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Nitric oxide serves essential roles in normal vascular physiology, but paradoxically
contributes to vascular pathology in disease. During brain ischemia, aberrant nitric
oxide levels can cause cellular injury through induction of nitrosative/oxidative stress
and post-translational activation of matrix-metalloproteinase-9 (MMP-9). We recently
demonstrated that brain pericyte somata were associated with very early and localized
MMP-9 activation along capillaries during cerebral ischemia, leading to focal blood-
brain barrier disruption. Here, we tested whether this effect was dependent upon
nitric oxide production. In vivo two-photon imaging was used to directly visualize
MMP9 activity using a FITC-gelatin probe and leakage of intravenous dye during
photothrombotically induced capillary ischemia. Results showed that the NOS inhibitor,
L-NIL, at concentrations affecting both iNOS and constitutive NOS isoforms, attenuated
capillary leakage at pericyte soma-specific locations and substantially reduced FITC-
gelatin cleavage. We also found that combined administration of L-NIL and anisomycin,
an inhibitor of protein synthesis, led to near complete elimination of FITC-gelatin
cleavage and vascular leakage. These results indicate that both nitric oxide synthase
and new protein synthesis are involved in the rapid activation of MMP-9 at somata of
capillary pericytes during ischemia.

Keywords: pericyte, blood-brain barrier, ischemia, matrix-metalloproteinase-9, capillary, two-photon imaging,
nitric oxide, stroke

INTRODUCTION

During stroke, rapid activation of the proteolytic enzyme, matrix-metalloproteinase-9 (MMP9)
leads to degradation of the neurovascular unit and compromise of the blood-brain barrier (BBB)
(Gasche et al., 1999; Planas et al., 2001; Montaner, 2003; Fukuda et al., 2004). This process can
occur within minutes to hours, and worsens stroke outcome by allowing brain entry of toxic

Abbreviations: BBB, blood-brain barrier; MMP-9, matrix metalloproteinase-9; NOS, nitric oxide synthase; iNOS, inducible
nitric oxide synthase; eNOS, endothelial nitric oxide synthase; nNOS, neuronal nitric oxide synthase; PDGFRβ, platelet-
derived growth factor beta; L-NIL, L-N6-(1-Iminoethyl)lysine.
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blood molecules and by shortening the time window for
thrombolytic treatment. Delineating the mechanisms of early
BBB disruption in stroke may identify potential targets for
therapeutic intervention. Pericytes, the mural cells of the brain’s
capillary bed, have been identified as cellular targets in treatment
of acute stroke (Dalkara and Arsava, 2012; Zheng et al., 2020).
Pericytes are uniquely sensitive to oxidative/nitrosative stress
(Yemisci et al., 2009), and their death or aberrant contraction
causes impaired cerebral perfusion during both ischemia and
reperfusion phases of stroke (Hall et al., 2014; Hill et al.,
2015). However, pericytes also appear to induce MMP-9 activity
during neuroinflammation (Bell et al., 2012; Machida et al.,
2015) and ischemia (Underly et al., 2017). Using in vivo two-
photon imaging techniques, we recently showed that pericytes are
spatially associated with rapid MMP-9 activation (within 10 min)
during ischemia (Underly et al., 2017). This was an unexpected
result considering that most prior studies have reported MMP-
9 activation hours to days after the ischemic event (Weekman
and Wilcock, 2015). To study rapid MMP-9 activity in vivo,
we used two-photon microscopy to image mice with labeled
pericytes, in combination with a well established probe of MMP-9
activity (FITC-gelatin). This was coupled with a photothrombotic
model of capillary occlusion to induce ischemia during imaging,
and then rapidly track its pathological consequence. These
studies revealed extensive overlap between the somata of capillary
pericytes, FITC-gelatin cleavage and leakage of blood plasma.
These findings point to pericytes as a trigger for rapid MMP-9
activation, likely through induction of existing pools of MMP-
9 or rapid MMP-9 expression. However, the prior studies did
not delineate the upstream signals involved in pericyte-associated
MMP-9 activation.

Nitric oxide (NO) is a diffusible signaling molecule integral
for regulation and maintenance of vascular homeostasis (Bredt
et al., 1990; Alderton et al., 2001). Nitric oxide is produced
through the oxidation of L-arginine by three isoforms of nitric
oxide synthase (NOS) which include neuronal NOS (nNOS),
endothelial NOS (eNOS), and inducible NOS (iNOS). Two
isoforms, nNOS and eNOS, are considered constitutively active in
resting cells and also calcium dependent, while iNOS is activated
through stimulation by pro-inflammatory cytokines and is
calcium independent. Nitric oxide contributes to rapid post-
translational modifications, including S-nitrosylation, tyrosine
nitration, and S-glutathionylation, which can result in activation
of a wide variety of proteins (Martínez-Ruiz et al., 2011;
Bradley and Steinert, 2015). S-nitrosylation is the process by
which NO reacts with cysteine thiol residues on proteins
to form an S-nitrosylated derivative of the protein. Matrix
metalloproteinases (MMPs) are a target for S-nitrosylation
during pathological conditions involving rapid increases in NO
bioavailability through activation of NOS. S-nitrosylation of
MMP-9 has been shown to play a role in neuronal cell death
(Gu et al., 2002), and may therefore also be involved in the
rapid induction of MMP-9 by pericytes during microvascular
ischemia. The purpose of this study was to determine if
NOS inhibition is sufficient to reduce MMP-9 activation and
vascular leakage associated with pericytes during capillary
ischemia in vivo.

RESULTS

Photothrombotically Induced Capillary
Ischemia and FITC-Gelatin Imaging
in vivo
We previously established a method to induce capillary
ischemia in vivo during two-photon imaging, by using focal
photothrombotic approach to occlude small regions of capillary
bed in the cerebral cortex (Figure 1A; Underly and Shih,
2017). In this model, capillary ischemia results in cessation of
flow in a population of capillaries (∼10–12 capillary segments)
that are collectively contacted by ∼3–5 capillary pericytes.
These ischemic capillary segments experience rapid peri-vascular
activation of MMP-9, followed by blood plasma leakage. The
sites of MMP-9 activation and leakage appear focal, and occur
with twofold to threefold greater likelihood at capillary regions
occupied by pericyte somata (Underly et al., 2017). Pericyte
soma location was ascertained by using a mouse line in which
pericytes were fluorescently labeled (PDGFRβ-tdTomato). These
mice were intravenously injected with a 70 kDa Texas red-
dextran dye to visualize the microvasculature (Figures 1B–D).
The mice were further intracortically injected with a small
volume of MMP-2/9 sensitive probe, FITC-gelatin, at the time
of cranial window implantation. Altogether, this preparation
enabled concurrent imaging of capillary pericyte location, MMP-
2/9 activity, microvascular structure, and BBB breakdown with
high spatiotemporal resolution in vivo. In conjunction with
the photothrombotic model, which allows imaging immediately
post-occlusion, very early pathological events associated with
ischemia could be observed.

Plasma Leakage Occurs Predominately
at Pericyte Somata While FITC-Gelatin
Cleavage Occurs at All Leakage Sites
We first sought to reproduce results observed previously
(Underly et al., 2017). We tracked the regions of capillary
ischemia before photothrombosis, and every 15 min after photo-
thrombosis for a period of 60 min (Figure 1B). As ischemia
progressed, heterogeneous plasma leakage was observed, which
manifested as bright fluorescent foci at the site of leakage onset,
surrounded by a diffuse border of fluorescence. Since multiple
time-points were imaged, we could identify the original location
of leakage, even if the leaked dye diffused away in later time-
points. Leakage sites occurred only following complete cessation
of flow in the associated capillary segment (Figure 1C). We
counted the number of leakage sites at locations containing
pericyte somata and those devoid of pericyte somata. Consistent
with our prior study, leakage sites occurred with significantly
greater frequency (twofold) at pericyte somata compared to
regions lacking somata (Figure 1D). All leakage sites contained
localized increases in FITC-gelatin fluorescence, irrespective of
pericyte location (Figure 1E). At very early time-points following
photothrombosis, FITC-gelatin fluorescence could be seen prior
to vascular leakage (Figure 1E, FITC-gelatin, 2nd row). In many
cases, clear spatial overlap could be seen between this early
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FIGURE 1 | Rapid MMP-9 activation and localized capillary leakage occurs preferentially at pericyte somata. (A) Left, Schematic of experimental approach. In vivo
two-photon imaging is used to visualize multiple structures/processes: PDFGRβ-tdTomato mice for visualization of pericytes, intravenous Texas red-dextran dye for
capillary structure and BBB leakage, FITC-gelatin for MMP-9 activity. A Ti:Sapphire scanned laser was used for imaging, while a fixed green continuous wave laser
was used for photothrombotic occlusion of capillaries. Right, area of tissue labeled by intracortical FITC-gelatin pressure injection (with or without L-NIL).
(B) Experimental timeline for surgical procedures and imaging. (C) Example of in vivo imaging data, with pericytes and/or i.v. dye visible in upper row, and
FITC-gelatin fluorescence increase due to its cleavage by active MMP-2/9 in the bottom row. The locations of pericyte somata are marked with a circle. (D) Number
of focal BBB leakage events occurring at pericyte soma or in non-soma regions. Leakage sites per hour per 0.007 mm3: 3.125 ± 0.398 (pericyte soma),
1.625 ± 0.183 (no pericyte soma). Paired t-test: t(7) = 5.612, ***p = 0.0008, N = 8 mice (one region imaged per mouse) for each treatment group. Data is presented
as mean ± S.E.M. (E) Proportion of leakage sites that are positive for FITC-gelatin cleavage. Each bar shows FITC-gelatin positive leakage sites over total number of
leakage sites observed. (F) Example of marked co-localization between pericyte soma and early FITC-gelatin activation.

FITC-gelatin accumulation and the tdTomato-positive pericyte
soma, suggesting that the pericytes themselves might be a
source of active MMP-9 (Figure 1F). Critically, our past work
also showed that FITC-gelatin cleavage at pericyte somata was
dependent on MMP-9, rather than MMP-2 using isoform specific
inhibitors (Underly et al., 2017). We therefore refer to FITC-
gelatin cleavage also as MMP9 activation in this context.

Pericyte Leakage Is Attenuated With a
Concentration of L-NIL That Inhibits
eNOS/nNOS, but Not iNOS Alone
To determine if NOS activity could be involved in the
observed rapid activation of MMP-9, we intra-cortically
injected the moderately selective iNOS inhibitor, L-N6-(1-
Iminoethyl)lysine (L-NIL), together with FITC-gelatin 30 min

prior to photothrombosis. Two doses of L-NIL were tested: A
lower dose expected to inhibit primarily iNOS (3.8 µM) and a
higher dose (19 µM) expected to begin inhibiting constitutive
forms, nNOS and eNOS as well. The low-dose of 3.8 µM
affected neither the occurrence of vascular leakage nor MMP-9
activation (Figures 2A,B,D,E). However, the higher dose (19
µM) significantly reduced leakage events and MMP-9 activation
occurring at pericyte soma locations (Figures 2C–E). High-dose
L-NIL had no effect on vascular leakage at locations lacking
pericyte somata. FITC-gelatin cleavage was also reduced at
leakage sites lacking pericyte somata, albeit to a lesser extent
than at pericyte soma locations. Collectively, these data suggests
that constitutive NOS forms (probably eNOS, for which
L-NIL is slightly more selective) may be contributing to the
overproduction of NO and rapid activation of MMP-9 at pericyte
somata during capillary ischemia.
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FIGURE 2 | Dose-dependent reduction of pericyte-associated BBB leakage and MMP-9 activity with intracortical L-NIL injection. (A) Representative example of
vehicle injected control mouse (same example as in panel of Figure 1F). (B,C) Representative example of mice receiving low-dose (3.8 µM) and high-dose (19 µM)
L-NIL. (D) Effect of L-NIL on number of BBB leakage occurring at pericyte soma and non-soma locations. Pericyte soma leakage sites per hour per 0.007 mm3:
3.125 ± 0.398 (vehicle), 2.750 ± 0.453 (3.8 µM L-NIL), 1.125 ± 0.227 (19 µM L-NIL); No pericyte soma leakage sites per hour per 0.007 mm3: 1.625 ± 0.183
(vehicle), 1.750 ± 0.250 (3.8 µM L-NIL), 1.750 ± 0.164 (19 µM L-NIL). One-way ANOVA with Bonferroni post hoc test; F (5, 42) = 6.373, *p = 0.045 overall,
***p = 0.0004 (vehicle soma vs. 19 µM L-NIL soma), **p = 0.0052 (3.8 µM L-NIL soma vs. 19 µM L-NIL soma); N = 8 mice (one region imaged per mouse) for each
treatment group. Data is presented as mean ± S.E.M. (E) Proportion of leakage sites with FITC-gelatin cleavage at pericyte soma and non-soma locations with and
without L-NIL. Each bar shows FITC-gelatin positive leakage sites over total number of leakage sites observed.
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NOS Activity and Protein Synthesis
Additively Inhibit Vascular Leakage and
FITC-Gelatin Cleavage
We further asked whether rapid MMP-9 activation was entirely a
post-translational process or also involved new protein synthesis.
To test this, we administered the protein synthesis inhibitor,
anisomycin (75 mg/kg, i.p.), either alone or in combination
with intra-cortical injection of 19 µM L-NIL (Figure 3).
Anisomycin is known the pass the BBB following i.p. injection,
and has been shown to inhibit brain protein synthesis by ∼90%
within 10 min after peripheral injection (Flood et al., 1973).
Anisomycin reduced the number of leakage sites at pericyte
somata significantly (Figure 3E), but had no effect on leakage
sites away from pericyte somata (Figure 3F). The combination of
high-dose L-NIL and anisomycin produced an additive reduction
in leakage sites at pericyte somata, nearly eliminating their
occurrence entirely (Figures 3E,F). The combination treatment
had no effect on leakage sites lacking pericyte somata (Figure 3F).

We further compared the effects of anisomycin, alone or in
combination with L-NIL on MMP-9 activity at leakage locations
(Figure 4). Anisomycin reduced the percentage of FITC-gelatin
positive leakage sites at pericyte somata by 25% (Figure 4E) and
the percentage of non-pericyte leakage sites by 29% (Figure 4F).
When the inhibitors were administered together, pericyte-specific
leakage sites that were FITC-gelatin positive were completely
eliminated (Figure 4E) and FITC-gelatin positive non-pericyte
leakage sites were reduced by 87% (Figure 4F). Collectively, these
results suggest that post-translation modification of MMPs, via
NO, contributes more than protein synthesis in the activation
of MMP 2/9 during capillary ischemia. However, both post-
translational modification and new expression of MMP-9 may be
involved in rapid activation of MMP-9 activity.

DISCUSSION

We have previously shown that pericytes are involved in very
early BBB damage during ischemia, and that the vascular damage
near their somata corresponds to rapid increases MMP-9 activity
(Underly et al., 2017). The speed of this activation implied a
post-translational modification of existing pro-MMP-9 pools. We
extend these prior studies by examining NO production as a
potential upstream signal that leads to this MMP-9 activation.
Specifically, we show that pharmacological inhibition of NOS
with L-NIL significantly reduces the number of sites of BBB
breakdown. A low-dose that inhibits iNOS selectively had no
effect, while higher dose that begins to inhibit both nNOS and
eNOS as well, blocked both leakage and MMP-9 activity. We
also find that MMP-9 activation can be further ameliorated
with an inhibitor of protein synthesis, although NO-dependent
mechanisms seemed to be the predominant pathway. The
combination of both L-NIL and anisomycin led to an additive
effect and led to near complete blockade of MMP-9 activity and
leakage at pericyte somata, suggesting both mechanisms are at
play. From this evidence we speculate that a post-translational
modification of MMP-9 by NO (Gu et al., 2002) may be one of the

key mechanisms of pericyte-associated BBB breakdown during
ischemia. It also suggests that some of the salutary actions of
NO inhibition in experimental stroke studies may, in part, be
through reduction of pericyte-associated MMP9 activation and
BBB disruption (Willmot et al., 2005).

Our findings add further weight to the notion of pericyte
sensitivity in vascular pathology by showing that NO can act
on pericyte MMP-9 activation very rapidly after ischemic onset.
This is complementary to prior work showing that pericytes are
exquisitely sensitive to nitrosative/oxidative stress during brain
ischemia and (Yemisci et al., 2009). Yemisci et al. (2009) used
NO scavengers to reduce aberrant pericyte contraction that could
lead to impaired microcirculatory perfusion. More recently, it
was shown that amyloid beta induces oxidase stress in pericytes in
part through activation of NADPH oxidase 4 (Nox4) in pericytes,
leading to their aberrant contraction (Nortley et al., 2019). In the
context of amyloid beta toxicity, the NOS blocker L-NNA did not
alter pericyte contraction, suggesting against a role for reactive
nitrogen species in pericyte contraction and death. However,
this may be different in the more rapid and severe pathology
of ischemia, where reactive nitrogen species are likely to be
produced. Indeed, a recent study by Nishimura et al. (2016)
showed marked increase of Nox4 expression in brain pericytes
after middle cerebral artery occlusion stroke, which corresponded
with BBB breakdown. In parallel studies using pericyte culture,
they linked Nox4 over-expression to upregulation of MMP9 gene
expression through increased phosphorylation of NFκB. These
gene expression changes were seen over longer durations of
time after stroke (24–48 h) than the very acute stages studied
here. However, they delineate a potential pathway through which
anisomycin could block rapid, protein synthesis-dependent
MMP9 activity in pericytes during ischemia.

While the source of NO is not entirely clear, it could
conceivably be produced by the endothelium, which expresses
RNA for eNOS (Nos1) at high levels, but also iNOS (Nos2)
at lower levels in the normal brain microvasculature
(Vanlandewijck et al., 2018). The proximate localization of
the endothelium and pericytes makes for effective NO-MMP-9
interaction. Over-abundance of NO could also be derived
from locally affected neurons that express nNOS. Though less
well understood, mitochondrial NOS (mtNOS) may also be
a potential source of NO from pericytes. Curiously, pericytes
are more densely packed with mitochondria, compared to
other neurovascular cell types, suggesting that mtNOS may
be more prevalent in pericytes (Mathiisen et al., 2010). We
further speculate that pericytes are a source of MMP-9 that
can be rapidly expressed, or deployed in existing pro-enzyme
pools. This is as opposed to infiltration of neutrophils, which
have been described as a major source of MMP-9 in cerebral
ischemia (reviewed by Turner and Sharp, 2016). Evidence for
this comes from observation of clear co-localization in shape
between tdTomato-positive pericytes and early FITC-gelatin
activation. Also, the initiation of MMP-9 activity occurs in
capillaries lacking blood flow, which could not support the
recruitment of neutrophils. Other studies have also suggested
that pericytes are a source of MMP-9 in vivo (Bell et al., 2012).
However, further genetic studies to delete MMP-9 specifically
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FIGURE 3 | Additive effect of L-NIL and anisomycin on pericyte-associated BBB leakage. (A–D) Representative examples of pericyte-associated BBB leakage in the
vehicle group (A), and with administration of high-dose L-NIL (B), anisomycin (C), and L-NIL + anisomycin (D). (E) Effect of inhibitors on incidence of BBB leakage at
pericyte somata. Pericyte soma leakage sites per hour per 0.007 mm3: 3.125 ± 0.398 (veh), 1.125 ± 0.227 (19 µM L-NIL), 1.000 ± 0.327 (anisomycin),
0.250 ± 0.164 (19 µM L-NIL + anisomycin). One-way ANOVA with Bonferroni post hoc test; F (3, 28) = 17.58, ***p < 0.0001 overall, ***p = 0.0003 (vehicle vs. 19
µM L-NIL), ***p = 0.001 (vehicle vs. anisomycin), ****p < 0.0001 (vehicle vs. L-NIL + anisomycin); N = 8 mice (one region imaged per mouse) for each treatment
group. Data is presented as mean ± S.E.M. (F) Effect of inhibitors on incidence of BBB leakage at non-soma locations. Non-soma leakage sites per hour per
0.007 mm3: 1.625 ± 0.183 (veh), 1.750 ± 0.164 (19 µM L-NIL), 2.125 ± 0.398 (anisomycin), 1.000 ± 0.267 (19 µM L-NIL + anisomycin). One-way ANOVA with
Bonferroni post hoc test; F (3, 28) = 3.015, p = 0.05 overall, non-significant; N = 8 mice (one region imaged per mouse) for each treatment group. Data is presented
as mean ± SEM.

in pericytes at adulthood will be required to fully assess this
possibility. Additionally, future work is also necessary to prove
that the direct S-nitrosylation of MMP-9 occurs in pericytes.
A further limitation is that anisomycin does not solely block the
synthesis of MMP9. It is possible that inhibition of other MMP9
regulating proteins was involved in the observed reduction
of MMP9 activity.

In summary, our results provide a basis for deeper mechanistic
studies on pericytes as inducers of BBB disruption in stroke,
and potentially other cerebrovascular diseases were MMP-9
has been implicated in microvascular pathology (Weekman

and Wilcock, 2015). Pericytes are in direct apposition to the
capillary endothelium making them a particularly ill-placed
source of unchecked proteolytic activity. If they are indeed
the source of rapid MMP-9 activation during ischemia, their
pathological contributions to BBB damage may be significant,
widespread, and readily overlooked by other biochemical
approaches lacking spatiotemporal resolution to resolve the
process. While aberrant NO and MMP-9 are well-established
moderators of BBB damage during acute ischemia, our
work has added pericytes as a site of convergence for
these mechanisms.
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FIGURE 4 | Additive effect of L-NIL and anisomycin on MMP-9 activity at both pericyte soma and non-soma locations. (A–D) Representative examples of
pericyte-associated FITC-gelatin activation in the vehicle group (A), and with administration of high-dose L-NIL (B), anisomycin (C), and L-NIL + anisomycin (D).
(E,F) Effect of inhibitors on proportion of leakage sites with FITC-gelatin activity at pericyte soma or non-soma locations. Each bar shows FITC-gelatin positive
leakage sites over total number of leakage sites observed.

METHODS

Mice
Tdtomato reporter mice (Ai14) on a C57/Bl6 background were
purchased from Jackson Labs (Jax #: 007914) (Madisen et al.,
2010). These mice were crossed with PDGFRβ-Cre mice (Cuttler
et al., 2011) to achieve transgene expression in pericytes. Mice
were maintained in standard cages on a 12 h light-dark cycle, and
housed five or less per cage. Both male and female mice were used,
and all mice used were between 2 and 5 months of age.

Surgery
Skull-removed, dura-intact craniotomies (Mostany and
Portera-Cailliau, 2008) were generated over the sensorimotor

cortex to achieve optical access for two-photon imaging.
Intracortical injections of FITC-gelatin and other drugs
were performed (see below) when the craniotomies were
generated and animals were imaged immediately after sealing
the craniotomy with a coverslip. Anesthesia was induced
with isoflurane (Patterson Veterinary) at 3% mean alveolar
concentration in 100% oxygen and maintained at 1–2% during
surgery. Body temperature was maintained at 37◦C with a
feedback-regulated heat pad. All animals were administered
buprenorphine for analgesia prior to surgery at a concentration
of 0.025 mg/kg.

In vivo Two-Photon Microscopy
Two-photon imaging was performed with a Sutter Moveable
Objective Microscope and a Coherent Ultra II Ti:Sapphire
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laser source. A wavelength of 800 nm was used for excitation
of FITC-gelatin and Texas red-dextran. Excitation was tuned
to 975 nm to successively capture tdTomato fluorescence at
the start of each experiment. Green and red emission was
simultaneously collected using ET525/70m and ET605/70m
filter sets, respectively (Chroma Corp.). Throughout the
duration of imaging, mice were maintained under light
isoflurane (0.75%) supplied in medical air (20–22% oxygen
and 78% nitrogen, moisturized by bubbling through
water; AirGas Inc.). Pulse oximetry (MouseOx; Starr Life
Sciences) was used to monitor blood oxygen saturation
and heart rate to ensure that cardiovascular function was
normal during imaging.

Procedures for vascular imaging and analysis have been
described previously (Shih et al., 2012). Briefly, the blood
plasma was labeled by infraorbital vein injection of 0.025 mL
of Texas red-dextran (70 kDa, D-1830; Life Technologies)
prepared at a concentration of 5% (w/v) in sterile saline.
A 4-X, 0.13 NA air objective lens (UPLFLN 4X; Olympus)
was used to generate vascular maps of the entire window
for navigational purposes. High-resolution imaging was
performed using a water immersion 20-X, 1.0 NA objective
lens (XLUMPLFLN 20XW; Olympus). Image stacks for data
analysis consisted of 200 µm (x) × 200 µm (y) × 150 µm
(z) volumes of cortex (sensory region) starting from the pial
surface. FITC-gelatin was homogeneously seen throughout this
volume of tissue.

Photothrombotic Occlusions
Restricted photothrombotic capillary occlusions have been
previous described (Underly and Shih, 2017). Briefly, a focused
green laser (1 mW, 20 µm diameter at focal plane) was applied
directly to the superficial capillary bed (avoiding pericyte somata)
for 25 s following an infraorbital injection of Rose Bengal
(0.013 mg/kg). This led to the diffuse irradiation of a population
of capillaries surrounding the focal point of the laser.

Quantification of Capillary Leakage Sites
Image stacks collected in vivo using two-photon microscopy
were rendered in 3-D using Imaris 7.7 Software (Bitplane).
Lateral sampling was 0.41 µm per pixel and axial sampling
was 1 µm per pixel. Vascular leakage was quantified from 3-
D renderings of the Texas red-dextran labeled channel, and
also confirmed in 2-dimensional images by scrolling through
z-stacks with Fiji/ImageJ software. This method of quantification
was previous described (Underly et al., 2017; Underly and Shih,
2017). Briefly, leakage events were defined as the localized
permeation of Texas red-dextran from the intravascular space
into the surrounding parenchyma. The sites of leakage were
separated into pericyte soma-specific and non-pericyte soma
leakage sites based on the localization of the pericyte soma
to the central portion of the intravascular dye extravasation.
These leakage sites were counted at each time point to give a
cumulative total of the number of sites during the 1 h duration
of the experiment.

In vivo Gelatin Zymography
A FITC-gelatin probe (Bozdagi et al., 2007) (DQ-Gelatin,
D12054; Life Technologies), diluted to a concentration of
1 mg/mL in sterile PBS, was pressure injected into the cortex
using a pulled glass pipette (10–20 µm tip diameter). The
pipette tip was lowered 250 µm into the cortex following
the removal of a circular portion of skull (∼2 mm) over the
somatosensory area. A small incision was made in the dura
mater using a 26-gauge syringe needle tip to facilitate entry of
the glass pipette. FITC-gelatin was injected over 5 min using
a Picospritzer (10–20 ms pulses, 5–15 psi, 0.5–2 Hz pulse
frequency) until 200 nL was delivered. The injection pipette was
then left in place for 10 min before removal from the cortex. The
craniotomy was then overlaid with 1.5% agarose, as described
previously (Shih et al., 2012), followed by a circular coverslip.
The coverslip was fixed in position with dental cement prior to
two-photon imaging. Quantification of “MMP-positive” cells was
previously described (Underly et al., 2017). Cells that co-localized
with pericyte somata (tdTomato) were counted as FITC-gelatin
positive pericytes. Areas of heightened FITC-fluorescence that
did not co-localize with pericyte somata, but exhibited some
cellular morphology, were counted as FITC-gelatin positive non-
pericytes.

Nitric Oxide Synthase Inhibition
L-NIL was prepared into stock solutions by dissolving 1 mg/mL
L-NIL in sterile PBS and then diluting to working concentrations
(3.8, 19 µM) in PBS, together with the FITC-gelatin, which was
then injected intracortically.

Protein Synthesis Inhibition
Anisomycin was administered intraperitoneally at a
concentration of 75 mg per kg of mouse body weight.
Anisomycin was prepared by adding the minimum amount
of 1 M HCL required to bring the drug into solution. Sodium
hydroxide (1 M) was then added to bring the solution to
a neutral pH. Saline was then added to bring the solution
to the appropriate concentration (Wanisch and Wotjak,
2008). Intraperitoneal administration of anisomycin was done
30 min prior to taking the pre-occlusion imaging stack for the
experiments. Capillary occlusions were made ∼35 min following
anisomycin administration.

Statistics
All statistical analyses were performing using Graphpad
PRISM 9 software. Statistical details are provided in the
legend of each figure.
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