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ABSTRACT

Physcion and chrysophanol induce defense responses against powdery mildew in
cucumbers. The combination of these two compounds has synergistic interaction
against the disease. We performed RNA-seq on cucumber leaf samples treated with
physcion and chrysophanol alone and with their combination. We generated 17.6 Gb
of high-quality sequencing data (~2 Gb per sample) and catalogued the expressions
profiles of 12,293 annotated cucumber genes in each sample. We identified numerous
differentially expressed genes that exhibited distinct expression patterns among the
three treatments. The gene expression patterns of the Chr and Phy treatments were
more similar to each other than to the Phy x Chr treatment. The Phy x Chr
treatment induced the highest number of differentially expressed genes. This dramatic
transcriptional change after Phy x Chr treatment leaves reflects that physcion combined
with chrysophanol treatment was most closely associated with induction of disease
resistance. The analysis showed that the combination treatment caused expression
changes of numerous defense-related genes. These genes have known or potential roles
in structural, chemical and signaling defense responses and were enriched in functional
gene categories potentially responsible for cucumber resistance. These results clearly
demonstrated that disease resistance in cucumber leaves was significantly influenced by
the combined physcion and chrysophanol treatment. Thus, physcion and chrysophanol
are appealing candidates for further investigation of the gene expression and associated
regulatory mechanisms related to the defense response.

Subjects Agricultural Science, Bioinformatics, Genetics, Genomics, Plant Science
Keywords Cucumber, Transcriptomic, Gene expression, RNA-seq

INTRODUCTION

Cucumber powdery mildew caused by Sphaerotheca fuliginea (Schlechtend.) Pollacci, is
a widespread disease in greenhouse and field crops, causing large yield losses (Askary,
Benhamou & Brodeur, 1997; Liu & Shao, 1994; Reuveni, Agapov ¢ Reuveni, 1996). The
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disease has been controlled effectively by synthetic fungicides and resistance cultivars
(Cohen, 1993). However, intensive and long-term application of synthetic fungicides has
caused environmental pollution, residual toxicity and increased resistance to the fungicides’
active ingredients (Yang et al., 2007).

Some botanical fungicides activate plants’ natural defense systems and are known
collectively as plant activators. Although plant activators and their metabolites have no
direct fungicidal activity, they stimulate the immune system of plants and induce plants to
display broad-spectrum, persistent and hysteresis acquired disease resistance. Therefore,
plant activators would decrease the above-mentioned negative effects of synthetic agents.
In this respect, plant activators are effective, selective, biodegradable, and less toxic to the
environment. The development of new botanical fungicides with high efficacy, low toxicity
and low residues would be beneficial to control plant disease (Bowers ¢» Locke, 2000; Choi et
al., 2004; Daayf & Bélanger, 1997; Daayf, Schmitt & Belanger, 1995; Tang, Wang & Zhang,
2004; Wurms et al., 1999; Yu et al., 2004; Zhang et al., 2008). Physcion and chrysophanol
are natural anthraquinone derivatives found in plant families (Fig. S3). They are the major
active ingredients in traditional herbal medicines that are widely used in clinics (Xu, Huang
¢ Yang, 2004). Physcion and chrysophanol have numerous biological activities, including
anti-inflammatory, antitumor, antioxidant, antifeedant and antimicrobial (Barnard et al.,
1992; Boik, 1995; Chang et al., 1996; Evans, 1996; Huang et al., 1992; Huang, Chu ¢ Chao,
1991; Singh et al., 1992; Sun et al., 2000; Trial & Dimond, 1979; Yen, Duh ¢ Chuang, 2000;
Zhan et al., 2000), which could affect the vasomotor system, immune system and metabolic
processes.

Physcion and chrysophanol also have activity against phytopathogens, such as
barley powdery mildew (Blumeria. graminis f. sp. Hordei), cacumber powdery mildew
(S. fuliginea) (Choi et al., 2004), rice sheath blight (Rhizoctonia solani Kuhn), grey mold
(Botrytis cinerea Pers ex Pers) and cucumber downy mildew (Pseudoperonospora cubensis
de Bary) (Yu et al., 2006).

Previous studies showed that physcion inhibited conidial germination of B. graminis by
nearly 100% if applied on barley leaves before inoculation (Yang et al., 2008). Resistance
risk evaluation showed that this chemical had a low risk in powdery mildew and downy
mildew populations (Yang et al., 2008). The bioactivity of physcion against the barley
powdery mildew pathogen was better than that of the other anthraquinones in pot
tests. The inhibitory effect of chrysophanol on spore germination and mycelia growth of
S. fuliginea was reported (Tang et al., 2002). Chrysophanol has both protective and curative
activity against cucumber powdery mildews, and has high activity against S. fuliginea,
including reducing the spore germination rate, depressing the growth of mycelia and repro-
duction of new conidia (Ren et al., 2008; Ren et al., 2009; Ren, Fan ¢ Cao, 2012). Previous
studies also showed that there was a synergistic interaction between physcion and chryso-
phanol against powdery mildew pathogens (Ma et al., 2010; Yang, 2007; Yang et al., 2007).

However, the mechanism of the synergistic interaction between physcion and
chrysophanol against powdery mildew pathogens has not been determined. To explore
the synergistic mechanism of physcion and chrysophanol action against the pathogen
S. fuliginea at the transcriptional level, we used the whole RNA-seq to determine the
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transcriptional differences in cucumber leaves treated with physcion and chrysophanol
alone and their combination in comparison with solvent-treated controls.

MATERIALS AND METHODS

Plant materials and growth conditions

Seeds of cucumber cultivar Changchunmici, which is highly susceptible to cucumber
powdery mildew, were washed three times with sterile water and transferred to a water
bath pot at 25 °C to soak for 4—6 h. The treated seeds were placed in Petri dishes with filter
paper at the bottom and two layers of gauze above and incubated at 25 °C for 24 h. When
the buds grew to about 5 mm long, they were sown in plastic pots containing sterilized soil
(200 mm in diameter, 10 plants per pot) in a growth chamber at 25 °C. When the fourth
leaves were fully expanded, the plants were ready for compound treatment and conidium
inoculation.

Inoculum of S. fuliginea

Isolates of S. fuliginea were provided by the Plant Pathology Lab of the Institute of Plant
Protection and Soil Science, Hubei Academy of Agricultural Sciences, China. Cucumber
powdery mildew was reproduced in a growth chamber at 25 °C and 70% relative humidity
with a 16-hour light and 8-hour dark photoperiod. Once adequate amounts of spores had
been produced for the experiment, an inoculation suspension of S. fuliginea (about 2x 10°
spores mL~!) was prepared.

Compound treatment and sampling

Physcion (98%) and chrysophanol (98%) were obtained from the National Institute for
the Control of Pharmaceutical and Biological Products, Beijing, China. Stock solutions
were prepared by dissolving physcion (10 mg) and chrysophanol (10 mg) in 5 mL of
dimethylsulfoxide (DMSO), separately, which were stored at 4 °C in the dark before
application.

To explore the synergistic mechanism of physcion and chrysophanol against the
pathogen S. fuliginea in cacumber, physcion and chrysophanol alone and their combination
were applied to the cucumber plants before inoculation at the concentration of 10 mg/L.
The surfactant Tween 20 was added to the final dilutions at the concentration of 0.25 g/L,
respectively, and solvent-treated (0.5% DMSO and 0.25% Tween 20) plants were used
as controls. Tested plants were inoculated by spraying S. fuliginea spore suspension 8 h
after treatment. After inoculation, the plants were incubated at 25 °C and 70% relative
humidity until sampling. The fourth leaves of the cucumber plants were collected at 3 days
post-inoculation (dpi) when solvent-treated control plants displayed disease symptoms. All
samples were immediately frozen in liquid nitrogen and stored at —80 °C until further use.

Total RNA isolation, library preparation and sequencing

Total RNA was isolated from each sample using the TRIzol reagent (Life Technologies,
Beijing, China), according to the manufacturer’s protocols. The concentration of each
RNA sample was determined using a Qubit2.0 (Life Technologies, CA, USA) and RNA
integrity was confirmed using a 2100 Bioanalyzer (Agilent Technologies Inc., Santa Clara,
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CA, USA) with a minimum RNA integrity number (RIN) value of 8.0 and with 250 ng of
total RNA per sample. Three micrograms of RNA per sample was used as input material to
prepare the libraries following the standard procedures of TruSeq RNA Sample Prep Kit
v2 (Illumina, San Diego, CA, USA). In brief, the poly (A) mRNA was extracted from total
RNA using poly-T-attached magnetic beads, further fragmented, and used as templates
for cDNA generation. First strand cDNA was synthesized using random hexamer primers
and reverse transcriptase. Second strand cDNA was synthesized based on the first strand
with dNTP, buffer solution, DNA polymerase I and RNase H. Double-stranded cDNA was
then purified using AMPure XP beads, and the second strands (containing uridines) were
degraded using the USER Enzyme. Purified double-stranded cDNA was then end-repaired,
apoly(A) added, and ligated to paired-end Illumina sequencing adaptors. cDNA fragments
of about 320 bp were size-selected using AMPure XP beads and amplified using PCR. The
high-quality libraries were sequenced on an Illumina HiSeq™ 2,000 platform and 100-bp
paired-end (PE) reads were generated using the TruSeq SBS Kit v3-HS (Illumina, Inc.).
Bases were called using the [llumina CASAVA software.

The transcriptome sequencing data have been deposited in the Gene Expression
Omnibus under accession code: GSE72034.

Read mapping and data processing

Initially, low-quality reads (phred <20) and adaptor sequences were filtered out, and the
Q20, Q30 and GC content of the clean data were calculated. All the subsequent analyses were
based on the high-quality, clean data. The reference genome and gene model annotation files
were downloaded from the cucumber genome website (http://cucumber.genomics.org.cn/).
An index of the reference genome was built using Bowtie v2.0.6 (Broad Institute,
Cambridge, MA, USA) and paired-end clean reads were aligned to the reference genome
using TopHat v2.0.9 (Broad Institute) with the default parameters. HTSeq v0.5.3 (EMBL,
Heidelberg, Germany) was used to count the read numbers mapped to each gene. The reads
per kilobase of transcript per million mapped reads (RPKM) of each gene were calculated
based on the length of the gene and read count mapped to it. We carried out read alignment
and expression quantification separately for each sample. Only genes with fragments per
kilobase of transcript per million mapped reads (FPKM) values larger than four and that
exhibited low variation across three biological replicates (coefficient of variation < 30%)
were considered reliable and were used in subsequent analyses.

Identification of differentially expressed genes (DEGs)

Identification of DEGs among the four treatments (i.e., physcion alone, chrysophanol
alone, the combination treatment and the solvent-treated control sample) was performed
using the DESeq R package v1.12.0, which determines DEGs using a model based on the
negative binomial distribution. The resulting P-values were adjusted using Benjamini and
Hochberg’s approach to control the false discovery rate (FDR). The significance of the
gene expression difference was indicated by an adjusted P-value < 0.05, as determined
by DESeq.
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Functional enrichment analyses for DEGs

Gene functional enrichment analysis of DEGs was implemented using the GOSeq R
package, in which gene length bias was corrected. Gene ontology (GO) terms involving
cellular component (CC), molecular function (MF), and biological process (BP), as well as
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and InterPro database,
were considered significantly enriched by DEGs when their Benjamini adjusted P-values
were < 0.05.

RESULTS AND DISCUSSION

Sequencing data summary

We constructed 10 RNA-seq libraries from cucumber leaves that had been treated by
chrysophanol (termed Chr-1 and -2), physcion (termed Phy-1, -2 and -3), combination of
physcion and chrysophanol (termed Phy x Chr-1, -2 and -3) or the solvent-treated control
(termed Con-1 and -2). Each RNA library was sequenced individually, which generated
~15.32-19.45 M reads for each library. After filtering out the adaptor tags and low-quality
tags, we obtained clean reads ranging from 14.89 to 18.88 M. The clean reads accounted
for more than 97% of the total, which were then mapped to the cucumber genome for
further gene expression analysis (Table S1 and Table S2). Among 23,907 annotated genes
in the cucumber reference genome, after filtering the low expression levels genes with log2
(RPKM) < 2 at least one sample, we quantified the expression levels of 12,293 (51.42%)
genes across 10 samples. An inspection of transcript homogeneity was performed to
confirm that each library had sufficiently high coverage depth and uniformity (Fig. S1).

Global gene expression profiling analysis

The biological replicates within each treatment correlated highly with each other (Average
Pearson’s r value = 0.92), which suggested experimental reliability and further highlighted
the low variation in the transcriptomes activated by botanical fungicides in leaves (Fig. 52
and Table S3).

Compared with the relatively high correlations among the Chr and Phy alone treatments,
the Phy x Chr treatments exhibited lower correlation rates, indicating differences in gene
expression patterns in the Phy x Chr treatments. Hierarchical clustering confirmed these
findings. The samples were almost perfectly clustered by the different treatments. Among
the four treatments, the solvent-treated control and the Chr treatment were closer to each
other than to the Phy and Phy x Chr treatments. The Chr and Phy treatments were also
closer to each other than to the Phy x Chr treatment (Fig. 1 A), which indicated that the gene
expression patterns of the Chr and Phy treatments were more similar to each other than
to the Phy x Chr treatment. The relatively similar global gene expression profiles between
the Chr and Phy treatments might indicate a similar effect on cucumber powdery mildew
pathogens, while the Phy x Chr treatment might have a different effect on cucumber
powdery mildew pathogens. These results are consistent with histological investigation of
cucumber powdery mildew pathogens. In agreement with the transcriptome differences,
there were significant differences in the pathogen symptom severity in the four groups
of cucumber leaves at 3 dpi (Fig. 1A). The leaves from the solvent-treated control had
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Figure 1 The global transcriptome similarity and differences caused by physcion and chrysophanol
treatment for cucumber powdery mildew. (A) Histological investigation of leaves inoculated with

S. fuliginea at 3 dpi and 5 dpi after the four treatments. (B) Hierarchical clustering and heat map matrix of
pairwise Pearson’s correlations of the expression profiles in leaves between the four treatments (solvent-
treated control; chrysophanol treatment; physcion treatment; physcion and chrysophanol combination
treatment) (log,-fold changes). (C) The up- and down-regulated DEGs. (D) A Venn diagram displaying
the distribution of the DEGs.

the highest pathogen symptom severity at 3 dpi. The leaves from the chrysophanol alone
treatment had a higher pathogen symptom severity than those from physcion alone
treatment at 3 dpi. Leaves treated with physcion combined with chrysophanol had the
fewest pathogens symptom severity. The chrysophanol and physcion alone groups had
significant pathogen symptom severity at 3 dpi and 5 dpi, respectively, while the combined
group had no pathogen symptom severity until 5 dpi. These results clearly demonstrated
that disease resistance in cucumber leaves was markedly influenced by the physcion and
chrysophanol combination treatment.

Identification of DEGs

To explore the differences among the transcriptomes induced by physcion and
chrysophanol, we performed separate pairwise comparisons between the three treatments
against the solvent-treated control sample. Consequently, we identified 31 DEGs (log;
fold-change > 2.0 and a P < 0.05) between the Chr treatment and solvent-treated control
samples, which was less than that of Phy treatment leaves (1,689 DEGs) and Phy x Chr
treatment leaves (4,019 DEGs). Nine hundred and fifty-nine genes were specifically
regulated after physcion treatment and 3,288 genes were specifically regulated after the
combined. Among three treatments, the Phy x Chr treatment induced the highest number
of DEGs. This dramatic transcriptional change induced by the Phy x Chr treatment leaves
reflects that the combined treatment was most closely associated with induction of disease
resistance (Fig. 1B and Table S4). Venn diagram analysis (Fig. 1C and Table S5) showed
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a unique set of genes in Phy x Chr treatment leaves, which suggests that the combined
treatment had a significant effect on the transcription of a subset of genes.

Functional annotation of DEGs

Genes showing altered expression in each comparison against the solvent-treated control
were analyzed using the DAVID tool to examine whether these DEGs were enriched
for specific biological processes (Huang et al., 2007). As expected, numerous DEGs were
significantly over-represented in the categories related to the defense response. Typically,
DEGs induced by the Phy x Chr treatment were significantly enriched for the cell
wall-related categories, including the plant-type cell wall (six genes, P = 0.0037), chloroplast
(six genes, 0.022) and pigment catabolic process (10 genes, P = 0.018) (Fig. 2 and
Table S6). This finding may reflect the essential roles of cell wall-related categories as
structural defenses in response to pathogens. Characteristically, the cell wall is a major
line of defense against fungal and bacterial pathogens and provides an excellent structural
barrier.

In addition, DEGs induced by the Phy x Chr treatment were also enriched in the
categories of lipid metabolic process (156 genes, P = 2.0x 10~°), lipid biosynthetic process
(88 genes, P =1.1x 10~*), oxidation-reduction process (235 genes, P = 1.7x 1072),
oxidoreductase activity (249 genes, P = 2.5x107°) and oxidoreductase activity of acting
on paired donors (81 genes, P =2.5x107°); and in subcategories of ‘binding’, such as iron
ion binding (67 genes, P = 1.1x1078), heme binding (61 genes, P = 2x 10~4), tetrapyrrole
binding (61 genes, P = 5.8x10™*), transition metal ion binding (208 genes, P = 0.02)
and heat shock protein binding (16 genes, P =0.039) (Fig. 2 and Table S6). DEGs were
associated with lipid metabolism corresponding to cutin, suberine and wax biosynthesis,
which is a well-known chemical defense pathway in response to pathogens. Cutin and
suberine are the polymer matrices for lipophilic cell wall barriers. Oxidoreductases are
involved in the biosynthesis of these polymers (Pollard et al., 2008) and could catalyze an
oxidation—reduction (redox) reaction in response to pathogens; these results are consistent
with previous studies (Freeman, 2008; Rahfeld et al., 2014). DEGs in subcategories related
to ‘binding’ may play an important role in catalysis and substrate binding in response
to pathogens. All the above-mentioned categories enriched by DEGs belong to chemical
defenses, which incorporates a wide variety of structural defenses that are rapidly activated
when the cell detects the presence of potential pathogens.

In addition, DEGs induced by Phy x Chr treatment were also enriched in the categories
associated with signaling, such as response to abiotic stimulus (12 genes, P =9.3x107%)
and response to chemical stimulus (23 genes, P = 0.04), phosphorylation (130 genes,

P =1.9x107) and protein phosphorylation (117 genes, P = 4.7x10~%). Enrichment
of response to stimulus component was consistent with signaling-related pathogen
perception and induction of the resistance response (Michele, Cesare ¢ Broggini, 2013).
Phosphorylation plays critical roles in plant disease resistance by regulating multiple
defense responses (Xiangzong et al., 2013) (Fig. 2 and Table S6).

The KEGG pathway enrichment analysis indicated that the DEGs are involved in
resistance-related metabolic pathways. The major pathways regulated by chrysophanol
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Figure 2 Top 10 Go (gene ontology) and pathway categories enriched for up- (up arrows) and
down-regulated (down arrows) genes differentially expressed in cucumber leaves activated by
chrysophanol and/or physcion. The p value, indicating the significance of the comparison, was calculated
using a Benjamini-corrected modified Fisher’s exact test. BP, biological process; MF, molecular function.
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and physcion were revealed as biosynthesis of secondary metabolism, phenylpropanoid
biosynthesis, glyceropospholid metabolism, cutin, suberine and wax biosynthesis (Fig. 2
and Table S7).

DEGs involved in structural, chemical, and signaling

defense responses

Resistance in many plant—pathogen interactions is accompanied by the rapid deployment
of a multicomponent defense response comprising structural, chemical, and signaling
moieties.

Our result showed that comparable proportions of DEGs in Chr, Phy and Phy x Chr
were over-represented in the candidate gene set, including 17, 20 and 62 genes involved
in structural, chemical and signaling-related defense reactions, respectively (Table S8).
Nonetheless, the specific gene content within this set differs significantly in Chrl, Phyl
and Phy x Chr (Fig. 3 and Table S8).

For the structural defense, the cell wall is a major line of defense against fungal
pathogens. Among the cell wall precursors, those of wax and lignin play a role in structural
defense. We compared the transcriptome profiles of the solvent-treated Control, Chr,
Phy, and Phy x Chr treatments and found that Chr treatment alone had little effect
on the induction of structural defense-related genes. Phy treatment alone induced the
transcription of several structural defense-related genes, while Phy x Chr treatment
induced the transcription of a subset of genes involved in structural defense, such
as wax precursor protein ECERIFERUM (Csa3G892170, Csa6G079750, CsalG294020,
Csa2G147920, Csa2G011500) and downregulated lignin precursors-associate genes such as
phenylalanine ammonia-lyase (Csa6G147460, Csa6G405960, Csa6G445240) and cinnamyl
alcohol dehydrogenase (Csa3G199580, Csa3G874320, Csa5G146280, Csa7G071700).
Thus, a reduced production of coumaryl-, caffeyl-, coniferyl-, hydroxyconiferyl- and
sinepsyl-alcohols for phenylpropanoid alcohols would be expected.

Cellulose synthase is another essential enzyme for the formation of the cell wall, which is
the primary interface for plant—pathogen interaction (Dodds ¢ Rathjen, 2010; Paula, Roger
¢ Sheng Yang, 2003; Rosli et al., 2013) Our analysis found that the callose synthase gene
(Csa7G429550, CsalG073850) was upregulated in Phy x Chr-treated leaves. Similarly,
lignin precursors phenylalanine ammonia-lyase genes (Csa6G445750, Csa6G446290)
were downregulated and the callose synthase gene (Csa2G302250) was upregulated in
Phy treatment leaves, which provides a possible explanation for Phy treatment alone
inducing resistance to powdery mildew. The results showing that the plants subjected to
the combined treatment had the highest resistance to powdery mildew pathogens were
consistent with previous observations (Yang et al., 2007) (Fig. 3 and Table S8).

In chemical defense, plant secondary metabolites are not directly involved in
growth or reproduction, but act as chemical barriers. They were linked to plant
activator-induced resistance in systemic-acquired resistance (SAR) (Soylu, Baysal ¢
Soylu, 2003). In the present study, genes encoding pathogenesis-related protein (PR,
CsalG420360, Csa2G010380), glu S. griseus protease inhibitor-like (Pin, Csa7G372910),
chitinase (Csa4G017110, Csa6G509030, Csa6G509040, Csa3G166220), peroxidase (PX,
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Figure 3 Comparison of the proportions of defense-related genes in Chrl, Phyl and Phy x Chr vs.
Conl. A bar left of the line means that the gene is down-regulated, while a bar right of the line means
up-regulated.
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Csa7G049140, Csa6G495000, Csa4G285770) and lipoxygenase (LOX, Csa4G288610)
were upregulated, while those encoding endonuclease (CsalG072450, Csa3G847090,
Csa4G001960), endoglucanase (Csa3G872070, Csa5G150400, Csa6G366400), lipid
transfer-like protein VAS-like (LTP, Csa3G250900), polyphenol oxidase (CsalG073640)
and superoxide dismutase (Csa3G038120) were downregulated in Phy x Chr-treated
leaves. This is also consistent with a previous report (Blein et al., 2002; In Sun & Byung
Kook, 2010; Rancé, Fournier ¢ Esquerré-Tugayé, 1998). The expression levels of PR and
Pin genes increased following inoculation in plant activator-treated plants. Chitinases
catalyze the degradation of chitin, a polymer with a backbone similar to cellulose that
is present in the cell walls of true fungi (Freeman, 2008). The biochemical functions of
PXs are associated with lignin and suberin biosynthesis (Quiroga et al., 2000) and with
the regulation of reactive oxygen species (ROS) (Kawano, 2003). Silencing a plant PX
gene resulted in increased plant pathogen susceptibility (Hyong Woo et al., 2007) and its
overexpression enhanced plant resistance (Choi ¢ Hwang, 2011). The effect of PXs on
S. fuliginea growth may be linked to strengthening of the cell wall and the consequent
reduction of the nutrient availability necessary for fungal growth (Timothy ¢ Schumann,
2010). LOX proteins are involved in the first step of the jasmonate biosynthesis pathway
(Wasternack ¢ Kombrink, 2010). The increased expression of the LOX proteins may
inhibit fungal growth by producing fungal inhibitor oxylipin substances (e.g., hexanal and
colnelenic acid) or by their own antimicrobial activities (Helena ¢» Mario, 2002; Vaughn
& Gardner, 1993). Glucanases catalyze the degradation of (Triticum aestivum) glycosidic
linkages in glucans, a class of polymers similar to cellulose that are present in the cell
walls of many oomycetes. Lipid transfer proteins (LTPs) have been linked to antifungal
activity through different possible paths upon pathogen attack and to a potential inhibition
of germination and fungal growth in vitro (Blein et al., 2002; Kirubakaran et al., 2008).
Polyphenol oxidase and superoxide dismutase might play a crucial role in the protection
of the plant cell from oxidative damage at the sites of enhanced ROS generation (Soy/u,
Baysal & Soylu, 2003) (Fig. 3 and Table S8).

In signaling defense, plants have evolved intricate mechanisms to perceive external
signals, thereby enabling an optional response to biotic and abiotic stimuli. A number of
signaling pathways with roles in regulating the response to pathogens have been defined
(Yang et al., 2015).

The plant hormones such as jasmonic acid, salicylic acid and ethylene are not only
important signaling molecules, but also play a critical role in the regulation of plant
immune responses. In this study, Chr alone and Phy alone and their combination all
repressed the transcription of nearly all of the genes in the auxin-mediated signaling
pathways. These genes encode auxin-induced protein (Csa2G225320, Csa3G143580,
Csa3G118740) and auxin-responsive protein [AAs (Csa2G200440, Csa3G610800,
Csa2G010920, CsalG231530). This could be related to the cessation of cell enlargement
and cell division hormone response in the Chr alone and Phy alone or combination-
treated leaves. Phy x Chr treatment up-regulated the expression of the gene encoding the
BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1-like (Csa7G060160,
Novel00616, Novel00628), which is involved in brassinosteroids (BRs) metabolism and
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signaling. BRs have long been seen as mainly positive players in plant immunity. Recent
findings in both dicots and rice suggested a more complex situation, with positive, negative
and neutral effects of BRs being reported, which are seemingly independent of either the
plant species or type of pathogen involved (Bruyne, Hifte ¢ Vleesschauwer, 2014).

In addition, we identified DEGs encoding an enhanced disease susceptibility 1
(EDS1: CsalG006320) protein and enhanced disease resistance 2-like protein (EDR2L:
Csa4G651740). EDS1 was first observed in a mutant of A. thaliana that was susceptible to
P. parasitica. EDS1-silencing increased disease resistance in Arabidopsis (Parker et al., 1996).
The EDSI1 gene is necessary for the functionality and signal transduction of other resistance
genes in Arabidopsis plants (Aarts et al., 1998; Kazan ¢ Manners, 2008). In our experiment,
without considering the FDR P-value correction, the EDS1 gene was downregulated in
both Chr and Phy-treated leaves, which potentially provides an additional explanation
for the resistance to powdery mildew induced by Chr alone and Phy alone treatments.
However, the mechanism by which EDS1 affects the physcion- and chrysophanol- induced
resistance against cucumber powdery mildew pathogens remains to be determined. EDR2L
was down-regulated in Phy x Chr-treated plants, which was consistent with a previous
study in which EDR2 was observed to negatively regulate salicylic acid—based defenses and
cell death during powdery mildew infection of Arabidopsis thaliana (Vorwerk et al., 2007).

As secondary signaling molecules, calcium and ROS are crucial for the development
of plant defense against abiotic and biotic stimuli. ROS signaling is integrated with
calcium signaling in plants. Here, we found that several important genes involved in
cellular redox homeostasis were upregulated in Phy x Chr-treated plants, such as those
encoding respiratory burst oxidase homolog protein B-like (CsalG569450) and respiratory
burst oxidase homolog protein C-like (Csa3G845500), which suggested that they are
critical for the defense against powdery mildew pathogens after Phy x Chr treatment.
Several important genes involved in calcium signaling were upregulated in Phy x Chr-
treated plants, including those encoding calcium-dependent protein kinase-like (CDPK,
CsalG614120, Csa3G077600, Csa6G513780, Csa7G026240, Csa7G274170, Csa4G050200)
and probable calcium-binding protein CML22-like (Csa3G130890). Compared with Chr
treatment alone or the combination treatment, the transcription of calmodulin-like protein
4-like (Csa2G007990) was upregulated by Phy treatment alone, thus providing a possible
explanation for Phy alone-induced resistance to powdery mildew.

Ethylene has been observed to induce a defense response in many plants by upregulating
genes involved in ethylene production, including ACC oxidase (ACO) (Cohn ¢» Martin,
2005; Steinhorst & Kudla, 2013). In the present study, Phy x Chr treatment activated
genes encoding ethylene-responsive transcription factor-like (CsalG075030), CRF4-like
(CsalG042290) and ERF118-like (Csa2G382550, Csa3G133130, Csa4G023020). The
ethylene-responsive transcription factor-like (CsalG075060, Csa5G167120, Csa3G018320,
Csa4G630010) and ERF017-like (CsalG597730) were also activated in Phy-treated
plants, which provides another explanation for Phy treatment alone causing resistance
to powdery mildew.

Transcription factors (TFs) including NAC, WRKY, MYB, AP2, bHLH, C2H2-like
zinc finger, HSF and bZIP play central roles in plant abiotic and biotic stress responses by
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regulating downstream genes via specific binding to cis-acting elements in the promoters of
target genes. Phy x Chr treatment induced a significant increase in the expressions of certain
transcription factor genes, including those encoding the probable WRKY transcription
factor 2-like (CsalG657480), WRKY34 (Csa5G223070), MADS-box transcription factor
27-like (Csa4G181200), transcription factor MYB1R1-like (Csa3G019390) and MYB86
(CsalG561370). Phy treatment alone also induced a significant increase in the expressions
of genes encoding transcription factors, such as probable WRKY transcription factor
40-like (Csa3G710870) and WRKY50 (Csa3G119700), transcription factor MYB59-

like (Csa5G641610) and MYB44-like (Csa4G641690). However, Phy treatment also
suppressed the transcription of NAC transcription factor ONACO010-like (Csa3G852460,
Csa6G092010), NAM-2-like (Csa4G011770), and 29-like (Csa5G606310). The crosstalk
between induced signaling events, including receptor-mediated signal perception, protein
phosphorylation, ion fluxes, production of ROS, and the generation and regulation of
secondary signaling molecules, leading to the activation of defense genes, has been well
established as the mechanism of host plant defense to different pathogens (Annemart ¢
Pieterse, 2008) (Fig. 3 and Table S8).

CONCLUSIONS

We identified DEGs in cucumber leaves treated with chrysophanol alone, physcion alone,
and with chrysophanol and physcion combined, and obtained detailed expression profiles
of genes involved in the response to the powdery mildew pathogen. The Phy x Chr
treatment induced the highest number of DEGs. Functional annotation of DEGs identified
candidate genes involved in structural, chemical, and signaling defense responses. The
expression variations of structural, chemical, and signaling defense-related genes indicated
that they are coordinately regulated following powdery mildew pathogen infection after
chrysophanol and physcion treatment. Numerous DEGs in the Phy x Chr group are
associated with defense response-associated terms, such as cell wall-related categories, lipid
metabolism, response to stimulus components and oxidoreductase activity. This dramatic
transcriptional change in the Phy x Chr-treated leaves reflects the fact that the combined
treatment with physcion and chrysophanol was most closely associated with induction of
disease resistance. The overall findings from this study increased our understanding of
the molecular effects of Phy x Chr combination treatment in the cucumber and provide
useful information for further studies. These results also provide a basis for exploring the
complex gene expression and associated regulatory mechanisms of plant activator-induced
defense responses to pathogens.
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