave origins are suggested even on this single-run level. Comparing simulation
results for the three models shown in Figs 2, 3 and S2 Fig, it is striking how different these geo-
metrical constraints in the emerging spatiotemporal patterns are, both in the characteristic
sequence of events and in the spatial density and distribution of asymptotic patterns. This sim-
ple example already shows the potential capacity of spatiotemporal patterns to discriminate
between possible underlying mechanisms of regulation. However, it should be noted that these
examples are based on specific parameter constellations, and a complete evaluation of the
model-specific differences requires a comprehensive exploration of the parameter spaces.

In Fig 3B and 3C, we continue our comparison of the Levine and Goldbeter models by
exploring their behavior in response to the same initial pacemaker pattern, our cell property
here. With the same fixed distribution of five pacemakers, we allow a certain amount of ran-
domness in both systems over many runs. In the case of the Levine model, there is a certain
probability of a pacemaker firing per timestep. In the Goldbeter model, the time offsets on the
developmental path are randomly allocated. In both cases, pacemakers may randomly emerge
in addition to the fixed ones. In the Goldbeter system, the fixed pacemakers are given a time
advantage over the random pacemakers, while the small additional number in the Levine sys-
tem makes the setup more comparable in this respect to the Goldbeter system. The resulting
spiral occupancy images further highlight the dramatic differences between these models, with
the clear Voronoi diagram-type tracing of the spiral tips in the Goldbeter model in contrast to
the diffuse anticorrelation in the Levine model, which becomes clearer with clustered pace-
maker elements, as in Fig 3A.

The different mathematical descriptions of excitable systems shape the spatial distribution
of pattern elements in systematically different ways. More quantitative methods for exploring
these constraints (via point process statistics; cf. [55]) have been discussed in [25]. Even the
computation of correlation coefficients between pattern events can provide a first quantitative
indication of their spatial relationships: in Fig 3D we compute such coefficients for the Goldb-
eter model with varying values of the Gaussian filter applied to the datasets. Using a fixed value
of the quantity of the time offset on the developmental path, Δ, over 100 runs, we plot the
mean values of the Spearman correlation coefficients against the value of the Gaussian filter
(error bars are the standard error of the mean). Although the resulting quantities are small,
they reflect the qualitative relationships observed in the event plots. We note a positive correla-
tion between target wave origin occupancy and time offset, a negative relationship between spi-
ral tip occupancy and target origin occupancy, and an apparent resulting anticorrelation
between spiral tips and time offsets that is a maximum at our intermediate spatial scale and
becomes less pronounced at larger scales.

How can these findings be put to use for a deeper understanding of the biological system?
Experimental evidence for Dictyostelium suggests that many of these relationships, in particu-
lar, presence of a distinct target wave phase preceding the spiral wave patterns, are dependent
on the biological strain [56]. Here, combining these sets of information, the geometric signa-
tures of pattern events arising in a specific model and the dependence of these geometric con-
straints on experimental conditions, has the potential of revealing the intracellular mechanisms
regulating the large-scale macroscopic, collective pattern states. This new avenue of research at
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the interface of computational systems biology and pattern formation is what we were referring
to earlier as patterns serving as "microscopes" for the underlying regulatory principles.

We have seen that the distribution of cell properties affects the distribution of pattern ele-
ments and thus the details of the asymptotic pattern. How can variability, as a parameter mea-
suring the amount of cell-to-cell differences, affect the patterns themselves? In [48] it was
shown that the density of spiral waves changes with variability in a resonance-like fashion,
resembling the classical phenomenon of diversity-induced stochastic resonance [57,58]. The
underlying mechanisms here are a strong dependence of the competition between target waves
and spiral waves on variability.

Additionally, the core idea of patterns as functionally important and evolutionarily advanta-
geous collective states leads us to expect deep relationships between regulatory components
and properties of spatiotemporal patterns. For the case of Dictyostelium, such relations should
also reveal themselves in dedicated experiments, e.g., by varying the amount of cell-to-cell vari-
ability and studying the effect on pattern formation or by altering levels of specific regulatory
components by mutagenesis and observing differences in pattern formation to the wild-type.

Furthermore, the findings summarized here can serve as a theoretical framework for
reverse-engineering the fundamental regulatory mechanisms underlying the observed spatio-
temporal patterns.

Outlook
We have here introduced the principles of pattern predictability in biological systems, illus-
trated by a range of mathematical models and real experimental data. Taken together, the
results described and reviewed here provide strong evidence supporting the general hypothesis
that single-element properties are systematically mapped onto patterns and thus conserved
across processes of self-organization (as opposed to being enslaved and "deleted" by the collec-
tive). The results reviewed here show that the initial properties of potentially very few cells
have a driving influence on the resulting asymptotic collective state of the colony.

Although most of our examples so far have discussed pattern formation on regular lattices,
the concept of pattern predictability can, in principle, be extended to other topological architec-
tures, such as networks. The study by Marr and Hutt [59] is an example of how variability can
reorganize patterns on networks: shortcuts inserted into a regular (ring-like) network architec-
ture induce a transition fromWolfram class IV dynamics to Wolfram class III dynamics in
binary cellular automata on graphs. The “variability” in these “small-world graphs” [60] deviat-
ing from regular networks lies in the degree (number of neighbors) of each element. With the
work on Turing patterns on graphs [4] and related work [61,62], a new paradigm for the inter-
pretation of dynamics on graphs is currently emerging: topology-compatible “collective
modes” that establish themselves in a graph due to the interplay of topological and dynamical
parameters. Waves organizing around hubs (highly connected nodes) are a striking example of
such collective modes [63]. Networks are increasingly recognized as a powerful and intuitive
way to represent real biological processes (see, e.g. [64,65]), with a vast range of applications
extending from gene metabolism [66] to ecological processes [67].

We would like to acknowledge two areas not covered by our review: (i) the rich literature on
cardiac dynamics, which is an important field of application for the study of spiral waves, is not
discussed in detail. (ii) We have focused on spatially discrete models, as they provide a conve-
nient framework for incorporating biological variability (by assigning a specific cell property
to each spatial lattice site). Other work that very successfully uses partial differential equations
for analyzing Dictyostelium pattern formation (e.g., [68]) is therefore not discussed in detail.
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In the specific examples of spiral wave patterns discussed above, we want to highlight the
importance of biological variability and the regulatory information contained in spatiotempo-
ral patterns. However, we do not want to suggest that the complex relationship between the
nonlinearities of the model, the nature and spatial distribution of cell properties, and the result-
ing spatiotemporal patterns is well understood and can lead to unique conclusions (e.g., about
the relevant nonlinearities, given the distribution of cell properties). The details of this relation-
ship remain far from clear.

Understanding the role of variability in pattern formation relies on disentangling the role of
discrete element properties from that which may be an innate property of the system even
without discretization, as is the case for homogeneous systems, such as the example explored in
[50]. However, exploring the role of variability is appropriate in biological systems, as discrete-
ness is an inevitable constituent of such systems: they are all composed of individual, interact-
ing parts, whether at the molecular or the organismal scale.

Incorporating the spatiotemporal organization of biological systems is a major challenge for
systems biology. The field is now making the transition from a purely temporal understanding
of biological processes (the "well-stirred test-tube" perspective) to full spatiotemporal descrip-
tions (see e.g., [69–71]). This, together with recent findings on the theoretical side, has reinvig-
orated the interest in classical models of spatiotemporal pattern formation.

One of the aims of systems biology is to establish the architectures and kinetics of signaling
pathways and intracellular regulations in an iterative process between modelling and experi-
ment. However, systems biology currently fails to exploit the very large pool of macroscopic
observations represented by spatiotemporal patterns, which potentially provide important
insight into intracellular regulation processes. Spatiotemporal patterns form within single cells
or in a population of cells according to the intrinsic laws of protein–protein interactions, intra-
cellular feedback loops and (on the multicellular level) cell–cell communication. The patterns
change systematically with the parameters of regulation. When guided by a suitable mathemat-
ical model, the detailed layout of spatial and spatiotemporal patterns can reveal the properties
of the underlying regulatory system.

The very recent publication by [72] is an ideal case study of this capacity of self-organized
spatiotemporal patterns. By representing the intricate regulatory network responsible for the
chemotactic response of individual Dictyostelium cells as a stylized excitable system (mathe-
matically formulated as interconnected FitzHugh-Nagumo oscillators), a wealth of experimen-
tal information can be qualitatively explained, including the dynamics of adenylyl cyclase
A in response to steps of external cAMP and the reason for the production of extracellular
phosphodiesterases.

We are convinced that the general framework of pattern predictability has a vast range of
additional applications, beyond the systems shown in Fig 1A. Analyzing pattern predictability
can be envisioned, e.g., for cell sorting in in Dictyostelium [73], wound healing [74,75], predic-
tion of Turing patterns [3], design of patterns in a broad range of self-organized processes and
prediction of patterns in social and socioeconomical systems [76].

Background

Theoretical investigations of biological variability
Over several decades, a range of theoretical investigations has shown that variability can play
an essential role in achieving a qualitative understanding of the processes at hand. The corre-
sponding theoretical approaches range from variability as a driving force in evolutionary pro-
cesses [77] to the generation of endogenous circadian oscillations from fast dynamics [78]. The
vast field of research on synchronization in networks of nonlinear oscillators under the
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influence of variability and stochastic contributions has been described, e.g., from the point of
view of synchronization [79] and from the network point of view [80].

The effect of variability on spatiotemporal chaos has been studied in [81–83]. Additionally,
various numerical investigations have explored variability-induced pattern formation, com-
pared to and in cooperation with noise using arrays of coupled oscillators [28,58,84]. The fact
that, similarly to noise, variability can induce patterns or trigger a transition from one pattern
to another has been a focus of research in the 1990s and early 2000s. In the more theoretically
oriented studies, our biologically motivated term "variability" often appears as “diversity,” “dis-
order,” or “quenched noise.” For coupled FHN oscillators, it has been shown that variability
can induce both a phase transition from oscillatory to excitable behavior [28] and, in a subexci-
table system, pattern formation in the form of spiral waves of excitation [58]. Pattern complex-
ity has been shown to be highest at intermediate variability [84]. Such studies culminated in
the phenomenon of diversity-induced resonance [57,58], where the response of an excitable or
bistable system to a subthreshold stimulus is optimal at intermediate levels of diversity. In [85]
such a diversity-induced resonance was found in simulations of calcium dynamics, showing
that calcium waves propagate optimally at intermediate cell-to-cell variability.

In recent work on excitable dynamics and spiral wave patterns, there is a strong trend to
take into account realistic structural geometries in order to better understand the observed spa-
tiotemporal patterns (see, e.g., [86]). On the methodological side, target and spiral wave identi-
fication techniques have been developed and implemented [49,87,88] and simulation methods
have been advanced [89]. The authors of [90] also discuss how spiral tip identification in the
FHNmodel influences the reconstructed patterns of meandering spiral waves. The use of gen-
eralized recurrence plots for reconstructing the phase diagram of nonlinear spatiotemporal sys-
tems from a limited set of observations has been described by [91]. In spite of its historical
roots in the 1960s and 1970s, the explanation of spiral wave patterns still receives an enormous
amount of scientific attention. The reason is 2-fold: (1) Our understanding of pattern forma-
tion processes still has severe gaps on the theoretical side; in particular, the routes from homo-
geneous patterns to fully established spiral waves are surprisingly dependent on the details of
the system at hand. (2) It is currently being noticed that (precisely due to the dependence of
patterns on the regulatory details within the system) a deep and detailed analysis of spiral wave
patterns can help access the underlying principles of regulation. Detailed theoretical studies
have provided evidence that the correlations between cell property distributions and patterns
strongly depend on the regulatory mechanisms at the level of individual cells (e.g., comparing
the results from [37] and [25]).

Returning to the purely theoretical description of properties of spatiotemporal patterns, it
would of course be a major step forward if some aspects of the predictability of patterns from
cell properties could also be understood analytically. Two approaches are particularly promis-
ing for tackling this question. Firstly, in [92] a mathematical framework has been developed for
describing diffusion and annihilation of spiral wave tips within a simple kinematical model.
Secondly, in [93] a response theory of (spiral wave) patterns under small perturbations has
been formulated, in particular, the sensitivity of the spiral’s drift velocity.

Even in studies in which medium heterogeneity in the system is taken explicitly into account
(e.g., [94]), the correlation between heterogeneity and the distribution properties of spiral
waves is not discussed. We believe that this link could convey important insights into the pre-
diction of spiral wave events, and on a wider level, the relationship between heterogeneity and
system behavior has many additional practical applications in fields ranging from engineering
to disease outbreak prevention. The strong practical interest in understanding spiral wave pat-
terns in cardiac tissue has also led to a range of theoretical studies on the pinning of spiral
waves by properties of the medium [95–98].
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Dictyostelium pattern formation
Amodel system for which regulation by variability could be a principal mechanism (see, e.g.,
[7,40]) is the slime mold Dictyostelium discoideum. In this paradigmatic example of biological
pattern formation, individual amoeba cells aggregate under the influence of the chemotactic
signal cAMP and form a multicellular organism [99]. This process is initiated by nutrient dep-
rivation; this causes single cells to emit cAMP into their environment. These molecules are
detected by neighboring cells via highly specific surface receptors [100], initiating the intracel-
lular autocatalytic synthesis of additional cAMP by the enzyme adenylyl cyclase (ACA) and its
subsequent secretion into the environment. Time-delayed receptor desensitization and halting
of ACA activity are involved in the following refractory period. Extracellular cAMP is degraded
by membrane-bound and secreted phosphodiesterase, which is, on the other hand, regulated
by its inhibitor. The coupling of the underlying reaction kinetics with diffusion results in wave
propagation. As long as the local cAMP concentration increases with time, the cells react with
positive chemotaxis, resulting in periodic movement perpendicular to the wave front, i.e.,
towards the origin of the chemical signal.

As more details become available concerning the molecular network responsible for cAMP
oscillations in Dictyostelium (e.g., [101,102]), modelling efforts increase in their corresponding
complexity (see, e.g., [103,104], which are typical of this transition towards a more "systems
biology" approach). In terms of the local Dictyostelium response to the cAMP gradient, prog-
ress is still being made in the understanding of the small-scale decisions underlying pattern
formation [105]. Another evolving avenue of interest is Dictyostelium’s contribution to under-
standing the origins of multicellularity [106,107]; such efforts are spurred on by the sequencing
of Dictyostelium discoideum’s genome [108]. These recent examples illustrate the continually
increasing, vast amount of research that has been done over more than four decades into many
aspects of the Dictyostelium life cycle. In particular, several findings of the last few years have
added new ideas to the view that in the case of Dictyostelium, biological variability is responsi-
ble for certain stages of symmetry breaking in the usual course of the developmental cycle
(local pattern initiation, spatial distribution of cell streams, and distribution and proportions of
differentiated cell types).

In the work by the authors of [33], the strength of a regulatory feedback loop is related to
the spatial density of spiral wave patterns in cell colonies of Dictyostelium. By studying mutants
in key components of the regulatory feedback loop, the authors systematically varied this
intrinsic parameter and observed how the spatiotemporal patterns changed accordingly. In
order to display the systematics of their finding more clearly, the authors of [33] simulate pat-
terns using a simple cellular-automaton based model, in which the feedback strength (i.e., the
cAMP pulse-dependent increase in excitability) appears as an explicit parameter. Their observ-
able is the spatial frequency of spiral waves, which they obtain by counting the phase singulari-
ties in their spatiotemporal patterns. Remarkably, the intermediate feedback strength found in
wild-type cells turns out to produce an optimal (i.e., minimal) number of phase singularities
compared to higher and lower feedback strength mutants, respectively. In the extreme case, in
which feedback is constantly absent, no stable spiral wave pattern evolves. This observation has
two implications. Firstly, aggregation territory size is optimized by the pulse-dependent devel-
opment of feedback strength. For the wild type, this allows for optimally sized basins of attrac-
tion for the consecutive aggregation process of the cells leading to the multicellular organism
capable of spore generation and thus completing the developmental cycle of Dictyostelium. Sec-
ondly, wave geometry is determined by feedback strength. Spiral waves seem to be favored by
the system compared to target waves, although both wave geometries result in fruiting bodies
for the experimental system. The biological advantage of spiral-based signaling is that spirals
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are self-sustaining continuous structures, which preserve their stability, to a certain extent out-
side the excitable regime. This allows for maintenance of the aggregation process under devel-
opmentally and environmentally conditioned changes. In contrast, target waves require the
periodic activity of oscillatory regions (i.e. pacemakers).

Strong support for the hypothesis that cell properties can indeed affect the collective pat-
terns in Dictyostelium has come from the recent observation that the direction and magnitude
of a cell’s response to a signal pulse is an individual cell property, which remains constant in
time [29]. In that work the behavior of single cells under periodic cAMP signals was analyzed
and it is observed that the characteristics of the gradient sensing response of an individual cell
at a certain time point strongly correlate with those of the same cell at a later time point. A
recent paper [15] provides further support for our hypotheses, demonstrating that Dictyoste-
lium cells’ internal cAMP concentrations oscillate at a frequency determined by intracellular
machinery. The authors found that experimentally observed rhythmic cAMP synthesis could
only be replicated successfully in their mathematical model when the stochastic pulsing of indi-
vidual cells in response to subthreshold cAMP levels was included in the model. The implica-
tion is that organized group dynamics in a Dictyostelium population depend on the random
behavior of individual cells (see also [109]). Another study finds that isogenic Dictyostelium
cells have diverse sensitivities to cAMP, and that this may facilitate collective behavior [110].
Similarly, in [72] the roles of noise and variability in Dictyostelium cAMP signaling were
explored in a phenomenological FitzHugh-Nagumo model. Here, variability was incorporated
in the form of individual cells’ thresholds of response to extracellular cAMP. The results sug-
gested that stochastic noise can account for population-level cAMP oscillations, while variabil-
ity in this cell property alone cannot. These recent works, in addition to greatly enhancing the
experimental accessibility of the system (via the direct measurement of cAMP concentrations),
emphasize the role of individual cells and the debate whether it is the activity of dedicated pace-
maker cells or the spontaneous firing of random cells which constitutes the main driving mech-
anisms behind the initiation of patterns during this early phase (see also [111]). While the
work from [15] emphasizes the latter aspect, the results of [29] suggest an important role for
the former, and it is likely that both noise and variability interact in the shaping of spatiotem-
poral patterns.

These diverse sets of questions, all of which are related to biological variability and their
influence on pattern formation, illustrate the importance and timeliness of establishing a biol-
ogy-oriented perspective on spatiotemporal patterns.

In the following, we will focus on two additional mathematical models. The first is a highly
detailed model of pattern formation in Dictyostelium, which was initially formulated in [112];
we also refer to this model as the "Goldbeter" model. This model incorporates relevant biologi-
cal details, such as the relay of suprathreshold cAMP pulses and autonomous cAMP oscilla-
tions, and the phosphorylation-dependent modification of the cAMP receptor, in the same
way that current modeling attempts in systems biology would (see, e.g., [104,113]). Standard
model reduction techniques (such as time scale separation) yielded a three-dimensional model
that has also been elegantly used to analyze spatiotemporal patterns [40]. The dynamical vari-
ables are the fraction of active cAMP receptors and the concentrations of external and intracel-
lular cAMP, respectively (see "Models" for details).

As in many such modeling situations, one now has the choice to either explore the biological
details of these spatiotemporal patterns or, alternatively, aim at understanding the generic fea-
tures. The second model to be discussed in detail in the following is therefore an array of cou-
pled FitzHugh-Nagumo oscillators as a generic model for spatiotemporal patterns arising from
excitable dynamics [53,54].
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A novel ingredient organizing the interplay between biological variability and the resulting
patterns in a system is the concept of a "developmental path." This is a specific parameter drift
with time which couples small cell-to-cell property differences to the cell’s dynamical behavior,
thus turning them into "organizers" of the spatiotemporal patterns. The "developmental path"
concept was proposed by Lauzeral and coworkers [40], in the context of the model of Dictyoste-
lium discoideum pattern formation developed by Martiel and Goldbeter [112] (see also [114]).
It was created as a hypothetical mechanism of the development of heterogeneity from homoge-
neous conditions for the synthesis of spiral waves of cAMP in Dictyostelium. According to this
concept, the cells in a population of Dictyostelium undergo time-dependent changes in cell
properties, and intercellular variation in these properties places the cells at differing points
along this developmental path. The path in [40] results from sigmoidal variations in the maxi-
mum activity of adenylate cyclase and the rate of extracellular cAMP degradation. The varia-
tion from cell to cell in the cell cycle when starvation begins is a possible origin of the different
time offsets of the cells on the path. Such a path would be expected to occur in a higher-dimen-
sional space in reality, but even in this simple form can provide an adequate representation of
the actual biological dynamics. We consider the developmental path form of the Goldbeter
model as an example of predicting patterns arising from a biologically plausible source of vari-
ability. Furthermore, we discuss the extension of the concept to the FHN model, showing that
the principle is versatile and can be applied to diverse biological models as a method of generat-
ing heterogeneity.

Models
Here we describe the models used throughout this review. The symbolr2 represents the dis-
cretized Laplacian for 2-D diffusion, and we use the five-point Laplacian except in the case of
the Levine model, where the eight-point Laplacian is used. D is the value of the respective diffu-
sion coefficient.

Schnakenberg model. This simple model [2] appears in Fig 1A, as an example of a driver
of Turing-type patterns. Here, c1 = 0.05, c-1 = 1.0, c3 = 1.0, Du = 1.0, Dv = 20.0, and γ = 2.0. The
value of the parameter c2 determines whether the system gives rise to spots (c2 = 1.00) or stripes
(c2 = 1.57). The initial values of u and v are randomly varied between -0.01 and 0.01.

@u
@t

¼ gðc1 � c�1uþ c3u
2vÞ þ Dur2u

@v
@t

¼ gðc2 � c3u
2vÞ þ Dvr2v

ð1Þ

FitzHugh-Nagumo model. The FitzHugh-Nagumo (FHN) model [53,54] is widely used
in studies of excitable media, as it is a low-dimensional model that can display a wide range of
dynamics, including excitable, oscillatory, quiescent, and bistable behavior. Here it provides
examples of target and spiral wave types (Fig 1A), spiral formation from a target wave due to
interruption of the wavefront by less excitable elements (S1 Fig), and as an example of model-
specific pattern events (S2 Fig). The FHN equations describing a 2-D lattice with diffusive cou-
pling of the elements are:

@ui;j

@t
¼ 1

ε
ðða� ui;jÞðui;j � 1Þui;j � vi;jÞ þ Dr2ui;j

dvi;j
dt

¼ bui;j � gvi;j þ ci;jðtÞ
ð2Þ
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where ui,j represents the voltage-like variable at each lattice site and vi,j is the recovery variable.
ci,j(t) is the parameter that may be subject to variability, either through a Gaussian distribution
(“static” variant) or via a developmental path. The static variant appears in Fig 1A, S1 and S2A
Figs, while the developmental-path variant appears in S2B Fig.

Each FHN element may be excitable, oscillatory, or in a non-excitable steady state, depend-
ing on the model parameters. Here, the parameters have the values a = -1, g = b = 0.12, ε = 1
and D = 0.1. A value of Δx = 1.0 is used for the discretization.

For the static variant, there is no developmental path. For Fig 1A, c = 0.025 for the target
wave and c = 0.021 for the spiral wave. For S1 Fig, c = 0.024 and an additional fraction equal to
0.400 of all elements are assigned c = 0.030, which is of lower excitability. In Fig 1A and S1 Fig,
the central pacemaker element is assigned c = 0.000. For S2A Fig, values of c are randomly
drawn from a Gaussian distribution, with mean value 0.024 and standard deviation 0.006.
Varying the value of c changes the dynamical properties of the element; in S2A Fig the ele-
ments are mainly oscillatory, but some are also excitable and steady-state.

The developmental-path variant is analogous to the corresponding Goldbeter model, but
incorporates variation in only one parameter, c:

ci;jðtÞ ¼ c0tanh½
t � tc þ Dti;j

Tc

�; ð3Þ

where the time offsets Δti,j differ between elements (see Eq 4) and t is the “global time.” The
value of c0 determines the dynamical regimes traversed in the temporal evolution of ci,j(t). Here
it has the value 0.02, and the lattice values of ci,j(t) vary between approximately -0.02 at the
start of the developmental paths and 0.02 at the end, with a value of ci,j(t)�0 resulting in the
maximal oscillatory frequency. The parameters tc and Tc describe the shape of the path in c,
here tc = 1000 and Tc = 50.

Each FHN element is assigned a time offset Δti,j on this path, which distributes the values of
c over the lattice. The time offsets are created as above:

PðDti;jÞ ¼ 1

D
exp �Dti;j

D

� �
; ð4Þ

where Δ is a desynchronization parameter which controls the spread of time offsets Δti,j; here
Δ = 500.

Three-state cellular automaton encoding excitable dynamics. This model appears in Fig
1C as an example of the development of a spiral wave from an open-ended planar wavefront. It
consists of three discrete states for each node (susceptible S, excited E, refractory R), which are
updated synchronously in discrete time steps according to a set of update rules allowing for sig-
nal propagation: (1) a susceptible node S becomes an excited node E, when a direct neighbor is
in the excited state; (2) an excited node E enters the refractory state R; (3) a node regenerates
(R!S) after r time steps. The parameter r is the deterministic refractory period of the system;
here, r = 1.

In previous investigations [63,115] a stochastic version of the model has been explored,
where spontaneous excitations could occur at random with a rate f, and the deterministic
refractory period r was substituted by a stochastic recovery rate p. Such minimal models of an
excitable system have a rich history in biological modeling. The stochastic version was first
introduced in a simpler variant called the "forest fire model” [116] and subsequently expanded
by Drossel and Schwabl [117] who also introduced the rate of spontaneous excitations, f (the
"lightning probability” in their terminology). In this form it was originally applied to regular
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architectures in studies of self-organized criticality. Other variants of three-state excitable
dynamics have been used to describe epidemic spreading (see, e.g., [118,119]).

Levine model from [7] and [33]. Here we discuss the "Levine" model of Dictyostelium pat-
tern formation introduced in [7] (see also [33,37]). We will use the form from [33]. This model
appears in Figs 1C, 2B, 3A and 3B. The model is a hybrid cellular automaton-ODE model for
Dictyostelium, in which the cells have discrete internal states coupled to two continuous exter-
nal variables: the local values of extracellular cAMP concentration and excitability. The rates of
change of these variables are

@ci;j
@t

¼ � Gci;j þ rFsi;jðtÞ þ Dr2ci;j

dEi;j

dt
¼ Zþ bci;j

ð5Þ

where c is the extracellular cAMP concentration, Γ is the constant of extracellular degradation
of cAMP mediated by phosphodiesterase and rF is the rate of cAMP production. Additionally,
si,j is the internal cell state which controls cAMP production, taking the value of 1 for a firing
state and 0 for a quiescent state, η is the intrinsic excitability increase and β is the genetic feed-
back factor which affects the sensitivity to signals from other cells.

The excitability increases monotonically and has an upper limit emax. In the ready and rela-
tive refractory states, activation can take place if the cAMP concentration exceeds the threshold
ti,j:

ti;jðtÞ ¼ cmax � A
t

tþ TARP

� �
ð1� Ei;jÞ ð6Þ

where τ is the time elapsed since the cell entered the relative refractory phase and has a maxi-
mum value of TRRP for the ready state, and A = (TRRP+TARP)�(cmax-cmin)/TRRP). Here, TRRP and
TARP are the relative and absolute refractory periods, respectively. A pacemaker has a certain
probability pF of firing per time step. The resulting random firing events lead to amplification
of the heterogeneity of excitability in the system through feedback. For Fig 1C, pacemakers
emerge randomly, as in [33] and the fraction of pacemaking elements ε = 0.50, β = 0.20, the
starting excitability = emax/2 and pF = 0.002. For Figs 2A, 3A and 3B, static distributions of
pacemakers are used and the starting excitability = η = 0.0. For Figs 2A and 3A, β = 0.20, pF =
0.002 and ε = 0.195 and 0.190 respectively. For Fig 3B, β = 0.30, ε = 0.001 (in addition to the
five assigned pacemakers) and pF = 0.05. Other parameter settings are as in [33].

Goldbeter model from [40,112]. This model of Dictyostelium pattern formation appears
in Figs 2B and 3C, and in the accompanying event plot animation (S1 Video). It was developed
by Martiel and Goldbeter [112] (see also [114]). We here discuss the reduced, three-dimen-
sional version of the original model with nine dynamic variables, both from [112]. Each lattice
point represents a group of ten cells whose properties are synchronized.

The three dynamic variables are the total fraction of active cAMP receptor (ρT) and the nor-
malized concentrations of intracellular (β) and extracellular (γ) cAMP:

drT

dt
¼ � f1ðgÞrT þ f2ðgÞð1� rTÞ;

db
dt

¼ qsFðrT ;g;aÞ � ðki þ ktÞb;
@g
@t

¼ ðktb=hÞ � kegþ Dgr2g;

ð7Þ
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with

f1ðgÞ ¼ k1 þ k2g
1þ g

; f2ðgÞ ¼ k1L1 þ k2L2cg
1þ cg

FðrT ;g;aÞ ¼ aðlyþ εY2Þ
1þ aþ εY2ð1þ aÞ ;Y ¼ rT g

1þ g
:

ð8Þ

This model is based on reversible desensitization of the cAMP receptors on the surface of
cells. Extracellular cAMP may bind to the active receptor; this activates adenylate cyclase σ,
converting intracellular ATP to cAMP. The activity of the receptors depends upon the extracel-
lular cAMP concentration and the fraction of active receptors. Intracellular cAMP diffuses out
of the cell and can be hydrolyzed by intra- or extracellular phosphodiesterase ke.

The "developmental path" concept was proposed by Lauzeral and coworkers [40], in the
context of the three-dimensional model. According to this mechanism, specified cell properties
follow a defined trajectory over time, with this variation leading cells successively through qui-
escent, excitable, oscillatory and excitable regimes of dynamical behavior. Desynchronization
of the cells’ properties on this path then provides the necessary cell-to-cell differences for spiral
waves to form. This path incorporates variation in adenylate cyclase and phosphodiesterase, in
correspondence to experimental observations. The developmental path concept thus provides
a mechanism for the generation of variability from homogeneous initial conditions. This
model was shown to successfully reproduce the sequence of macroscale patterning observed in
experimental Dictyostelium colonies.

Here we discuss developmental path 3 of [40], in which σ and ke are varied sigmoidally:

sðtÞ ¼ sav þ samp tanh
t � ts þ Dti;j

ts

� �

keðtÞ ¼ kav þ kamp tanh
t � tk þ Dti;j

Tk

� �
:

ð9Þ

where t is the "global time" and the parameters tσ and Tσ; and tk and Tk describe the shape of
the variations in σ and k respectively. The lattice elements (representing synchronized groups
of cells) are assigned time offsets Δti,j on this path, which distributes the values of σ(t) and ke(t)
over the lattice. As in [40], each time offset is randomly drawn from an exponential distribu-
tion:

Pðti;jÞ ¼ 1

D
exp � ti;j

D

� �
: ð10Þ

In Figs 2B, 3D, and the accompanying animation (S1 Video), Δ = 25; in 3C, Δ = 15. Other
parameter settings are as described in [40].

Supporting Information
S1 Fig. Development of spiral waves from a central pacemaker in the FitzHugh-Nagumo
(FHN) model due to the presence of elements of lower excitability, leading to curvature of
the planar wavefront. The entirety of the lattice is excitable, but a fraction of 0.4 of the ele-
ments have lower excitability.
(EPS)

S2 Fig. Pattern event sequences in "static" and "developmental-path" variants of the FHN
model. Left to right: lattice snapshots with time and overlaid pattern events (red asterisks are
target origins, blue and green diamonds are left- and right-handed spiral tips). A: Development
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of spiral waves from the interaction of target waves with areas of lower excitability in the
"static" FHNmodel. B: Development of spiral waves from target waves in the FHNmodel with
a developmental path. Spirals originate within the zones of target wave entrainment, apparently
through the wave-in-wave mechanism.
(EPS)

S1 Video. Animation of the spatiotemporal evolution of a lattice of "Goldbeter" elements,
as their time offsets move along a developmental path in the parameters σ and ke. Pattern
events are represented by red asterisks (target wave origins) and left- and right-handed spiral
tips (blue and green diamonds, respectively). Left side: development of the u-field with overlaid
detected events; right side: space-time plot of the pattern events.
(AVI)
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