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A B S T R A C T   

Acute respiratory distress syndrome (ARDS) is a form of oxygenation failure primarily characterized by rapid 
inflammation resulting from a direct pulmonary or indirect systemic insult. ARDS has been a major cause of 
death in the recent COVID-19 outbreak wherein asymptomatic respiratory tract infection progresses to ARDS 
from pneumonia have emphasized the need for a reliable therapy for the disease. The disease has a high mortality 
rate of approximately 30–50%. Despite the high mortality rate, a dearth of effective pharmacotherapy exists that 
demands extensive research in this area. The complex ARDS pathophysiology which remains to be understood 
completely and the multifactorial etiology of the disease has led to the poor diagnosis, impeded drug-delivery to 
the deeper pulmonary tissues, and delayed treatment of the ARDS patients. Besides, critically ill patients are 
unable to tolerate the off-target side effects. The vast domain of nanobiotechnology presents several drug de
livery systems offering numerous benefits such as targeted delivery, prolonged drug release, and uniform drug- 
distribution. The present review presents a brief insight into the ARDS pathophysiology and summarizes con
ventional pharmacotherapies available to date. Furthermore, the review provides an updated report of major 
developments in the nanomedicinal approaches for the treatment of ARDS. We also discuss different nano- 
formulations studied extensively in the ARDS preclinical models along with underlining the advantages as 
well as challenges that need to be addressed in the future.   

1. Introduction 

Acute respiratory distress syndrome (ARDS), first recognized in 
1967, is a clinical syndrome linked with oxygenation failure due to 
pulmonary or systemic insult [1,2]. It is the most common reason for 
respiratory failure in critically ill patients, commonly characterized by 
sepsis, alveolar damage (both epithelial and endothelial), high perme
ability, noncardiogenic pulmonary edema, and hypoxemia [3]. Ac
cording to Berlin’s definition, the disease is an acute form of diffused 
lung injury prevalent in patients with worsening respiratory symptoms 
that cannot be entirely explained by heart function or fluid accumula
tion with pulmonary edema and onset of hypoxemia [4,5]. The mortality 
rate ranges from 35 to 50%, depending on the severity of ARDS, and the 

quality of life also remains very poor in the survivors [6]. Disease 
management strategies may primarily include respiratory support 
through mechanical ventilation, nutritional supplementation, and 
limited fluid intake. Unfortunately, no effective pharmacological treat
ments or approved medicine for ARDS exist [7]. 

The recent pandemic caused by a novel coronavirus, severe acute 
respiratory syndrome coronavirus (SARS-CoV-2), known as Coronavirus 
disease -2019 (COVID-19), is a fatal condition that has led to millions of 
deaths worldwide, mainly in patients suffering from other medical 
conditions (referred as comorbidity) [8]. ARDS is one of the primary 
manifestations and the foremost cause of death in COVID-19 patients 
[9,10]. Previously, ARDS has caused high mortality during the wide
spread SARS infections and the Spanish influenza pandemic [11,12]. 
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The outbreak of COVID-19, wherein asymptomatic respiratory tract 
infection progresses to severe pneumonia to ARDS, has once again 
emphasized the urgent requirement for a reliable therapy for the 
disease. 

Presently, the mortality rate and severity of ARDS is high and we do 
not have any reliable medical therapy available for the disease [13]. The 
current ARDS management strategies are merely limited to supportive 
care like lung-protective ventilation, extracorporeal membrane 
oxygenation, conservative fluid management, etc. [221,222]. The 
diagnosis of this syndrome relies on the appearance of clinical symptoms 
that could lead to delayed identification or many a time an incorrect 
evaluation of the actual clinical burden [14]. The extent of lung injury 
cannot be measured directly, and there is a lack of specific diagnostic 
tools or biomarkers for ARDS. The development of several symptoms is 
required to ascertain the extent of the disease’s severity which ulti
mately results in delayed therapeutic support and patient care. Despite 
numerous randomized controlled trials for ARDS, a handful of successful 
outcomes reflect the futility of the interventions [15]. The insufficiency 
of pharmacotherapies could be partially attributed to the impeded drug- 
delivery to the damaged alveoli, insufficient accumulation of drugs in 
the lungs, low circulation half-life, and inability to cross physiological 
barriers (mucus and alveolar fluid) for systemic delivery [16–18]. 

In the past few decades, the ability of nano-based drug candidates to 
deliver bioactive compounds selectively to the pulmonary tissues in 
recommended concentrations and with considerable safety has moti
vated the scientific community [16,19–21]. The application of nano- 
drug-delivery systems holds the potential to improve the available 
clinical intervention strategies of ARDS by mechanisms, such as facili
tating the stimulus-induced biodegradation of drugs in the body, 
allowing nano-encapsulated drugs to escape the endocytic degradation 
pathway, ensuring sustained drug delivery, and promoting the delivery 
of active ingredients to the specific targets [22,23]. In this review, we 
have provided a brief introduction of the disease, its pathophysiology, 
and available pharmacotherapies along with discussing the challenges 
associated with it. Subsequently, we highlighted the significance of 
nanotherapeutics as an effective, potent, and next-generation strategy 
for the treatment of ARDS. 

2. The pathophysiology of ARDS 

ARDS pathophysiology is a complex phenomenon mainly charac
terized by the fluid accumulation in the alveoli and injury in the lungs as 
a result of pathogenic or physiological insult and subsequent immune 
response [24]. Presumably, disruption of the alveolar barrier is 
considered as the major cause of lung injury and acute inflammation 
experienced in ARDS [26]. Under normal conditions, various osmotic 
and hydrostatic forces counterbalance each other and maintain the tight 
junctions between alveolar epithelium allowing a very small amount of 
fluid to be carried by the pulmonary tissues into the interstitium [27]. 
Besides, the selectivity to fluids and solutes is established by the coor
dination of several endothelial cells, adherens, and tight junctions. With 
the help of Na+/K+-ATPase pumps and Na+ channels, the alveolar 
epithelium maintains the fluid concentrations in the air space [28]. 
Additionally, flat alveolar type I (AT-I) and cuboidal type II (AT-II) cells 
of the alveolar epithelium helps in the exchange of carbon dioxide (CO2) 
with oxygen across the alveolar-capillary units. These epithelial cells 
restrict the small-sized solutes from entering the epithelium, thereby 
allowing CO2 and oxygen to pass through it readily [28,29]. 

ARDS pathogenesis can be classified into three broad phases: 
exudative, proliferative, and fibrotic [29]. The exudative phase of ARDS, 
in particular, is characterized by excessive inflammation with endo
thelial and epithelial permeability and alveolar damage due to fluid 
accumulation in the interstitium [30]. Studies suggest that providing an 
effective intervention in the exudative phase may prevent the onset of 
the later fibrotic phase and increase the chances of a patient’s survival 
[31]. However, the inability to prevent the exudative phase triggers the 

proliferative phase characterized by an amplified inflammatory 
response and activation of procoagulant pathways. The advent of the 
proliferative case may in few cases lead to the restoration of the alveolar 
architecture but in the majority of the cases, this phase is followed by the 
onset of the fibrotic phase, wherein significant fibrosis of the lungs re
sults in the decreased gas exchange, reduction of pulmonary compli
ance, and increased hospital mortality [32,33]. 

An injury to the lung either caused due to extrinsic factors like 
infection, trauma, or some intrinsic factors, leads to the altered fluid 
balance causing an accumulation of fluids in the interstitial spaces giv
ing rise to edema [34]. Concurrently, the trigger of a range of inflam
matory chain reactions in the body results in the activated inflammatory 
response that aids in fluid reabsorption and pathogen clearance to some 
extent [35–37]. However, excessive inflammation may damage alveolar 
tissues by altering the composition of endothelial and epithelial cells, 
eosinophilic depositions, cell hyperplasia, and interstitial fibrosis. 
Excessive immunological response leading to the release of chemokines, 
cytokines, leucocyte proteases, neutrophils, and reactive oxygen species 
causes alveolar injury [38,39]. The damage to alveolar cells contributes 
to the enhanced endothelial and epithelial permeability across the lungs 
leading to the accumulation of protein-rich alveolar fluid [34,40]. 
Moreover, dysregulated inflammation of vascular tissues often activates 
innate immune pathways which cause acute lung injury by neutrophils 
mediated disruption of junction proteins that may progress to a greater 
degree of hypoxemia, causing ARDS [41,42]. 

In healthy lungs, VE-cadherin and E-cadherin proteins are required 
to maintain the endothelial barrier and lung epithelium integrity in lung 
microvessels respectively [43]. The alveolar injury leads to increased 
concentrations of vascular endothelial growth factor, thrombin, tumor 
necrosis factor-α (TNF-α), and leucocyte signals which leads to the 
destabilization of the vascular endothelial cadherin bonds. This dysre
gulated inflammatory response and increased epithelial and endothelial 
permeability result in an increased accumulation of intra-alveolar fluid 
and impaired oxygenation. Furthermore, the recruitment of neutrophils, 
macrophages, and effector T-cells inside the alveoli propagates the 
injury to other parts of the lungs [44–46]. In Fig. 1, a diagrammatic 
representation of all the major events and changes occurring in the 
alveoli that leads to the onset of ARDS has been shown. 

3. Pharmacotherapies for ARDS: current status 

The majority of pharmacotherapies studied so far in the prevention 
and treatment of ARDS are merely supportive and do not ensure com
plete relief. It includes corticosteroids, aspirin, nitric oxide (NO), β-2- 
agonists, statins, vitamin C, and carbon monoxide (CO) [47,48]. The 
impairment of alveolar fluid clearance commonly observed in ARDS is 
addressed through fluid management strategies [49–51]. Another 
promising therapy for ARDS relies on steroids like dexamethasone 
which could suppress pulmonary inflammation in ARDS by inhibiting 
the production of proinflammatory cytokines [52,53]. Similarly, uli
nastatin, an anti-inflammatory agent is considered another reliable 
therapy for ARDS [54]. The antioxidant property of Vitamin C has also 
been found to decrease mortality and delay the development of ARDS 
[55]. Anticoagulants like heparin are also considered as an effective 
therapy for ARDS. It helps in the restoration of the impaired coagulation 
system [56,57]. Excessive inflammatory responses and tissue damage 
can be prevented with the help of an active process referred to as the 
resolution of inflammation. Molecules such as lipoxins, protectins, and 
resolvins are known to possess pro-resolution effects [58–61]. These 
pro-resolving mediators are significantly considered for managing pul
monary diseases, including ARDS and COVID-19 [62]. 

Optimal delivery of drugs to the lungs in the form of aerosols inhaled 
through the airway is an effective strategy to deliver drugs in the distal 
lung regions minimizing acute oxidative lung damage and side-effects. 
Therefore, several inhalation therapies have also been successfully 
tested, such as inhalation of CO and NO in low doses by patients with 
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Fig. 1. A comparative illustration of physiological changes in the alveoli under healthy and diseased ARDS conditions has been shown: The alveolar epithelium 
consists of a layer of Alveolar type I cells (ATI) cells that allow gas exchange to occur, and Alveolar type II cells (ATII) cells are present to produce surfactant enabling 
lung expansion with low surface tension. Both ATI and ATII cells can be used to transport fluid and ions from the alveolus. The epithelial cells of alveoli are 
interconnected with tight junctions, which act as a barrier and controls fluid movement. Under normal conditions, water and few solutes do not cross the epithelial 
layer; thus, the alveolar lumen is free of fluid. Under diseased conditions, fluid accumulates in the alveolar lumen. 

Table 1 
List of common therapeutic agents and their mechanisms of action in ARDS.  

Agent Molecular target Mechanism of action Model Reference 

17-AAG HSP90 Attenuates LPS-induced inflammation in lungs by NF-κβ mediated 
inflammatory response 

HLMVECs [184] 

TPCA-1 IKK-2 Inhibit the production of TNF-α, IL-6, and IL-8 in LPS treated monocytes Mice [13] 
Oleic acid Elastases Inhibit superoxide anion and elastases in activated neutrophils Mice [171] 
Chelerythrine NF-κB Attenuation of inflammation RAW264.7 

cells; Mice 
[185] 

Oridonin Anti-inflammatory Weakens release of pro-inflammatory cytokines by inhibiting expression of 
TLR4/MyD88 and phosphorylation of NF-κB p65 in lung tissues 

RAW264.7 
cells; Mice 

[186] 

Glucosteroids Anti-inflammatory, anti-fibrotic Improves organ function score, lung injury score, and oxygenation Human [187] 
Dilmapimod p38MAPK Reduces inflammation Human [188] 
GSK1995057 TNF receptor-1 Attenuated inflammation due to selective inhibition of TNFR1 signaling 

inhibiting cytokine and neutrophil adhesion molecule expression 
Human [189] 

Solnatide (AP301) Na+ channels (Type II cells) Enhances alveolar fluid clearance by activating epithelial sodium channels Human [190] 
Citrulline – Increase nitric oxide synthase levels Human [191] 
Angiotensin II Angiotensin II Improves oxygenation, while reducing cellular infiltrate and fibrosis Rats [192–194] 
Anticoagulants – Decreases coagulation and inflammation without altering systemic 

coagulation 
Rats [56,57,195] 

ALT-836 Tissue factor Anti-TF antibody Human [196] 
Heparin Tissue factor, plasminogen activator 

inhibitor-1, plasminogen 
Anticoagulant Rats [57] 

Streptokinase Thrombolytic agent Decreases PaCO2; Improves oxygenation and lung mechanics Human [197] 
Elafin variant (GC/QQ- 

elafin) 
Elafin Increases protease resistance, Improved anti-inflammatory activity for 

pulmonary inflammation 
Mice [198] 

Imatinib Bronchoalveolar lavage protein, TNF-a Attenuates inflammation and vascular leakage Mice [199] 
Bevacizumab Vascular endothelial growth factor Suppresses vascular endothelial growth factor-induced high permeability 

pulmonary edema 
Mice [200] 

Pirfenidone NLRP3 Ameliorates lipopolysaccharide-induced pulmonary inflammation and 
fibrosis 

J774A.1, Mice [201] 

Tetracycline Metalloproteinases, Elastase Blocks multiple proteases and cytokines Pigs [202,203] 
Dihydromyricetin NLRP3 Alleviates Sepsis-Induced Acute Lung Injury Mice [204] 
Lipoxin A4 Fas-ligand/tumor necrosis factor α Inhibit fibroblast proliferation; type II cell wound repair Alveolar type II 

cells 
[205] 

TRPV4 inhibitors TRPV4 Alleviate macrophage activation and ventilator-induced lung injury Mice [206] 
GW328267C Adenosine A2A receptor Improves lung function after acute lung injury Rats [207] 
Haptoglobin Heme‑oxygenase-1 Lower alveolar macrophages Mice [208] 
Melatonin Apocynin NLRP3 Block histone-induced NLRP3 inflammasome activation Mice [209,210] 

Abbreviations: HLMVECs, Human lung microvascular endothelial cells; NLRP3, NLR family pyrin domain containing 3. 
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ARDS. Inhalation of CO is well-tolerated and safe as it shows both 
antioxidant and anti-inflammatory activity [63]. Inhaled NO has also 
been shown to be well tolerated and effective in ARDS patients as it 
helps in the significant improvement of oxygenation [64]. In recent 
years, many studies have reported the potential benefits of these phar
macological agents in ARDS disease models. A summary of these phar
macotherapeutic agents having a promising therapeutic benefit in ARDS 
is presented in Table 1. 

4. Mesenchymal stem cell (MSC) therapies 

Cell-based therapies like bone marrow-derived multipotent mesen
chymal stem cells (MSCs) have broad therapeutic applications in clinical 
conditions like sepsis and organ failures. MSCs are also being considered 
as a novel intravenous therapy for the early treatment of ARDS. The 
results of multiple studies have substantiated a significant reduction of 
lung inflammation and mortality in ARDS without causing much toxicity 
[65–67]. Both preclinical studies and clinical trials have shown MSCs as 
an exceptionally efficacious therapy in acute lung injuries as well as in 
ARDS [65–70]. The reasons lie in the capability of MSCs to differentiate 
into alveolar epithelial/endothelial cells restoring the epithelial 
permeability, reduced inflammation, and repair injured tissues [71–75]. 
Furthermore, human MSCs can restore alveolar epithelial fluid transport 
and normal fluid balance caused due to acute lung injury/ARDS [69]. 
They can be easily extracted from bone marrow, fat, amniotic mem
brane, etc. [73]. These self-renewing cells can differentiate in a multi- 
directional manner and suppress excessive inflammation by inhibiting 
pro-inflammatory factors, such as IL-6, TNF-α, etc. 

MSCs are also known to have antioxidative benefits through their 
property of decoupling oxidative phosphorylation [77]. Studies suggest 
that MSCs promote clearance of fluid accumulated inside alveoli and 
increase the levels of fibroblast growth factor 10 and angiopoietin-1 
[68,75,78] The release of angiopoietin-1 by MSCs restores the perme
ability of both endothelial and epithelial cells [68,75]. Moreover, MSCs 
produce different growth factors, such as, hepatocyte growth factor, 
keratinocyte growth factor, and vascular endothelial growth factor, 
which helps in the regeneration of type II alveolar epithelial cells 

[50,79,80]. Despite commendable advancement in the pace of clinical 
testing, crucial knowledge gaps must be reduced to enhance its thera
peutic potential [71]. 

5. Nanotechnology-based drug delivery systems in ARDS 

Though nanotechnology dates back to the 1950s, nanomedicine is a 
relatively new domain of interdisciplinary science established in the late 
nineties [82,83]. To date, only a handful of nano-modified drugs have 
been approved by the FDA [84]. Nanotechnology has offered several 
drug-delivery vehicles as a biocompatible and biodegradable carrier 
platform for water-insoluble drugs, peptides, etc. [85,86]. These de
livery methods provide solutions to many crucial pharmacological 
challenges, like lower drug uptake, shorter half-life, poor pharmacoki
netics, etc. [16,20,21]. Nanoscale particles possess unique physico
chemical properties that can be used to improve the physical and 
biological properties of drugs in terms of solubility, selectivity, efficacy, 
pharmacokinetics, and toxicity [84,87]. It also helps overcome chal
lenges like stability, bioavailability, and systemic distribution of the 
long-acting nanocarriers [88]. 

Though pulmonary nanomedicine is an under-explored domain, 
several nano-modified drugs have been studied that offer numerous 
advantages in the treatment of both chronic and acute lung diseases 
[89,90]. It presents a promising platform that bestows a plethora of 
drug-delivery vehicles with uniform distribution sustained drug-release 
in plasma and internalization throughout the alveoli [91]. Nanoparticles 
with a size <5 μm have been shown to exhibit higher lung deposition 
and enhance the dissolution of poorly water-soluble medicines [92]. 
Different types of NPs that have been fabricated and studied for pul
monary drug-delivery applications and ARDS have been depicted in 
Fig. 2. Drug-distribution to the deeper pulmonary tissues is a prerequi
site in ARDS due to profound endothelial cell damage. The low resolu
tion, rapid clearance, shorter half-life, and ineffective delivery of drugs 
to the target organs have limited the efficacy of pharmacotherapies. 

In recent years, multiple drug-delivery systems have been developed 
and tested on ARDS experimental models to address the above-described 
limitations. To some extent, researchers have achieved success [89]. For 

Fig. 2. Types of nanotechnology-based drug delivery systems targeting pulmonary tissues and explored especially in the context of ARDS along with their unique 
advantages have been shown. The cross-section of alveolar cells in both healthy and diseased conditions has been shown to indicate the differences that need to be 
considered while designing these nanoparticles. 
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instance, NPs facilitate sustained drug release of specific drugs in the 
systemic circulation, leading to reduced dosage frequency. Similarly, 
NPs decorated with specific ligands help target-specific drug-delivery 
which minimizes the undesirable interactions in the body and reduces 
the amount of drug intake thus, minimizing the side effects [94]. The 
nanoscale particles remain hyperactive affecting inflammatory and 
oxidative stress reactions due to the large surface area per unit mass of 
NPs [95–97]. The NPs-induced aggravated lung inflammation may be 
reflected through the increased oxidative stress and high expression 
levels of pro-inflammatory cytokines [98]. Under hyper-inflammatory 
conditions, NPs can readily cross epithelial and endothelial cell layers 
and gain entry into the blood circulation [99,100]. 

The coupling of nanostructured delivery systems with drugs and 
bioactive molecules allow uniform distribution and internalization of 
drugs in well-aerated alveoli and targeted drug-delivery, along with 
minimizing adverse drug reactions [101,102]. The drug delivery sys
tems can be re-engineered to serve diverse clinical needs. For example, 
chemical modifications of NPs by hydrophilic agents can prolong its 
clearance by reducing its reticuloendothelial system-mediated opsoni
zation [101,103]. Recently, a liposomal formulation of amikacin has 
reached the final stage of clinical trials for bronchiectasis, a condition of 
damaged bronchial tubes [105]. Researchers anticipate this develop
ment as a stepping stone towards the bright future of pulmonary 
nanomedicine [105]. An antibody-coated liposome-mediated approach 
has been shown to target pulmonary endothelium directly; thus, over
coming the pharmacological challenges of ARDS [106]. 

In a study, NPs comprising of simvastatin-loaded nanostructured 
lipid carriers conjugated with anti-ICAM-1 (intercellular adhesion 
molecule-1) provided several encouraging features in the treatment of 
acute lung injuries, such as increased drug uptake, optimistic histolog
ical improvements, and lower pulmonary TNF-α and IL-6 levels [107]. 
The study further showed that antibody-tagged nanocarriers could 
accumulate at very high levels in the lungs and can be effectively used to 
deliver NPs to the diseased endothelium as well [108,109]. The speci
ficity of NPs to target diseased endothelium depends on their shape; for 
example, nanorods are more specific in targeting endothelial cells than 
nanospheres [111]. This correlation between the shape of NPs and the 
specificity of endothelial targeting can be used to target diseased 
endothelium in ARDS. In a study, rod-shaped NPs attached to the RBC 
surface through non-covalent interactions have been shown to increase 
the accumulation of NPs in the lungs [112]. A comprehensive list of such 
novel nanotherapeutics currently studied at the preclinical level in the 
ARDS models has been provided in Table 2. Moreover, few crucial 
classes of NPs explored in the ARDS models have been summarized in 
the following sections. 

5.1. Polymeric NPs 

Polymeric NPs are mainly composed of polymers such as poly (lactic- 
co-glycolic acid) (PLGA), gelatin, alginic acid, and chitosan. In general, 
these polymers are quickly metabolized inside the body and are 
considered safe and biodegradable [113–115]. 

Polymeric NPs are gaining popularity in pulmonary drug delivery 
due to several advantages such as better drug encapsulation capability, 
safeguarding drug moieties from degradation, sustained drug release, 
and prolonged shelf life [116–118]. Nanoparticles made up of biode
gradable polymers are biocompatible and suitable for aerosolization, 
selective-targeting, the pre-determined release of the drug, and degra
dation within an acceptable period [119,120]. The surfaces of these NPs 
can be readily modified using specific ligands and receptors for targeted 
drug-delivery and avoid off-target side effects. [121]. PLGA-NPs modi
fied by chitosan are effective tools to enhance drug delivery efficiency by 
exploiting the mucoadhesive properties of chitosan [122,123]. Chitosan 
nanoparticles are well known for promoting peptide absorption across 
mucosal surfaces of deeper lung tissues [124]. These NPs can be deliv
ered directly to the deeper alveolar tissues optimizing lung therapy with 

efficient drug delivery [125]. Additionally, the incorporation of curcu
min to chitosan NPs has shown an excellent anti-inflammatory effect 
[126,127]. 

5.2. Lipid-based nanocarriers 

Lipid-based nanocarriers are another drug delivery system that is 
well-suited for delivering therapeutic agents to the pulmonary tissues. 
These drug delivery systems are comparatively less toxic and facilitate 
prolonged drug-release and drug deposition into the deeper tissues 
[128–130]. These nanocarriers may be classified into polymeric mi
celles, nanostructured lipid carriers (NLC), solid lipid nanoparticles 
(SLN), and liposomes. In the following subsections, we discussed 
different classes of lipid-based nanocarriers applied for pulmonary drug- 
delivery, especially in the ARDS models. 

5.2.1. Polymeric nanomicelles 
Polymeric micelles are amphiphilic sterically stable macromolecules 

usually spherical in nature [131]. These lipid-based nanoparticles of the 
size ranging from 10 to 100 nm are made up of polyvinyl pyrrolidone, 
polyethylene glycol, polyvinyl alcohol, polyglycerols [132]. The mi
celles can be further functionalized with antibodies or specific ligands 
for greater cell penetration, response to stimuli, such as pH, redox, light, 
heat, etc. Nanomicelles have been anticipated to treat inflammatory 
lung conditions, including ARDS. Formulation of a glucagon-like pep
tide-1 (GLP-1) in the form of micelles has been shown to prolong its 
bioactivity and half-life [133]. In general, peptide drugs have a very 
short half-life (sometimes only a few minutes) and are insoluble in an 
aqueous solution thereby, hindering drug distribution in the body [134]. 
Human GLP-1 is a superfamily of intestinal amphipathic peptides [135]. 
These peptides have been found to inhibit activation of NF-κB in 
cultured macrophages as well as in a murine model of ARDS [136]. 
However, the efficacy of GLP-1 is limited by its short half-life, which, if 
improved, could lead to a potential ARDS therapeutic strategy [137]. 

5.2.2. Solid lipid nanoparticles (SLNs) 
SLNs are colloidal NPs capable of delivering therapeutic peptides, 

proteins, antigens, and drugs (both hydrophilic and lipophilic) to their 
specific targets [138,139]. They are more stable and tolerant in com
parison to other lipid-based NPs, such as liposomes. For pulmonary 
application, maximum drug loading and sustained release of the 
bioactive molecules from lipid-containing matrix-based systems are 
considered the most suitable ones. The active ingredient is incorporated 
in the lipid core or deposited at the lipid core surface [140]. Several 
studies have shown that soybean oil, long-chain triglyceride, medium- 
chain triglyceride, and fish oil have an anti-inflammatory effect and 
pro-resolving influences on ARDS patients [141–143]. Solid lipid 
nanoparticles, a lipid-based nanoparticle encapsulating curcumin, have 
also been reported to decrease inflammation and cytokine expression 
[144]. 

5.2.3. Liposomes 
Liposomes made up of surfactants, phospholipids, and cholesterol 

comprises an important drug delivery system, widely known for their 
sustained-release properties and non-toxic nature [145,146]. They are 
also used for pulmonary applications [147]. Interestingly, the first 
liposomal product Alveofact® was introduced for ARDS in 1999. Since 
then, liposomes have been extensively used for pulmonary drug-delivery 
[148–150]. Liposomes functionalized with groups, such as mannose, 
have been found to increase alveolar cell uptake, whereas attaching 
them with specific antibodies increases tissue targeting and local drug 
release in the lungs [151,152]. In several studies, liposomes have been 
shown to deliver drugs like amphotericin B and paclitaxel in pulmonary 
diseases [153,154]. The liposomal formulation of N-acetylcysteine has 
shown improved prophylactic efficacy against lipopolysaccharide- 
induced lung injuries in animal models displaying ARDS pathology 
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Table 2 
Nanoparticle-based delivery systems with the proposed mechanism of action in ARDS.  

Nanomedicine Formulation 
components 

Active ingredients Size Experimental model Mechanism of action Advantages References 

Polymeric NPs PLGA a-2,8 NANA – C57BL/6 mice, human 
ex vivo lung perfusion 
(EVLP) model 

Upregulated IL-10 level Targeting Siglec receptors 
under inflammatory 
conditions 

[211] 

PLGA YSA peptide 
(YSAYPDSVPMMS) 

256 
nm 

HUVECs, Mice Anti-inflammatory Increased cellular uptake [114] 

PLGA EpoR cDNA 196 
nm 

Human type-1 
alveolar epithelial 
cells, Sprague-Dawley 
rats 

Upregulation of EpoR 
expression 

Attenuated lung tissue 
damage 

[212] 

PBA, PEG- 
Biotin 

TPCA1 100 
nm 

HUVECs, Adult CD-1 
mice 

pH-responsive action Improved endothelial 
targeting and uptake 

[117] 

DAEPA CFC 195 
nm 

Ex vivo rabbit lung 
model 

Inhalable delivery of 
nanoparticles 

Increased pulmonary 
delivery 

[213] 

Nanomicelles PEG GLP-1 15 nm C57B6/DBA mice Amplifies drug delivery to the 
lung 

Prolonged bioactivity by 
preventing rapid peptide 
degradation in vivo 

[133,137,214] 

GP-682 Lev 60 nm BEAS-2B cells, Male 
KM mice 

Enhanced cell membrane 
permeability and drug 
targeting 

Improved efficacy [215] 

PS-PEG Surfactant 47 nm C57/BL6 mice Produce extremely low 
surface tension at high 
compression 

Aqueous injectable dosage 
form 

[216] 

NLC ICAM-NLC Angiopoietin-1 
simvastatin 

228 
nm 

EAhy926, Male BALB/ 
c mice 

Up-regulated Ang-1, 
attenuation of pulmonary 
TNF-α and IL-6 levels 

High cellular uptake [107] 

ICAM-NLC Dexamethasone 249 
nm 

EAhy926, male BALB/ 
c mice 

Attenuated pulmonary 
inflammation 

Low cytotoxicity and 
enhanced cellular uptake 

[109] 

Lipid core 
nanocapsules 

PEC, SMS, 
CTG 

α-Bisabolol 160 
nm 

Male A/J mice Reduction in pulmonary 
inflammation 

An anti-inflammatory effect 
related to the inhibition of 
the MAPK pathway 

[217] 

Liposomes DPC N-Acetylcysteine 
(NAC) 

200 
nm 

Male Sprague–Dawley 
rats 

Lessening the effects of ROS 
and inflammation 

Provide higher antioxidant 
delivery and retention of 
NAC in the lung 

[155] 

Nanovesicles DPC-DOPE Surfactants 300 
nm 

Swiss albino mice Improved adsorption at low 
pH and lower surface tensions 

Decreased alveolar protein 
leakage and superior airway 
patency 

[119] 

Gold NPs Gold FFFFFF 13 nm THP-1 cells, ALI mice Targeting TLR4 signaling in 
macrophages 

Size-dependent control of 
endotoxin tolerance for 
treatment 

[166,167] 

Gold CLPFFD 13 nm THP-1 cells, PBMC Inhibits both TLR4-triggered 
NF-κB and IRF3 activation, 
and the secretion of a variety 
of proinflammatory cytokine 

Amino-acid dependent 
attenuation 

[218] 

Dendrimers PAMAM SiRNA 153 
± 11 
nm 

RAW264.7, Female 
swiss CD-1 outbred 
mice 

Enhanced in vitro silencing 
efficiency of TNF-α 

Strong potential in the 
delivery of siRNA 

[219] 

Phosphorus SiRNA 120 
nm 

RAW264.7, CD-1 mice Enhanced in vitro silencing 
efficiency of TNF-α 

Strong potential in the 
delivery of siRNA 

[169] 

Miscellaneous Glycyrrhizin TLR-4/NF-κb 200 
nm 

RAW264.7 cells Inhibition of the signaling 
pathway 

Better anti-inflammatory 
activities 

[48] 

Oleic acid – 103 
nm 

Male C57BL/6 mice Suppressed the superoxide 
anion and elastase produced 
by the stimulated neutrophils 

Nanocarriers mitigated 
myeloperoxidase and 
cytokines more effectively 
as compared to Oleic acid 
solution 

[171] 

Polystyrene ICAM-1 200 
nm 

BALB/c mice Reduced opsonization and 
RES clearance 

Increased drug 
accumulation in the lungs 

[112] 

Polystyrene – 20 
nm, 
100 
nm 

Rat alveolar epithelial 
cell monolayers 

PNP translocate primarily 
transcellular 

High cellular uptake [172] 

PEI В-2 AR gene 60 nm Bltw: CD1(ICR) mice Increased alveolar fluid 
clearance 

Safe, and effective gene 
therapy 

[220]  

NEM DMS 19.8 
nm 

Sprague–Dawley Rats Reach deeper lung tissues High anti-ALI effect [173] 

Abbreviations: CFC, 5(6)-carboxyfluorescein; CTG, capric/caprylic triglyceride; DMS, Dimethyl silicone; DPC, Dipalmitoyl phosphatidylcholine; DOPE, Dioleoyl 
phosphatidylethanolamine; EpoR, pulmonary erythropoietin receptor; SSM, Sterically Stabilized Phospholipid Nanomicelles; NPs, Nanoparticles; TPCA1, (2-[(Ami
nocarbonyl)- amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide; SPION, Superparamagnetic iron oxide nanoparticles; GP, 3-O-β-D-glucopyranosyl latycodigenin; 
HVEC, Human vascular endothelial cell line; ICAM, Intercellular adhesion molecule-1; Lev, Levofloxacin; NANA, N-acetylneuraminic acid; NLC, Nanostructured lipid 
carrier; NEM, Nanoemulsions; PAMAM, 3 poly(amidoamine); PEG, Polyethylene glycol; PEC, Poly(ε-caprolactone); PEI, Polyethyleneimine; PLGA Poly-lactic-co 
glycolic acid; PS, polystyrene; SMS, Poly(ε-caprolactone). 
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[155]. The designed liposomes have been shown to accumulate a 
considerable amount of drugs in the inflamed alveolar masses [53,157]. 
Besides, these drug delivery systems can be loaded with more than one 
drug molecule and enable them to reach selective therapeutic targets 
[17]. 

5.3. Gold nanoparticles 

Although metal nanoparticles like gold are associated with the pro
duction of oxidative stress and toxicity, gold nanoparticles (GNPs) are 
considered as an excellent drug-delivery vehicle for ARDS at least at the 
preclinical level [159–161]. GNPs are widely considered as an effective 
nanocarrier because of their biocompatibility, comparatively easier 
preparation methods, and their tendency to bind with thiols and amines 
[163]. GNPs possess antioxidative and anti-inflammatory properties, 
which is why they have also been investigated in tissue injury models 
such as ARDS [159,160]. The peptide-encapsulated GNPs have been 
shown to potentially reduce lung injuries and modulate inflammation 
both in vitro and in vivo [165]. In acute lung injury mouse models, the 
peptide-GNP hybrids have reduced lung injury and inflammation by 
increasing regulatory T cells [167]. GNPs are considered as an essential 
mediator of Toll-like receptor-4 (TLR-4) signaling and oxidative stress 
generation hence, it helps in determining the severity of ARDS [39]. 
Peptide-conjugated gold NPs have been found to inhibit TLR-4 signaling 
pathways by modulating the process of endosomal acidification [166]. 
In a different study, incorporating hexapeptides to the GNP surface 
imparted anti-inflammatory activity and allowed rapid clearance in vivo 
[167]. 

5.4. Dendrimers 

Dendrimers are another class of chemically synthesized star-shaped 
NPs gaining considerable popularity in the field of pulmonary nano
medicine [168]. Several dendrimers such as polyamidoamine 
(PAMAM), Poly(L-lysine) (PLL), polypropylenimine (PPI), and phos
phorus dendrimers have been applied in the drug-delivery to pulmonary 
tissues. These drug-delivery vehicles mainly help in enhancing cellular 
uptake of conjugated drug molecules [169]. Surface-modified den
drimers have also been employed to efficiently deliver siRNA in vivo in 
the ARDS models [169]. 

5.5. Miscellaneous 

Apart from the NPs mentioned above, other nanocarriers such as 
glycyrrhizin, polystyrene, oleic acid, and polyethyleneimine have been 
studied in the ARDS experimental models [48,170–172]. Oleic acid NPs 
have shown a substantial reduction of disease symptoms and a signifi
cant decrease in the oxidative stress levels of stimulated neutrophils. The 
glycyrrhizin NPs can be considered as an excellent anti-inflammatory 
agent [48,170,171]. Additionally, polystyrene NPs can readily cross 
the alveolar epithelium and deliver bioactive ingredients to specific 
targets [172]. Other groups of NPs, such as nanovesicles and nano
emulsions, have also been tested preclinically in the ARDS models. The 
nanovesicles and nanoemulsions-based aerosols performed way better 
than the convenient formulations [173]. Nanovesicles have been found 
to improve the resistance of pulmonary surfactants which is rendered 
ineffective due to ARDS-caused lung injury. It significantly improved the 
alveolar protein leakage and improved airway patency [119]. 

6. Conclusion 

The field of nanomaterials is revolutionizing the future of pulmonary 
medicine by presenting various nanoscale delivery systems incorporated 
with drug moieties, peptides, and nucleic acids. It has shown great 
promise in the treatment of lung diseases, including ARDS. Fabrication 
of biodegradable drug-delivery systems through PEGylation and nano 

micelles formation has proved to be very helpful in evading RES and 
endocytic degradation machinery and overcoming physiological bar
riers caused due to respiratory mucous/alveolar fluids 
[119,120,174,175]. Nevertheless, the challenges associated with the 
clinical translation of these preclinically tested nanoformulations cannot 
be undermined. Long-term risk of excipient toxicity and nanoscale car
rier are issues that need to be considered in the successful product 
development of pulmonary drug delivery systems [89]. Fine-tuning the 
NPs in terms of surface charge to enhance drug-deposition in the lungs 
and prolong the renal clearance of the nanoformulations and size is 
equally important, particularly in ARDS [177]. 

The particle size of drug delivery systems is crucial as the adminis
tration of large particles (>5 μm) have been reported to cause fatal 
health problems such as pulmonary embolism while too small particles 
are exhaled away from the human body [174]. Furthermore, a change in 
the diameter from 120 nm to 250 nm has a great impact on the mobility 
of NPs in mucosal airways. Moreover, anionic and hydrophilic surface 
properties reduce the possibility of RES recognition of NPs to a great 
extent [178]. Synthesis of sugar-coated NPs to target lectins present on 
the airway epithelial cells may prove to be useful in cell-specific tar
geting of NPs. Finally, more preclinical improvements in the pulmonary 
application of NPs considering health conditions like allergy and lung 
cancer would warrant translation of existing drug delivery systems for 
clinical evaluation. 

7. Future perspectives 

The clinical translation of these nanoformulations needs more ther
apeutically relevant research studies, which is difficult at present due to 
factors such as dearth of an ideal animal model for ARDS, poor health of 
patients due to multiple organ dysfunction, and the involvement of 
multiple pathways in the complex ARDS pathophysiology 
[3,93,179–182]. A profound understanding of ARDS pathophysiology 
and pathogenesis is needed to narrow down the gaps between the 
experimental results and the clinical realities and design more effective 
nano-therapeutics in the future. Understanding the fate of NPs and their 
interactions with biological systems and pulmonary tissue delivery of 
NPs in a completely stable form without any agglomeration and loss of 
drug requires further exploration [20,100,183]. Though inhalable 
nanocarrier systems allowed increased penetration to the lung tissues 
without any significant loss of drugs, improvement in terms of lung-site 
deposition efficiencies remains a necessity [120]. These can be further 
improved by optimizing aerosol characteristics and inhalation condi
tions as well as improving in terms of chemical stability, particle 
agglomeration, settlement, and pre-determined drug release. Finally, 
the role and safety profile of the NPs need to be further ascertained, and 
efforts towards lowering the toxicity of the nanoparticulate vehicles 
should be encouraged. 
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nanomedicine against acute lung injury: GLP-1 in phospholipid micelles, Pharm. 
Res. 28 (2011) 662–672, https://doi.org/10.1007/s11095-010-0322-4. 

[134] M. Werle, A. Bernkop-Schnürch, Strategies to improve plasma half life time of 
peptide and protein drugs, Amino Acids 30 (2006) 351–367, https://doi.org/ 
10.1007/s00726-005-0289-3. 

[135] M.A. Nauck, Unraveling the science of incretin biology, Am. J. Med. 122 (2009). 
doi:https://doi.org/10.1016/j.amjmed.2009.03.012. 

[136] T. Zhu, X.L. Wu, W. Zhang, M. Xiao, Glucagon like peptide-1 (GLP-1) modulates 
OVA-induced airway inflammation and mucus secretion involving a protein 
kinase A (PKA)-dependent nuclear factor-κB (NF-κB) signaling pathway in mice, 
Int. J. Mol. Sci. 16 (2015) 20195–20211, https://doi.org/10.3390/ 
ijms160920195. 

[137] RT. Sadikot, Peptide nanomedicines for treatment of acute lung injury. Method. 
Enzymol. 508 (2012) 315–324, https://doi.org/10.1016/b978-0-12-391860- 
4.00016-1. 

[138] Y. Duan, A. Dhar, C. Patel, M. Khimani, S. Neogi, P. Sharma, N. Siva Kumar, R. 
L. Vekariya, A brief review on solid lipid nanoparticles: part and parcel of 
contemporary drug delivery systems, RSC Adv. 10 (2020) 26777–26791, https:// 
doi.org/10.1039/d0ra03491f. 

[139] A.J. Almeida, E. Souto, Solid lipid nanoparticles as a drug delivery system for 
peptides and proteins, Adv. Drug Deliv. Rev. 59 (2007) 478–490, https://doi.org/ 
10.1016/j.addr.2007.04.007. 

[140] J. Cornier, A. Owen, A. Kwade, M. Van de Voorde, C.C. Müller-Goymann, M. 
Paranjpe, Nanodrugs in medicine and healthcare: pulmonary, nasal and 
ophthalmic routes, and vaccination, in: Pharm. Nanotechnol. Innov. Prod., Wiley- 
VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2016: pp. 633–648. doi:htt 
ps://doi.org/10.1002/9783527800681.ch26. 

[141] M. Hecker, J. Ott, C. Sondermann, M.B. Schaefer, M. Obert, A. Hecker, R. 
E. Morty, I. Vadasz, S. Herold, B. Rosengarten, M. Witzenrath, W. Seeger, 
K. Mayer, Immunomodulation by fish-oil containing lipid emulsions in murine 
acute respiratory distress syndrome, Crit. Care 18 (2014) R85, https://doi.org/ 
10.1186/cc13850. 

[142] M. Hecker, T. Linder, J. Ott, H.D. Walmrath, J. Lohmeyer, I. Vadász, L.M. Marsh, 
S. Herold, M. Reichert, A. Buchbinder, E.R. Morty, B. Bausch, T. Fischer, R. 
Schulz, F. Grimminger, M. Witzenrath, M. Barnes, W. Seeger, K. Mayer, 
Immunomodulation by lipid emulsions in pulmonary inflammation: a randomized 
controlled trial, Crit. Care. 19 (2015). doi:https://doi.org/10.1186/s13054-015-0 
933-6. 

[143] M. Hecker, M. Rose, A. Hecker, H. Dietrich, M. Schaefer, N. Sommer, W. Seeger, 
K. Mayer, Immunomodulation by an omega-6 fatty acid reduced mixed lipid 
emulsion in murine acute respiratory distress syndrome, J. Clin. Med. 9 (2020) 
2048, https://doi.org/10.3390/jcm9072048. 

[144] W. Wang, R. Zhu, Q. Xie, A. Li, Y. Xiao, K. Li, H. Liu, D. Cui, Y. Chen, S. Wang, 
Enhanced bioavailability and efficiency of curcumin for the treatment of asthma 
by its formulation in solid lipid nanoparticles, Int. J. Nanomedicine 7 (2012) 
3667–3677, https://doi.org/10.2147/IJN.S30428. 

[145] R. Koynova, B. Tenchov, Recent progress in liposome production, relevance to 
drug delivery and nanomedicine, Recent Pat. Nanotechnol. 9 (2015) 86–93, 
https://doi.org/10.2174/187221050902150819151721. 

[146] D.B. Fenske, P.R. Cullis, Liposomal nanomedicines, Expert Opin. Drug Deliv. 5 
(2008) 25–44, https://doi.org/10.1517/17425247.5.1.25. 

[147] M. Paranjpe, C.C. Müller-Goymann, Nanoparticle-mediated pulmonary drug 
delivery: a review, Int. J. Mol. Sci. 15 (2014) 5852–5873, https://doi.org/ 
10.3390/ijms15045852. 

[148] L.M. Hoesel, M.A. Flierl, A.D. Niederbichler, D. Rittirsch, S.D. McClintock, J. 
S. Reuben, M.J. Pianko, W. Stone, H. Yang, M. Smith, J.V. Sarma, P.A. Ward, 
Ability of antioxidant liposomes to prevent acute and progressive pulmonary 
injury, Antioxidants Redox Signal. 10 (2008) 973–981, https://doi.org/10.1089/ 
ars.2007.1878. 

[149] M.L. Manca, C. Sinico, A.M. Maccioni, O. Diez, A.M. Fadda, M. Manconi, 
Composition influence on pulmonary delivery of rifampicin liposomes, 
Pharmaceutics. 4 (2012) 590–606, https://doi.org/10.3390/ 
pharmaceutics4040590. 

[150] M. Murata, T. Yonamine, S. Tanaka, K. Tahara, Y. Tozuka, H. Takeuchi, Surface 
modification of liposomes using polymer-wheat germ agglutinin conjugates to 
improve the absorption of peptide drugs by pulmonary administration, J. Pharm. 
Sci. 102 (2013) 1281–1289, https://doi.org/10.1002/jps.23463. 

[151] S. Chono, T. Tanino, T. Seki, K. Morimoto, Efficient drug targeting to rat alveolar 
macrophages by pulmonary administration of ciprofloxacin incorporated into 
mannosylated liposomes for treatment of respiratory intracellular parasitic 
infections, J. Control. Release 127 (2008) 50–58, https://doi.org/10.1016/j. 
jconrel.2007.12.011. 

[152] M.A. Hegeman, P.M. Cobelens, J. Kamps, M.P. Hennus, N.J.G. Jansen, M. 
J. Schultz, A.J. Van Vught, G. Molema, C.J. Heijnen, Liposome-encapsulated 
dexamethasone attenuates ventilator-induced lung inflammation, Br. J. 
Pharmacol. 163 (2011) 1048–1058, https://doi.org/10.1111/j.1476- 
5381.2011.01314.x. 

[153] R. Servais, M.A. Ammar, P.K. Gurnani, Treatment of pulmonary blastomycosis 
with high-dose liposomal amphotericin B in a patient receiving extracorporeal 

membrane oxygenation, BMJ Case Rep. 12 (2019), e229612, https://doi.org/ 
10.1136/bcr-2019-229612. 

[154] I. Khan, K. Lau, R. Bnyan, C. Houacine, M. Roberts, A. Isreb, A. Elhissi, S. Yousaf, 
A facile and novel approach to manufacture paclitaxel-loaded proliposome tablet 
formulations of micro or nano vesicles for nebulization, Pharm. Res. 37 (2020) 
116, https://doi.org/10.1007/s11095-020-02840-w. 

[155] P. Mitsopoulos, A. Omri, M. Alipour, N. Vermeulen, M.G. Smith, Z.E. Suntres, 
Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in 
rodents, Int. J. Pharm. 363 (2008) 106–111, https://doi.org/10.1016/j. 
ijpharm.2008.07.015. 

[157] S. Herber-Jonat, R. Mittal, S. Gsinn, H. Bohnenkamp, E. Guenzi, A. Schulze, 
Comparison of lung accumulation of cationic liposomes in normal rats and LPS- 
treated rats, Inflamm. Res. 60 (2011) 245–253, https://doi.org/10.1007/s00011- 
010-0260-y. 

[159] D.P. dos Santos Haupenthal, C. Mendes, G. de Bem Silveira, R.P. Zaccaron, M.E.A. 
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