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Abstract

Background: The identification and characterization of antigens expressed in Trypanosoma cruzi stages that parasitize
mammals are essential steps for the development of new vaccines and diagnostics. Genes that are preferentially expressed
in trypomastigotes may be involved in key processes that define the biology of trypomastigotes, like cell invasion and
immune system evasion.

Methodology/Principal Findings: With the initial aim of identifying trypomastigote-specific expressed tags, we constructed
and sequenced an epimastigote-subtracted trypomastigote cDNA library (library TcT-E). More than 45% of the sequenced
clones of the library could not be mapped to previously annotated mRNAs or proteins. We validated the presence of these
transcripts by reverse northern blot and northern blot experiments, therefore providing novel information about the mRNA
expression of these genes in trypomastigotes. A 280-bp consensus element (TcT-E element, TcT-Eelem) located at the 39
untranslated region (39 UTR) of many different open reading frames (ORFs) was identified after clustering the TcT-E dataset.
Using an RT-PCR approach, we were able to amplify different mature mRNAs containing the same TcT-Eelem in the 39 UTR.
The proteins encoded by these ORFs are members of a novel surface protein family in T. cruzi, (which we named TcTASV for
T. cruzi Trypomastigote, Alanine, Serine and Valine rich proteins). All members of the TcTASV family have conserved coding
amino- and carboxy-termini, and a central variable core that allows partitioning of TcTASV proteins into three subfamilies.
Analysis of the T. cruzi genome database resulted in the identification of 38 genes/ORFs for the whole TcTASV family in the
reference CL-Brener strain (lineage II). Because this protein family was not found in other trypanosomatids, we also looked
for the presence of TcTASV genes in other evolutionary lineages of T. cruzi, sequencing 48 and 28 TcTASVs members from
the RA (lineage II) and Dm28 (lineage I) T. cruzi strains respectively. Detailed phylogenetic analyses of TcTASV gene products
show that this gene family is different from previously characterized mucin (TcMUCII), mucin-like, and MASP protein families.

Conclusions/Significance: We identified TcTASV, a new gene family of surface proteins in T. cruzi.
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Introduction

Trypanosoma cruzi, a kinetoplastid protozoan parasite, is the

causative agent of the American trypanosomiasis, also known as

Chagas’ disease, a zoonotic disease that affects about 8 million

individuals in Latin America [1]. The disease is a chronic illness,

which symptoms appear 10 or more years after the beginning of

the infection, being the most common clinical forms the digestive

megas and heart failure, which can lead to death. Currently,

there is no effective therapy nor vaccine for the treatment or

prevention of the disease [1,2]. The identification and charac-

terization of proteins expressed in the mammalian stages of

T. cruzi (amastigotes and trypomastigotes) are key to drug and

vaccine development [3].

The genome of the CL-Brener clone of T. cruzi was already

sequenced by 2005 [4], but its final assembly has only been

partially completed recently, mainly because of the high number

of repetitive sequences [5]. Although 90% of the genes were

assembled in 41 chromosomes, the remaining 10%, the majority of

which belong to multigene families, are still excluded from the

assembly, as they have not been assigned to any chromosome.

Moreover, 64% of the predicted genes have been annotated as

hypothetical proteins –their function and/or expression is

unknown-, and it is possible that other genes may not have been
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annotated as genes at all. Therefore, the generation of expressed

sequence tags (ESTs, single pass reads obtained from randomly

selected cDNA clones) is still a valuable approach to map the

location of genes, to obtain experimental evidence about their

expression, to identify stage-specific transcripts, and to identify

their untranslated regions (UTRs). Previously, we reported the

sequencing and analysis of two full-length cDNA libraries

constructed from trypomastigotes and amastigotes [6]. Because

those libraries were not normalized and were prepared under

similar conditions, we were able to identify a number of EST

clusters that showed a significantly biased composition in the

number of sequences derived from either the trypomastigote and/

or the amastigote cDNA libraries. However, only one cluster

corresponded to a case of apparent increased expression in

trypomastigotes.

In the present work, we focused our attention on the

identification of mRNA transcripts over-represented in the

mammalian trypomastigote stage as compared to the vector-

associated epimastigote stage, using a subtractive PCR approach

[7]. Molecules that are differentially expressed in the trypomas-

tigote stage may be involved in the extracellular survival,

dissemination to different organs and cell invasion that are the

hallmarks of of this parasite stage. Besides finding a large

proportion of novel and differentially expressed mRNAs in

trypomastigotes (most of them with an unknown function), we

discovered a novel protein family, which we denominated

TcTASV. The expression profile and the genetic mapping of

TcTASVs in the CL-Brener, Dm28 and RA T. cruzi strains were

also investigated in this work.

Methods

Ethics Statement
All procedures requiring animals were performed in agreement

with the guidelines of the Animal Ethics Comitee of our

Institution.

Parasites
The CL-Brener clone (reference strain), RA (lineage II) and

Dm28 (lineage I) strains of T. cruzi were used [8,9,10].

Trypomastigotes and amastigotes were obtained in vitro by

infection of Vero cells grown in Minimum Essential Medium

(MEM)-3% foetal bovine serum. For the library construction

essentially pure CL-Brener trypomastigotes (with less than 3%

amastigote forms) were used. Epimastigotes were obtained from

axenic cultures, as previously described [11].

Construction, sequencing and analysis of the subtractive
library TcT-E

Total RNA was isolated from trypomastigotes and epimastigotes

with TRIzol (Gibco-BRL) and mRNA purified with polyA-Tract

mRNA isolation system (Promega). The PCR-Select cDNA

Subtraction kit was used for library construction following the

selective subtractive hybridization protocol provided by the

manufacturers (CLONTECH). First strand cDNA synthesis was

performed with 2 mg of polyA+ of each T. cruzi stage (trypomas-

tigote and epimastigote), oligo dT primer with a 59 RsaI site and

Superscript II reverse transcriptase (Gibco-BRL). Second strand

cDNA synthesis was performed with T4 DNA polymerase. After

RsaI digestion of double stranded cDNA, two different sets of

adaptors were ligated to the tester cDNA (trypomastigotes) but not

to the driver cDNA (epimastigotes). Two rounds of subtractive

hybridization in the presence of an excess of driver cDNA were

performed, thus leading to the enrichment of differentially

expressed sequences in the tester cDNA population that were

the templates for further suppressive PCR amplification performed

with adaptor-specific primers [7]. The subtraction efficiency was

verified by monitoring the PCR amplification of the T. cruzi

histone 2A transcript in subtracted and unsubtracted samples

(H2_39: tcttggacgccttcttcgct; H2_59: gtgatgccgagcctgaacaa). PCR

products enriched for tester differentially expressed sequences -

higher than 100 bp- were cloned into the pGEM T-Easy vector

(Promega). E. coli DH5a cells were transformed with ligations;

white colonies were randomly picked and the TcT-E library plated

in 384-well microplates.

Template preparation of clones for sequencing was carried out

as previously described [12]. Sequencing reactions were per-

formed in a Perkin Elmer 9600 thermal cycler by using a Dye

Terminator Cycle sequencing Ready Reaction Kit with AmpliTaq

DNA polymerase according to the protocols supplied by the

manufacturer (Applied Biosystems). Single-pass sequencing was

performed on an ABI 377 automated sequencer.

Bases were called by PHRED and an automated protocol for

the analysis of the data was used to assess sequence quality and

trim vector, adaptors and unreliable data from sequences [6].

Sequences longer than 100 bases were further analyzed. Sequence

similarity searches against in-house databases were run locally

using the BLAST suite of programs as distributed by the NCBI in

a PC computer running Linux. Sequences were also compared

against the NCBI non-redundant protein or nucleotide databases

by using BLASTX or BLASTN programs respectively (cut off

values: BLASTN p,10e-40; BLASTX p,10e-5) [12,13].

Northern, reverse northern blot and southern blot
analysis

For Northern blot, total RNA (20 mg/lane) from trypomasti-

gotes and epimastigotes was electrophoresed on 1.5% agarose

formaldehyde gels and transferred to nylon membranes (Zeta-

Probe, BioRad). All TcT-E clones used as probes were labeled

with 32P by PCR using adaptor-specific primers (Nest_2R:

agcgtggtcgcggccgaggt; Nest_1: tcgagcggccgcccgggcaggt). Hybrid-

ization and washing were performed at 63uC following standard

procedures [14]. The complete ORF Tcruzi_1863-4-1211-93

(TriTrypDB.org) was amplified by PCR from the clone G53E20

(GenBank Acc AZ050960) from a random genomic library DNA

Author Summary

Chagas’ disease, caused by the kinetoplastid protozoan
parasite Trypanosoma cruzi, is endemic in Latin America. At
present there are neither vaccines for prevention nor
totally effective drugs for the treatment of the disease. T.
cruzi has a complex life cycle alternating between a
reduviid insect (the vector) and a mammalian host, where
different parasite stages are found. Differentially expressed
genes are the hallmark of the specialized biology of each
life cycle stage. The aim of this work was to identify genes
expressed in the trypomastigote stage (a blood-circulating
stage that invades new cells and spreads the infection in
different organs of the mammalian host) that could be
used to develop new vaccines or diagnostics. An initial
screening of trypomastigote transcripts was performed by
sequencing of an epimastigote-subtracted trypomastigote
cDNA library. Besides identifying a large proportion of
differentially expressed mRNAs, we discovered a novel
protein family, which we denominated TcTASV.

TcTASV, a New Family of Proteins in T. cruzi

www.plosntds.org 2 October 2010 | Volume 4 | Issue 10 | e841



[12], labeled by PCR and used as probe in northern and southern

blot experiments.

For reverse northern blots, clones of the TcT-E library were

picked, grown in LB-ampicillin in 96-well plates and subjected to

colony-PCR using 1 ml of culture and primers Nest_2R and

Nest_1 [15]. The sizes of the inserts were checked on a 2% agarose

gel and PCR products were then denatured and dotted in

duplicate onto nitrocellulose membranes. Filters were hybridized

with cDNA probes synthesized from total RNA of trypomastigotes

and epimastigotes by reverse transcription using 32P-dCTP.

Plasmids containing tubulin and SAPA (shed acute phase antigen)

T. cruzi genes were dotted on membranes as positive controls,

whereas a plasmid containing a non-related (mouse) gene was used

as a negative control.

For southern blots, DNA was prepared from epimastigotes of

the CL-Brener strain by using the conventional Proteinase K

phenol-chloroform method and digested with the indicated

restriction enzymes. Electrophoresis, hybridization and washing

were performed by standard procedures [14].

Experimental identification of TcTASVs and TcT-E
element

The complete TcT-E element (TcT-Eelem) was obtained from

CL-Brener genomic DNA by PCR using Pfu DNA polymerase

and the primers TcT-Ee_pp_Hind (taaagcttccgggcaggtacagtat)

and TcT-Ee_pp_Xho (atctcgagtgagaatcccgcaggact).

Mature mRNA transcripts containing both the TcT-Eelem and

the different upstream open reading frames (ORFs) were identified

by RT-PCR and sequencing in the CL-Brener strain. RNA was

treated with RQ1 DNase (Promega Corp., Madison, USA) and

first strand cDNA synthesized using an oligo dT primer. PCR was

performed using a 59 primer specific for the T. cruzi miniexon

containing an EcoRI site (cccgaattcaacgctattattgatacagtttctgt) and

a 39 antisense primer corresponding to the 39 region of the TcT-

Eelem (TcT-Ee_int_R: aagaaatgattcggcaggaa). PCR products were

gel- excised, purified using QIAex II (Qiagen) and cloned.

Alternatively, after first strand cDNA synthesis, PCR was

performed with primers corresponding to the 59 and 39 conserved

regions of the majority of the ORFs (CDS_desc_L: gtcgagcgactc-

tacgacg; CDS_desc_R: acagcagcacagacaaggg) or with the 59

CDS_desc_L and the 39 T-Ee_int_R primers. Bands were also

gel-excised, cloned and sequenced. Conceptually translated

proteins corresponding to the cloned CDS were aligned by the

Clustal method.

To search for TcTASV in other T. cruzi strains, genomic DNA

from Dm28 (lineage I, currently T. cruzi I) and RA (lineage II,

currently T. cruzi VI) was amplified by PCR using primers

CDS_desc_L and CDS_desc_R [8,9,10]. The bands obtained

were gel-purified, cloned and sequenced on both strands on an

ABI 3130. The sequences of each clone were assembled using the

program DNAbaser. Phylogenetic trees were constructed from

amino acid alignments using the Neighbour Joining method, and

bootstrapped using 1000 permutations. The trees were rooted

using 6 sequences as outgroups, and were visualized with

the TreeView program (http://taxonomy.zoology.gla.ac.uk/rod/

treeview.html).

In silico analysis of TcTASV and TcT-Eelem sequences
The nucleotide sequence AF080220 (GenBank Accession number)

was used to carry out a BLASTN search against the TcT-E database.

A multiple sequence alignment was computed using the Clustal

Method [16]. The consensus sequence of the TcT-E element (TcT-

Eelem) was used as bait to search the unassembled whole genome

shotgun sequences (GSSs) of T. cruzi at TIGR (http://tigrblast.tigr.

org/er-blast/index.cgi?project = tca1). GSSs identified in this way

were assembled into contigs, that were then visualized and edited in

Artemis to identify in silico additional TcTASVs [17]. Motif scanning

for signal peptide, cleavage sites (SignalP) and Ser, Thr, and Tyr

phosphorylation sites (NetPhos) was performed in the ExPASy

proteomics server at http://www.expasy.org/. The prediction of

glycosylphosphatidylinositol (GPI) anchor addition sites, was per-

formed using DGPI (run locally) and FragAnchor (http://navet.ics.

hawaii.edu/,fraganchor/NNHMM/NNHMM.html) [18].

TcTASV-A peptide and generation of antiserum
The peptide RQ28 (GKLRWRFQGEKDWRKC) comprising

amino acids 57 to 72 of TcTASV-A1 (GenBank AM492199) was

purchased from Sigma-Genosys. This sequence was chosen

because it is present in the conserved, noncleaved N-terminal

region of the protein family which is also predicted not to be

glycosylated or modified. The KLH coupled peptide was used to

develop an anti-TcTASV-A specific serum in rabbit. Total IgG

from anti-RQ serum was purified with protein G columns

(HiTrap, GE Healthcare Life Sciences) and specific anti-

TcTASV-A antibodies were purified by column affinity with

SulfoLink Kits coupled with the RQ28 peptide (Thermo

Scientific). Antibodies were used at 0.1 mg/ml.

TcTASV expression in T. cruzi
Protein extracts of T. cruzi epimastigotes, trypomastigotes and

amastigotes were resuspended in cracking buffer (60 mM Tris-

HCl pH 6.8; 2% SDS, 0.1% glycerol, 5% â-mercaptoethanol) in

the presence of protease inhibitors at a density of 1–26106

parasites/ml. Conventional SDS-PAGE was performed on 12%

polyacrylamide gels, and proteins were then transferred to

nitrocellulose filters. Blots were incubated with anti-TcTASV-A

antibodies, washed, incubated with an anti-rabbit secondary

antibody labelled with horseradish-peroxidase (DAKO) and

developed with chemiluminescence.

Note: Nucleotide sequence data reported in this paper

have been submitted to the EMBL/GenBank/DDBJ databases

with the accession numbers AM492199–AM492211, GW883555–

GW883875, HO052091–HO052172 and FN599093–FN599167.

Results

Most of the clones in the epimastigote-subtracted
trypomastigote cDNA library (library TcT-E) are new
expression tags that are specific for the trypomastigote
stage of T. cruzi

To gain information about the genes that are differentially

expressed in the trypomastigote (circulating stage in mammals) but

not in the epimastigote (replicative stage in the insect vector) of T.

cruzi, we built a library of trypomastigote cDNA subtracted with

epimastigote cDNA (TcT-E library). Partial sequencing of this

library provided high-quality sequences of 403 clones (GenBank

Acc GW883555–GW883875 and HO052091–HO052172). With

this set of data sequence (BLAST) analyses were performed against

various databases of trypanosomatid ESTs (T. cruzi trypomasti-

gotes, T. cruzi epimastigotes, ESTs of all kinetoplastids) and against

protein databases (nr at GenBank and SwissProt) (Fig. 1A). The

BLAST reports for all searches can be accessed online at http://

genoma.unsam.edu.ar/projects/tct-e/tct-e.p.html (Table S1).

Briefly, more than 46% of the TcT-E dataset do not have any

known mRNA or protein homologue and only two clones give

positive hits against all databases (Fig. 1A).

TcTASV, a New Family of Proteins in T. cruzi
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Figure 1. TcT-E: Trypanosoma cruzi, epimastigote-subtracted trypomastigote cDNA library; overview. (A). Sequence similarity
analysis of TcT-E clones against protein and ESTs databases. All 403 sequenced TcT-E ESTs were compared to sequences in protein
databases (nr, SwissProt) by BLASTX and to kinetoplastid ESTs by BLASTN. Matches were considered significant if they showed an E value,1025 for
proteins and ,10240 for DNA. A table listing the detailed matches is provided online at http://genoma.unsam.edu.ar/projects/tct-e/tct-e.p.html.
mRNA corresponding to TcT-E clones is preferentially expressed in trypomastigotes. (B) Northern blot: Total RNA (20 mg/lane) from T.
cruzi trypomastigotes and epimastigotes was electrophoresed and blotted on nylon membranes by standard procedures. Each blot was hybridized
with one of the indicated TcT-E clones as probe. Tcgp63-I was used as control of epimastigote preferential mRNA expression [55]. To check equal
loading of RNA, the membranes were stripped and rehybridized with a T. cruzi 24S ribosomal probe (bottom panel). (C) Reverse northern blot:
Thirty-five TcT-E clones were picked, amplified by PCR and dotted on nylon membranes in duplicate. Two identical membranes were prepared and
hybridized with trypomastigote and epimastigote 32P-labelled first-strand cDNA (exposure time: 24 h). The scheme on the left indicates which TcT-E
clone (i.e. 01n20, 01k14, etc) was dotted in each position of the membrane as well as the corresponding cluster and contig (i.e. cl1, ct4; cl1, ct5; etc).
When appropriate, the BLAST result of the TcT-E clone is also indicated. Controls were dotted on row H: columns 3 and 4: TcTubulin; columns 5 and 6:
pGEM-T Easy with non-related insert; columns 7 and 8: TcSAPA. Abbreviations: C. elegans: C.e.; E. histolytica: E.h.; T. gondii: T.g.; T. cruzi: T. c.; S.
pombe: S.p.; L. major: L.m.; L. tarentolae: L.t.; L. donovani: L.d; Human: H; M. musculus: M.m.
doi:10.1371/journal.pntd.0000841.g001
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The comparison of the TcT-E dataset against T. cruzi ESTs

showed that (a) only 3.5% of them corresponded to trypomasti-

gote-specific tags that were identified prior to this work and (b)

38% of TcT-E clones have significant matches with epimastigote

sequences (Fig. 1A). The latter was expected in part because of the

high number of epimastigote ESTs available in public databases.

This could also indicate that these transcripts, although present in

both stages, might be expressed at a higher level in trypomastigotes

than in epimastigotes, since our library had been subtracted with

epimastigote cDNA. By Northern blot (Fig. 1B) and reverse

Northern blot on 86 randomly picked TcT-E clones (data not

shown), we were able to confirm that even in those cases were a

TcT-E clone had identity with ESTs obtained from epimastigotes,

the mRNA levels were consistently higher in trypomastigotes than

in epimastigotes. Sixty-eight (16.9%) clones had similarity to

known proteins (nr and SwissProt databases) and 33 of them

matched previously described trypomastigote antigens like the

flagellum-associated surface protein FL-160 (gb|AAA30196) or

sialidase homologues (AF051695 and AF051696) (Table S1). The

top 50 hits against SwissProt and GenBank (nr) are provided in

Table S2. The whole TcT-E dataset can be searched by blast at

http://genoma.unsam.edu.ar/projects/tct-e/.

To compensate for sequencing errors and to obtain longer

sequences, we next generated a non-redundant TcT-E EST set by

clustering (using the blastclust tool from the NCBI C Toolkit),

which was composed of 23 clusters containing 261 sequences and

142 singletons (ESTs with no similarity against any other EST)

(Table S3). EST clones belonging to clusters with the largest

number of sequences as well as other clones that showed

significant similarity to SwissProt and/or GenBank nr databases

were selected to analyze their expression by reverse northern blot

(Fig. 1C). We observed that most of the TcT-E clones were

actually overexpressed in trypomastigotes, which again confirms

the correct subtraction of the library, and that the sequences

generated provide information about the transcripts differentially

expressed in the trypomastigote stage.

A 280-bp element that is highly represented in the TcT-E
library is found at the 39 UTR of several genes

The larger groups of sequences in the clustered TcT-E EST

dataset contained sequences that had no similarity against

sequences in other databases. To further characterize these

sequences, we then attempted to find any motif or conserved

sequence in these contigs. By lowering the cut off value for

BLASTN (e#10e-5), we found that some contigs in cluster 1

showed similarity with a 100-bp region in the 39 untranslated

region (UTR) of the flagellar T. cruzi FL-160-2 gene (GenBank Acc

AF080220) [19,20]. By computing a multiple sequence alignment

of the TcT-E clones that presented identity in these 100 bases, we

reconstructed a consensus sequence of 280 bp (Fig. 2A). We

named this 280-bp element TcT-E element (TcT-Eelem) because

of its high representation in the subtractive TcT-E library. The

first 27 and last 17 bases of the TcT-Eelem (bold in Fig. 2A) are

polypyrimidine tracts and bases 66 to 165 (in italic) correspond to

those similar to the 39 UTR of FL-160-2. Another feature of the

TcT-Eelem is the presence of a variable number (between 3 and 5)

of TTA repeats (bold underlined in Fig. 2A). By southern blot, we

found a pattern indicative of multiple genomic copies of the TcT-

Eelem since several bands were detected, even though none of the

restriction enzymes used are predicted to cut into the probe

(Fig. 2B). Because the similarity of the TcT-Eelem to the 39 UTR of

the FL-160 gene was limited to 100 bp out of the 280 bp of the

TcT-Eelem, we reasoned that TcT-Eelem might be associated to

other genes (i.e. be present in gene contexts other than FL-160

genes).

The sequence of the TcT-Eelem was used to search the T. cruzi

genome raw data (unassembled whole genome shotgun sequences,

or contigs assembled by the genome project) and the position of

the TcT-Eelem relative to upstream open reading frames (ORFs)

was determined. Interestingly, the polypyrimidine tracts contained

within the TcT-Eelem were always found 30–70 bases downstream

of the stop codon of a coding region (CDS), in different contigs.

The close proximity of the TcT-Eelem to the end of the upstream

coding sequence strongly suggested that the TcT-Eelem was part of

the 39 UTR of the gene. By southern blot, using a probe

corresponding to the complete ORF of a predicted protein

associated with the TcT-Eelem (currently identified as ORF

Tcruzi_1863-4-1211-93, TriTrypDB database [21]), we observed

a hybridization pattern similar to that obtained using the TcT-

Eelem as probe (Fig. 2B), thus reinforcing the genetic linkage

between the TcT-Eelem and the identified ORFs (data not shown).

By northern blot analysis we confirmed that, like most of the ESTs

from the TcT-E library, this ORF was also differentially expressed

in the trypomastigote stage (Fig. 2C). Interestingly, fragments of

several of the CDSs found associated with the TcT-Eelem in this

bioinformatic analysis were also represented in the TcT-E library

(for example clones TcT-E01p24 and TcT-E01k23, corresponding

to GenBank GW883736 and HO052122, respectively, Fig. 1C).

The new TcTASV protein family has the TcT-E element as
part of its 39 UTR

A schematic diagram of the CDS - TcT-Eelem arrangement

found by in silico analysis is shown in Figure 2D. Although different

coding sequences were located upstream of the TcT-Eelem, we

observed that the amino- and carboxy–termini of those concep-

tually translated proteins were conserved, suggesting that these

ORFs are members of the same family. Besides, we detected three

bands by northern blot when using the clone TcT-E01k23

(GenBank HO052122) as probe, which corresponds to the last 270

nucleotides of one TcT-Eelem-associated ORF (not shown). Thus,

both in silico and experimental observations suggested the presence

of a new protein family sharing conserved amino- and carboxy-

termini and the 39 UTR of the mRNA (TcT-Eelem). To further

investigate this hypothesis we looked for the presence of full-length

transcripts, by performing RT-PCR experiments using a reverse

primer specific for the 39 end of the TcT-Eelem (TcT-Ee-intR) and

a forward primer specific for the T. cruzi miniexon (ME) that is

added by trans-splicing to all RNA PolII transcripts in T. cruzi [22].

In parallel, other RT-PCR reactions were designed to amplify the

CDSs codifying for this new protein family irrespectively of their

untranslated region, using the primers indicated in Figure 2D.

Bands of ,1500 bp and ,900 bp obtained with primers ME/

TcT-Ee-intR as well as the three bands obtained in trypomasti-

gotes with CDS-L/CDS-R primers (Fig. 2E) were cut from the gel,

cloned and sequenced. Thirteen different transcripts were

identified and deposited at GenBank with the accession numbers

AM492199–AM492211. The coding region of the transcripts was

conceptually translated and aligned, confirming that they belong

to a multigene family with conserved amino- and carboxy-termini

and a variable central core (Fig. 3A). The proteins are enriched in

Ala, Ser and Val residues, and therefore, the family was named

TcTASV (for Trypomastigote Alanine Serine Valine rich protein).

According to the length of the central region, we were able to

define three subfamilies (A, B and C, see Fig. 3A), with a conserved

Glu-Ala-Pro motif in the variable region (asterisks in Fig. 3A).

A visualization of the alignment in Fig. 3A using the partial

order multiple sequence alignment visualizer POAVIZ (Fig. 3B)
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[23] helps to define the overall structure of how sequences match

and diverge in the alignment, and facilitates the identification of

complex branching structures, such as domains or large-scale

insertions/ deletions. Aligned regions are joined together in the

partial order graph whereas regions that are unaligned are

separated, clearly showing the shared and divergent regions of the

3 TcTASV subfamilies, schematically represented in light blue

(TcTASV-A), green (TcTASV-B) and orange (TcTASV-C)

(Fig. 3B).

The predicted molecular weights of the subfamilies are 18 kDa,

27 kDa and 36 kDa for the A, B and C apoproteins respectively.

All proteins had a predicted signal peptide (arrows above and

below the alignment in Fig. 3A show the predicted cleavage site)

and a consensus sequence for the addition of a GPI anchor (red

Figure 2. The TcT-E element (TcT-Eelem) is present in multiple copies in the T. cruzi genome and is associated with different coding
regions. (A) Identification of an enriched 280-bp element in the TcT-E library. In silico screening of the TcT-E library using the FL-160-2 39

UTR as bait depicted a large number of clones displaying homology with nucleotides 372–472. After analyzing a multiple sequence alignment of the
identified TcT-E clones, a 280-bp consensus sequence with 39 and 59 polypyrimidine tracts (bold) and a variable number of TAA repeats (bold
underlined) was obtained, and defined as TcT-Eelement (TcT-Eelem). (B) Analysis of TcT-Eelem copy number. T. cruzi genomic DNA (CL-Brener
strain) was digested with restriction enzymes having no internal site within the TcT-Eelem, electrophoresed on TAE-agarose gel and transferred by
standard procedures. A probe specific for the TcT-Eelem was synthesized and labelled by PCR with 32P. (C) The mRNA of the CDSs located
upstream of the TcT-E are preferentially expressed in trypomastigotes. Northern blots probed with the complete ORF Tcruzi_1863-4-1211-
93 (http://TriTrypDB.org). (D) The TcT-Eelem is present 30–70 bp downstream of a stop codon in many coding sequences in T.cruzi. The
consensus sequence of TcT-Eelem was used as bait to search the T. cruzi database; WGSs with more than 80% identity to TcT-Eelem and longer than
1000 bp were retrieved and analyzed. The schematic map of the relative position of TcT-Eelem in relation to coding sequences in T. cruzi genome is
shown. (E) Mature mRNA transcripts contain both the TcT-Eelem and different CDSs. Total RNA from trypomastigotes (T) and
epimastigotes (E) was purified and treated with RQ1 DNase. First strand cDNA was synthesized by RT using an oligo dT primer. PCR was performed
using a 59 primer specific for the T. cruzi miniexon (ME) and a 39 antisense primer corresponding to the 39 region of the TcT-Eelem. Alternatively, PCR
was performed with primers corresponding to the 59 and 39 conserved regions of most CDSs (CDS-L and CDS-R) or with a 59primer specific for the
CDS and a 39 primer specific for the TcT-Eelem. The relative position of the primers is indicated in Fig. 2D. PCR- and RT- denote the negative controls
for each reaction.
doi:10.1371/journal.pntd.0000841.g002
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box in alignment), suggesting that the proteins could be located at

the parasite surface. A high proportion of Ser and Thr that could

be glycosylated (as found for other surface proteins of T. cruzi) were

also identified [24,25].

Surprisingly, many TcTASVs genes were not annotated as

genes in the T. cruzi genome (available at http:// TriTrypDB.org)

[4,5,21]. For example, only the TcTASV-A 2, 4 and 8 genes

(GenBank AM492200, AM492209 and AM492210, respectively)

were annotated as protein coding genes (hypothetical), while all

other TcTASVs-A were found as unannotated ORFs in the data

base (Table S4). Besides, most TcTASVs-A have been annotated

starting in an ATG codon (Met residue) located ,145 aa upstream

of the one we identified here as the site of trans-splicing, based on

the amplification of mature mRNAs using a primer specific for the

59 spliced leader. The best hits found in TriTrypDB for each

TcTASV gene and the corresponding additional information

(assigned gene number, contig, identity and other observations

about the annotation of these genes is presented in Table S4.

The new TcTASV family of proteins is found only in
T. cruzi and is conserved among the parasite lineages

TcTASV genes are only present in T. cruzi. Sequence similarity

searches revealed no orthologues in the genomes of T. brucei and

Leishmania spp, and in ESTs obtained from T. rangeli, the most

closely-related trypanosomatids. Based on this observation it is

possible to hypothesize that TcTASVs may be involved in T. cruzi-

specific strategies of survival and/or immune evasion.

Although we obtained experimental evidence supporting the

presence of 13 TcTASVs in CL-Brener (nine TcTASVs-A, two

TcTASVs-B and two TcTASVs-C), it is likely that the TcTASV

family is composed by a higher number of members. Recently,

Arner et al. developed a public database specifically designed for

the identification of repeated genes in the T. cruzi genome [26], the

assumption being that the genes present in high copy numbers

were collapsed during the assembly. By using this resource, the

estimated number of genes was predicted to be 14 for TcTASVs-

A, 6 for TcTASVs-B and 22 for TcTASVs-C. Our own detailed

inspection of the T. cruzi data base allowed us to identify 20

TcTASVs-A, 5 TcTASVs-B and 13 TcTASVs-C members, giving

a total number of 38 genes for the TcTASV family (Table S5,

additional material). In the case of TcTASV-A and B families,

when predicted as genes, they were annotated as hypothetical

proteins. However, 6 out of 7 TcTASV-C genes were annotated as

mucin-like genes. The mucin-like family is another family of

surface proteins in T. cruzi and, as currently annotated in

TriTrypDB, is composed of 28 genes [21]. Although the overall

structure of mucin-like genes (conserved amino- and carboxy-

termini, predictions for signal peptide and GPI anchor addition)

resembles the one for TcTASV genes, mucin-like and TcTASV

have very different amino acid composition. The hypotheses that

(a) TcTASV is a protein family different from the mucin-like gene

family, and (b) the genes that we identified here as TcTASV-C

(but were annotated as mucin-like) are indeed members of the

TcTASV family and not of the mucin-like family, were tested by a

phylogenetic analysis. Starting with an alignment that included all

TcTASV and mucin-like genes, we computed a neighbor-joining

phylogenetic tree (Figure S1). The tree clearly shows two major

branches: one for mucin-like genes and another for TcTASVs

genes (including these 6 incorrectly annotated mucin-like genes).

On the other hand, the monophyletic origin of TcTASVs in

relation to other structurally similar protein families (TcMUCII,

mucin-like, and MASP), was also tested through a phylogenetic

analysis of 15 sequences from each family (Figure S2) [4,27,28,29].

The limited phylogenetic distribution of the TcTASV family (so

far only detected in T. cruzi), prompted us to investigate the

presence of TcTASV genes in T. cruzi strains from other

evolutionary lineages (T. cruzi I and II). For this, we amplified

the genes of the TcTASV family from two representative strains

(Dm28 and RA, respectively) using primers specific for the 39 and

59 conserved regions. Each of the amplicons obtained for each

strain and for each TcTASV subfamily, was cloned to build a

mini-library, in order to identify as many members as possible. We

obtained 73 clones from the RA strain and 41 from Dm28 strain,

but, for further analysis, we selected only those who presented

unique sequences for each strain (RA: 48; Dm28: 28; GenBank

Acc FN599093–FN599167) (Fig. 4, Table). The 76 unique

sequences obtained for RA and Dm28, together with 8 sequences

of CL-Brener (TcTASV-A: 4, TcTASV-B: 2 and TcTASV-C: 2)

were used to compute a phylogenetic tree, using sequences of

other T. cruzi glycoprotein families (mucin-like, TcMUCII and

MASP) as outgroups (Fig. 4). All three (TcTASV-A, B and C)

subfamilies were identified in this dataset. We also identified a new

subgroup composed of six Dm28 and one RA sequences with

mixed characteristics that could constitute a new TcTASV

subfamily with some characteristics shared with members of the

A subfamily (amino acid sequence) and others shared with

members of the C subfamily (length) (Fig. 4, gray box). As in the

case of the CL-Brener strain, the subfamilies with most members

were TcTASV-A and TcTASV-C and, interestingly, we noted the

absence of the TcTASV-B subfamily in the Dm28 strain, which

could be explained either by the absence of TcTASV-B genes in

this strain or by the accumulation of mutations that prevented the

amplification of members of this subfamily in our PCR

experiments. Another distinguishing characteristic between the

two evolutionary lineages of T. cruzi is that proteins of the

subfamily C found in lineage II (RA and CL-Brener) are longer

than the same proteins found in lineage I (Dm28) (Fig. 4, Table).

To assess the expression of TcTASV family, we took advantage

of proteomic data, available in TcruziDB/TriTrypDB, together

with experimental data obtained in this work. Mass spectrometry

data strongly suggest the differential expression in trypomastigotes

of al least 1 out of 4 TcTASV-A genes -Tc00.1047053506337.80,

Figure 3. The coding regions associated with the TcT-Eelem constitute the novel TcTASV protein family that could be grouped into
three sub-families. (A) PCR products of Fig. 2E were cloned and sequenced. The 13 different mRNA sequences obtained were conceptually
translated and aligned by the Clustal method. A broad protein family with all members sharing conserved N- and C- termini, a signal peptide (arrow
shows the predicted cleavage site) and a consensus sequence for the addition of a GPI (red box) is made up by all identified proteins. Three sub-
families (A, B, C) were defined according to sequence identity and the predicted relative molecular mass (Mr) of the proteins. RQ and ME denote
clones derived from a PCR made with ME/TcT-Eelem primers; T or E denote that the PCR was performed with CDS-L/CDS-R primers using
trypomastigote or epimastigote cDNA as template, respectively. The complete mRNA sequences were deposited at GenBank under the accession
numbers AM492199–AM49211. (B) Overall structure of TcTASV genes. The positions where the sub-families match and diverge in the alignment are
presented according to blocks of deletions/insertions of eight amino acids as predicted by the Partial Order Alignment algorithm (and visualized
using POAVIZ [25]). The length of the segments and numbers above them indicate the number of amino acids residues contained in each block. A
unique color is assigned to each sequence (or to closely-related sequences) in the alignment and the height of the rectangle corresponds to the
number of sequences grouped under the same colour (TcTASV-A: ligth blue; TcTASV-B: green; TcTASV-C: orange).
doi:10.1371/journal.pntd.0000841.g003
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Figure 4. The TcTASV family is conserved among different Trypanosoma cruzi lineages. Genomic DNA from Dm28 (lineage I) and RA
(lineage II) T. cruzi strains was amplified by PCR using primers for the conserved TcTASV 39 and 59 regions. The bands obtained were gel-purified,
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Tc00.1047053506337.100, Tc00.1047053510717.10 and,

Tc00.1047053510717.20- that share a peptide that was detected

only in this parasite stage (KPGEYESVTDDCAR, 2 spectra)

(Table S5) [28,30]. On the other hand, proteomic evidence of the

expression of the TcTASV-A8 gene (GenBank AM492210;

Tc00.1047053506573.5) has been reported for trypomastigotes

(five mass spectra) and amastigotes (one spectrum) [28] and can be

accessed through TcruziDB.org [30]. The peptide identified is also

100% identical to amino acids 89–104 of other TcTASV gene

products (A9: GenBank AM492211, A7: GenBank AM492202

and A5: GenBank AM492201). Moreover, the peptide is

completely conserved (15/16 identical aa) in all the other

TcTASV-A members.

The expression pattern of members of the TcTASV-A

subfamily was also analyzed using affinity-purified antibodies that

had been generated against a peptide that is conserved throughout

the subfamily (see Methods). We were able to find TcTASV-A

proteins only in cell-derived trypomastigotes, detecting two bands

of ,18 kDa by western blot (Figure S3).

Discussion

Our first goal in this work was the identification of genes

preferentially expressed in the trypomastigote stage of Trypanosoma

cruzi, the etiological agent of Chagas’ disease. To achieve this goal

we followed an approach based on the sequencing of a subtractive

cDNA library. Most of the clones of this TcT-E library represent

mRNAs that are preferentially expressed in trypomastigotes, as

confirmed by northern and reverse northern blots (Fig 1). The

sequence information derived from the TcT-E library allowed us

to identify genes that were not previously described in T. cruzi. For

example, we found several clones with similarity to proteins that

have been proposed to function in processes such as rRNA

processing, ribosome assembly and the control of cell cycle in

other eukaryotic organisms (Bop1, Nop56, BEM, Cwf17; see

Tables S1 and S2) [31,32,33,34]. Little is known in T. cruzi about

these checkpoints in the cell cycle and it is interesting to note that

the preferential expression of these mRNAs was detected in a non-

replicative stage of the parasite. The lack of transcriptional control

in trypanosomatids is well known, and, therefore, stage-specific

differences in mRNA abundance are likely to be the result of

selective mRNA stabilization and/or the absence of degradation

mechanisms for those transcripts [22]. Therefore, one possibility is

that these transcripts are being accumulated for the production of

the corresponding proteins once the trypomastigote differentiates

into the replicating amastigote within the host cell, or when the

trypomastigote differentiates into epimastigotes upon entering the

insect vector.

After clustering the TcT-E dataset we identified a sequence that

was found to be over-represented in trypomastigotes and that has a

subregion of 100 bp with high similarity to the 39 UTR of the T.

cruzi flagellar antigen FL-160-2. This observation called our

attention because the FL-160-2 gene is a member of a numerous

family that is differentially expressed on the surface of trypomas-

tigotes and is involved in parasite virulence [19,20]. All these facts

suggested that the 100 bp region could be part of a longer conserved

region, and, indeed, we reconstructed a 280 bp element by multiple

sequence alignment of TcT-E clones that matched the 100-bp motif

that we named TcT-E element (TcT-Eelem), because of its high

representation in the TcT-E library. Although we ended up

associating the TcT-Eelem with the 39 UTR of the new TcTASV

family, we also observed that part of the TcT-Eelem (,120–150 nt)

is also found downstream of genes that do not belong to this family.

For example, some hypothetical proteins, trans-sialidase genes or

other coding sequences harbouring part of the TcT-Eelem were

identified (Tc00.1047053507875.70, Tc00.1047053504533.40,

Tc00.1047053507491.20). Interestingly, in all those cases, the

120–150-bp subregion of the TcT-Eelem is farther downstream from

the stop codon than in the case of TcTASVs genes. Post-

transcriptional cis-acting elements conserved among different genes

and included into more extended 39 UTRs have been previously

identified. The existence of a regulatory region of 770 bp that is

specific for amastin genes and that contains a 450-bp zone shared by

amastin and other developmentally-regulated mRNAs has been

reported in Leishmania [35]. This 450-bp sub-region (currently

known to be part of the LmSIDER1 subfamily) mediates the

translational regulation of mature transcripts in response to elevated

temperature, the main environmental change that the parasite

encounters upon its transmission from the vector to the mammalian

host [36,37]. Taking this into account, it could be hypothesized that

a general stage-specific regulation of genes can be achieved in a

similar way in T. cruzi. The 120–150-bp motif that is shared by

different genes preferentially expressed in trypomastigotes, such as

FL-160, TS and TcTASVs, could be involved in this stage-specific

expression, probably forming part of a post-transcriptional regulon

that allows the coordinated expression of these genes [38].

The new TcTASV gene family described in this work is

composed of 38 members in the CL-Brener strain, none of which

show significant similarity to other surface proteins in T. cruzi. A

meticulous comparative analysis between sequences of TcTASV,

MASPs, TcMUCII and mucin-like genes, shows that each of the

families diverge in a diferent branch of the computed phylogenetic

tree, thus reinforcing the idea that these are indeed different

protein families.

After the recent re-assembly of the genome of T. cruzi [5],

previously annotated genes that we have now identified as

TcTASVs could be found in 5 chromosomes, with a high

proportion of TcTASVs-A on chromosome 16 and almost all

annotated TcTASV-Cs on chromosome 24. TcTASV genes are

apparently not arranged in tandem and most of them are

surrounded by other hypothetical proteins (they are not

TcTASVs). However, the majority of the TcTASV genes were

not annotated by the genome-sequencing consortium and are still

left out of the final genome assembly (they are only present as

ORFs identified in unassembled or small partially assembled

contigs). This is highly suggestive of assembly problems that occur

frequently when highly similar genes are present in a moderate to

high copy numbers. Therefore, it is possible that the copy number

of TcTASVs genes in the CL-Brener genome could have been

underestimated because of the collapse of repeated genes into

fewer copies during assembly. However, the identification of a

similar number of members of the TcTASV family in another type

II strain (RA) of T. cruzi probably indicates that for lineage II the

cloned, sequenced on both strands and assembled. Table. Summary of TcTASV diversity in the RA and Dm28 strains. The ratios indicate the number
of different sequences among the total number of clones analyzed. Phylogram. A phylogenetic tree was constructed from amino acid alignments
using the Neighbour-Joining method, bootstrapped using 1000 permutations, and rooted using sequences of 3 T. cruzi glycoprotein families as
outgroups. Sequences are coloured according to the TcTASV subfamily to which they belong. Outgroups: MASP (Tc00.1047053506067.70 and
Tc00.1047053503973.190; orange rectangles); TcMUCII (Tc00.1047053477957.10 and Tc00.1047053506245.210; pink circles); mucin-like
(Tc00.1047053507059.10 and Tc00.1047053509115.60; blue hexagons).
doi:10.1371/journal.pntd.0000841.g004
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number of TcTASV genes is around 45, whereas those for lineage

I is probably around 30, i.e., the lowest number. These conclusions

were derived from PCR experiments using oligonucleotides

designed on highly conserved regions. Therefore, there is still

the possibility that other TcTASV genes could not be amplified by

these primers.

Complex glycoproteins cover the surface of all the develop-

mental stages of trypanosomatid human pathogens [2,39]. Among

the species-specific families, the best-studied ones are probably the

mucins of T. cruzi and the proteophosphoglycans (PPGs) of

Leishmania spp. Both protein families are rich in Ser, Thr and Pro

residues, are retained in the membrane by GPI anchors and can

be released from the parasite. In the case of TcTASVs, the amino

acid composition is different, being enriched in Ala, Ser and Val.

Regarding their expression, different groups of mucins and

proteophosphoglycans are developmentally expressed, i.e.

TcMUC I and II are expressed in the mammalian stages of T.

cruzi, whereas TcSMUGs are only found in insect-derived stages

([40] and reviewed in [41,42,43]). In Leishmania, filamentous PPGs

are secreted by promastigotes and have been implicated in

protection from digestive enzymes in the insect midgut and in the

formation of a plug in the sandfly digestive tract, which causes an

increased frequency of feeding and correlates with parasite

invasion and virulence [44,45,46]. On the other hand, mem-

brane-bound PPGs have been implicated in parasite binding and

invasion of macrophages [47,48,49]. For both mucins and PPGs

several mechanisms leading to immune system evasion have also

been demonstrated [41,42,49,50,51,52,53]. Therefore, it is clear

that the parasite expresses different kind of mucins or PPGs, even

with a differential cellular localization, in the different develop-

mental stages in order to invade and persist in the parasitized host.

In this work we demonstrate that TcTASV-A are expressed in

trypomastigotes and could not be detected in other stages,

suggesting that the TcTASV population could undergo develop-

mental regulation. However, we cannot completely rule out the

possible expression in other parasite stages, because we did not

analyze the expression of the TcTASV-B nor TcTASV-C

subfamilies and used only one peptide to obtain anti-TcTASV-A

antibodies. Related to this, after following a proteomic approach

Atwood et al. were able to identify a peptide in trypomastigote and

amastigote extracts that is completely conserved (100% identity) in

the TcTASV-A subfamily. The expression of TcTASV-A in

amastigotes, though, probably occurs at very low levels since we

were unable to detect TcTASV-A proteins in this parasite stage.

Moreover, only one spectrum was detected by Atwood et al. in

amastigotes (vs. 5 in trypomastigotes) [28].

Based on computational analyses, we predicted a signal peptide

in the amino terminus and a potential site for the addition of a GPI

anchor at the carboxy terminus of TcTASVs. However, at this

moment, we cannot rule out the possibility that some members of

TcTASV have a membrane-associated expression and others a

cytosolic or secreted form.

In summary, in the present work we have identified and

partially characterized a new surface protein family in T. cruzi wich

we named TcTASV. All TcTASV members have a conserved 39

untranslated region (the TcT-Eelem, also identified for the first time

here), conserved amino- and carboxy- termini, and could be

grouped into three subfamilies according to the relative molecular

mass of the predicted proteins. The presence of a high number of

Ser and Thr susceptible to glycosylation as well as a signal peptide

and a consensus sequence for the addition of a GPI anchor were

predicted. The expression of the TcTASV-A subfamily in

trypomastigotes was demonstrated. One other interesting charac-

teristic of the TcTASV family is the lack of orthologues in other

trypanosomatids. Finally, we would like to emphasize that

TcTASV is a new gene family in T. cruzi, which so far had

remained unnoticed (unannotated or missing from the assembled

genome). We have worked closely with other groups to make sure

that this is solved in future releases of T. cruzi genome databases.

However, given the still draft nature of the T. cruzi genome, the

possibility exists that this can happen for other genes. Moreover,

by means of a genetic vaccination approach, one of the members

of TcTASV (formerly TcYASP) has been found as part of a

protective pool of antigens [3], which suggests that they are

possible good vaccine candidates.

Supporting Information

Alternative Language Abstract Translation of the abstract

into Spanish by Valeria Tekiel.

Found at: doi:10.1371/journal.pntd.0000841.s001 (0.02 MB

DOC)

Figure S1 An amino acid alignment of all TcTASV and mucin-

like genes and ORFs retrieved from TriTrypDB was used to

construct a phylogram (unrooted Neighbor-Joining tree). The tree

evidences that TcTASV is a novel protein family in T. cruzi and

different from mucin-like genes. Besides, it is shown that 6 genes

that at the time of writing were annotated in TriTrypDB as mucin-

like genes are actually members of he TcTASV family. Boostrap

values corrsponding to 1000 permutations are shown in the

phylogram. Blue hexagons indicate the genes were annotated as

mucin-like in TriTrypDB.

Found at: doi:10.1371/journal.pntd.0000841.s002 (0.46 MB TIF)

Figure S2 Unrooted Neighbor-Joining tree analyzing the

relationshop between different T. cruzi glycoprotein families. The

phylogram tree was derived from multiple sequence alignments

between sequences of TcTASV (n = 15), MASPs (n = 15; orange

rectangles), TcMUCII (n = 15; pink circles) and mucin-like (n = 15;

blue hexagons) genes. Each of the families is confined to diferent

branches of the tree, all with high bootstrap values, thus

reinforcing the idea that they are different protein families.

Boostrap values correspond to 1000 replicates.

Found at: doi:10.1371/journal.pntd.0000841.s003 (0.50 MB TIF)

Figure S3 Western blot (12% gel) of total protein extracts

(15 mg) from CL-Brener trypomastigotes using affinity-purified

anti-TcTASV-A antibodies.

Found at: doi:10.1371/journal.pntd.0000841.s004 (0.70 MB TIF)

Table S1 BLAST reports for all TcT-E clones searched against

trypanosomatid ESTs and public protein databases (supplemen-

tary online material available at http://genoma.unsam.edu.ar/

projects/tct-e/tct-e.p.html). The TcT-E clones are ordered

alphabetically and according to their pattern of hits against the

different databases searched. The coding status (coding/non-

coding/indeterminate) is also provided based on predictions using

testcode [54].

Found at: doi:10.1371/journal.pntd.0000841.s005 (0.05 MB

DOC)

Table S2 Table of TcT-E clones with homology to SwissProt

and nr databases (BLASTX results). A list of the 50 best hits

against SP and nr is provided.

Found at: doi:10.1371/journal.pntd.0000841.s006 (0.09 MB XLS)

Table S3 The information of the TcT-E clustered dataset. The

sequence of all clusters and contigs and a list of the TcT-E EST

clones that belong to each contig is provided.

Found at: doi:10.1371/journal.pntd.0000841.s007 (0.05 MB PDF)
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Table S4 Table showing the BLAST results of each of the

TcTASV members experimentally identified in this work against

the T. cruzi genome database (BLASTP vs. protein and ORFs

databases at http://TriTrypDB.org). Table S4 includes the best

hit found for each TcTASV, the GenBank accession number of

the TcTASVs, the protein and contig identifiers according to

GeneDB/TriTrypDB, the BLAST expect value, and other

observations such as whether the protein was correctly annotated

or not.

Found at: doi:10.1371/journal.pntd.0000841.s008 (0.01 MB XLS)

Table S5 In silico T. cruzi proteome and orfeome survey for the

identification of additional TcTASV members. The T. cruzi

database was searched for additional TcTASV members by using

experimentally identified TcTASV-A, TcTASV-B and TcTASV-

C sequences as queries. The IDs of all ORFs that we identified as

belonging to the TcTASV family (including sub-family) are listed.

Also, the gene ID (when annotated), the position of the identified

ORF in the contig, the presence of the TcT-E element at 30–

70 bp from the stop codon and other observations are indicated.

Found at: doi:10.1371/journal.pntd.0000841.s009 (0.02 MB XLS)
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