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Abstract
Harris hawks optimizer (HHO) is a relatively novel meta-heuristic approach that mimics 
the behavior of Harris hawk over the process of predating the rabbits. The simplicity and 
easy implementation of HHO have attracted extensive attention of many researchers. How-
ever, owing to its capability to balance between exploration and exploitation is weak, HHO 
suffers from low precision and premature convergence. To tackle these disadvantages, an 
improved HHO called VGHHO is proposed by embedding three modifications. Firstly, a 
novel modified position search equation in exploitation phase is designed by introducing 
velocity operator and inertia weight to guide the search process. Then, a nonlinear escap-
ing energy parameter E based on cosine function is presented to achieve a good transi-
tion from exploration phase to exploitation phase. Thereafter, a refraction-opposition-based 
learning mechanism is introduced to generate the promising solutions and helps the swarm 
to flee from the local optimal solution. The performance of VGHHO is evaluated on 18 
classic benchmarks, 30 latest benchmark tests from CEC2017, 21 benchmark feature selec-
tion problems, fault diagnosis problem of wind turbine and PV model parameter estimation 
problem, respectively. The simulation results indicate that VHHO has higher solution qual-
ity and faster convergence speed than basic HHO and some well-known algorithms in the 
literature on most of the benchmark and real-world problems.

Keywords Harris hawks optimizer · Function optimization · Refraction-opposition 
learning · Wind turbine · Fault diagnosis

1 Introduction

Optimization can be defined as the process of choosing the best scheme from an available 
group of alternatives (Gupta et al. 2020a; Long et al. 2020a; Dhiman, 2021; Kumar and 
Dhiman 2021). By constructing an appropriate fitness function, many real-world applica-
tions in science research, management, and engineering can be formulated as function opti-
mization problem (Long et al. 2020b, 2021a; Houssein et al. 2021c; Zhang et al. 2021). 
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Many traditional gradient-based optimization methods have been developed to find solu-
tions for optimization problems. However, in real-world applications, there is no guaran-
tee that the fitness function is differentiable (Chatterjee 2021; Hassan et al. 2021; Vaish-
nav et al. 2021). The meta-heuristic optimization algorithms have some advantages such 
as gradient-free characteristics, easy implementation, and escape from local optima and 
have applied to tackle this type of problem successfully (Long et al. 2018a; Houssein et al. 
2021a). Some of popular or recently proposed meta-heuristic optimization algorithms are 
particle swarm optimizer (PSO) (Kennedy and Eberhart 1995), differential evolution (DE) 
(Storn and Price 1997), polar bear optimization (PBO) (Polap and Wozniak 2017), cuckoo 
search (CS) (Gandomi et al. 2013), grey wolf optimizer (GWO) (Long et al. 2018b), whale 
optimization algorithm (WOA) (Mirjalili and Lewis 2016), spotted hyena optimizer (SHO) 
(Dhiman and Kumar 2017), sine cosine algorithm (SCA) (Mirjalili 2016), emperor penguin 
optimizer (EPO) (Dhiman and Kumar 2018), Harris hawks optimizer (HHO) (Heidari et al. 
2019), seagull optimization algorithm (SOA) (Dhiman and Kumar 2019a), henry gas solu-
bility optimization (HGSO) (Hashim et al. 2019), butterfly optimization algorithm (BOA) 
(Arora and Singh 2019), orientation search algorithm (OSA) (Dehghani et  al. 2019), 
sooty tern optimization algorithm (STOA) (Dhiman and Kumar 2019b), marine preda-
tors algorithm (MPA) (Faramarzi et al. 2020), spring search algorithm (SSA) (Dehghani 
et al. 2020a), bald eagle search (BES) (Alsattar et al. 2020), darts game optimizer (DGO) 
(Dehghani et  al. 2020b), Lévy flight distribution (LFD) (Houssein et  al. 2020b), mayfly 
optimization algorithm (MOA) (Zervoudakis and Tsafarakis 2020), tunicate swarm algo-
rithm (TSA) (Kaur et  al. 2020), red fox optimization (RFO) (Polap and Wozniak 2021), 
slime mould algorithm (SMA) (Houssein et al. 2021b), chaos game optimization (CGO) 
(Talatahari and Azizi 2021), rat swarm optimizer (RSO) (Dhiman et al. 2021a), archime-
des optimization algorithm (AOA) (Hashim et al. 2021), honey badger algorithm (HBA) 
(Hashim et al. 2022), and many others.

In this paper, we focused on the Harris hawks optimizer (HHO), which is firstly pro-
posed by Heidari et al. (2019). HHO mimics the foraging behavior of hawks in nature. As 
a novel meta-heuristic algorithm, HHO can be easily implemented and has strong exploita-
tion ability. The studies indicate that HHO has shown excellent performance on benchmark 
test optimization problems. Therefore, HHO has been widely utilized for dealing with real-
world problems with satisfied results (Alabool et  al. 2021). For instance, image thresh-
olding (Elaziz et  al. 2020; Wunnava et  al. 2020), photovoltaic models parameter extrac-
tion (Qais et al. 2020; Ridha et al. 2020), image segmentation (Rodríguez-Esparza et al. 
2020), drug design and discovery (Houssein et al. 2020a), feature selection (Abdel-Basset 
et al. 2021), solar still productivity prediction (Essa et al. 2020), air pollution prediction 
(Du et al. 2020), PV array reconfiguration optimization (Yousri et al. 2020), data cluster-
ing (Singh 2020), neural network training (Ramalingam and Bakaran 2021), COVID-19 
detection (Balaha et  al. 2021), project scheduling and QoS-aware (Li et  al. 2021), brain 
MRI segmentation (Bandyopadhyay et al. 2021b), slope stability prediction (Moayedi et al. 
2021), breast cancer detection (Kaur et al. 2021), Cardiomyopathy smart supervision (Ding 
et al. 2021), load frequency control (Abd Elaziz et al. 2021), chemical descriptors selection 
(Houssein et al. 2021d), vehicle suspension system optimization (Issa and Samn 2022), and 
many others.

Like other meta-heuristic optimization approaches, the conventional HHO still has some 
shortcomings such as unbalance of exploration and exploitation, poor solution quality, and 
easily fall into local optima, etc. Therefore, to mitigate these shortcomings, many HHO 
variants have been developed over the past two years. Some of them are summarized as fol-
lows. The escaping energy parameter E of HHO plays an important role in conversion from 
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exploration phase to the exploitation phase. Thus, investigating its escaping energy param-
eter E is one of research hot issues for the HHO algorithm. Several modified versions of 
the escaping energy parameter E have been suggested in the literature (Gupta et al. 2020b; 
Qu et  al. 2020; Wunnava et  al. 2020; Yousri et  al. 2020) to achieve a good conversion 
from exploration to exploitation. Although these HHO variants have performed well on 
low-dimensional benchmark problems, in some cases, especially on high-dimensional and/
or complex multimodal problems, they may easily fall into local optima. In (Gupta et al. 
2020b), the opposition-based learning (OBL) strategy was embedded into the basic HHO 
algorithm for escaping from the local optimal solution. The results indicated that the pro-
posed approach obtains good performance on only benchmark test cases. Jiao et al. (2020) 
developed an enhanced HHO (EHHO) by introducing the orthogonal design (OD) opera-
tor and the general opposition learning mechanisms. In EHHO, the OD could improve the 
solution accuracy and the convergence performance, while the GOL could maintain the 
population diversity and the local search capability of HHO. Qu et al. (2020) put forward 
an improved HHO based on information exchange technique to solve numerical and engi-
neering optimization problems with satisfied results. However, the results of the proposed 
method were only on benchmark test problems. In (Al-Betar et al. 2021), three different 
selection mechanisms (namely, tournament, proportional and linear rank-based approaches) 
were introduced into the basic HHO algorithm to improve its search performance. The 
experimental results on benchmark functions showed that the overall performance of HHO 
with tournament selection was better than other two selection strategies. In (Chen et  al. 
2020), a first powerful variant of HHO was proposed by combining the chaos, topologi-
cal multi-population and differential evolution strategies to optimize the continuous func-
tions. The comparison results indicated that the proposed technique had performed well 
on the selected benchmark tasks. Fan et al. (2020) developed a modified version of HHO 
by introducing quasi-reflection-based learning (QRBL) strategy. The proposed algorithm 
could effectively accelerate convergence and improve precision on benchmark test prob-
lems. In (Li et al. 2021), an enhanced HHO (called RLHHO) is proposed via incorporating 
three strategies (logarithmic spiral, opposition-based learning, and modified Rosenbrock 
method) for solving global optimization problems. The results revealed that RLHHO shows 
better performance than other compared algorithms on most problems. Arini et al. (2022) 
put forward an improved HHO with joint opposite selection (JOS) strategy for numerical 
optimization. In proposed approach, two opposition learning mechanisms such as selective 
leading opposition and dynamic opposite strategies are used to improve the performance of 
HHO. To utilize the advantages of different approaches, HHO were hybridized with other 
meta-heuristic algorithms such as salp swarm algorithm (SSA) (Elaziz et al. 2020), flower 
pollination algorithm (FPA) (Ridha et al. 2020), SCA (Kamboj et al. 2020; Hussain et al. 
2021), multi-verse optimizer (MVO) (Ewees and Elaziz 2020), moth-flame optimization 
(MFO) (Elaziz et al. 2020), simulated annealing (SA) (Bandyopadhyay et al. 2021a), and 
so on. These hybrid variants obtain sufficiently satisfied performance, but fail to provide 
optimal values in some cases.

The above-mentioned variants have tried to enhance the overall optimization abil-
ity of the basic HHO by introducing some additional operators or mechanisms. However, 
no algorithm is perfect. From “No Free Lunch (NFL)” theorem (Wolpert and Macready 
1997), there is no meta-heuristic approach best suited to solve all optimization problems. 
This theorem has made the area of intelligent optimization very active, which leads to 
improve existing algorithms and developing new approaches. Furthermore, the escaping 
energy parameter E of HHO based on a randomized policy cannot fully reflect the actual 
iterative search process, the transition ability from exploration phase to exploitation phase 
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is insufficient. At the same time, the conventional HHO is good at local exploitation while 
poor at global exploration, and it may easily fall into a local optima. Motivation of these 
considerations, this paper developed a novel HHO called velocity-guided Harris hawks 
optimizer (VGHHO) algorithm. More specifically, the primary contributions of this study 
are structured:

(1) An improved variant of HHO (VGHHO) is proposed for solving function optimization, 
feature selection and fault diagnosis of wind turbine.

(2) A velocity operator is embedded into the position search equation in exploitation stage 
of HHO that can guide the population search the potential region of solution space.

(3) A modified escaping energy parameter based on cosine function is suggested in the 
HHO algorithm that can achieve a good transition from exploration to exploitation 
phases.

(4) A refraction-opposition-based learning mechanism is introduced to enhance the diver-
sity of VGHHO.

(5) To investigate the comprehensive performance of VGHHO by using 18 classical bench-
mark functions, 30 latest benchmark functions from CEC2017, 21 benchmark feature 
selection problems, one practical wind turbine fault diagnosis problem, and PV model 
parameter estimation problem.

The remainder work of our study is arranged as follows. Section 2 briefly presents the 
conventional HHO. In Sect.  3, three modified strategies are explained and propose the 
framework of VGHHO. In Sect. 4, the feasibility of VGHHO is validated by using clas-
sical benchmark functions, and the comparisons are provided. In Sect. 5, the effectiveness 
of VGHHO is further verified on latest benchmark problems from CEC 2017. VGHHO is 
utilized for solving benchmark feature selection tests in Sect. 6. One practical fault diagno-
sis problem of wind turbine is solved by using VGHHO in Sect. 7. In Sect. 8, VGHHO is 
applied to solve the parameter estimation problem of PV model. Finally, Sect. 9 summa-
rizes the conclusions and provides the future research directions.

2  The conventional HHO algorithm

In HHO, the hawks are considered the candidate individuals, while the rabbit denotes the 
best position found so far. Figure 1 shows the main stages of HHO.

2.1  Exploration phase

In HHO, the exploration phase is performed by using two strategies:

where X is the current position of hawk, t represents the number of iteration, Xrand indi-
cates the randomly selected hawk from population, Xrabbit denotes the rabbit’s position, 
r1, r2, r3, r4 , and q are random numbers, ub and lb are the left and right endpoints of the 
interval, and Xmean indicates the average position of hawks:

(1)X(t + 1) =

{
Xrand(t) − r1 ⋅

||Xrand(t) − 2r2 ⋅ X(t)
||, q ≥ 0.5(

Xrabbit(t) − Xmean(t)
)
− r3 ⋅

(
lb + r4 ⋅ (ub − lb)

)
, q < 0.5
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where N indicates the swarm size.

2.2  Transition from exploration to exploitation

In the iterative process, the transition between exploration and exploitation is usually 
depended on the escaping energy coefficient ( E ), which is calculated by:

where E0 denotes a random number range in (− 1, 1), and tmax represents the total iterative 
number.

2.3  Exploitation phase

After finding the target prey, hawks wait for a chance to attack the prey. However, the actual 
attack behavior is complicated; for example, the prey may be escaped from the enclosure. 
Therefore, four strategies are designed in exploitation phase to better mimic the attack 
characteristics of Harris hawks. Selecting the strategy is determined by both the escaping 
energy coefficient E and the random number r.

2.3.1  Hard besiege strategy

In HHO, when r ≥ 0.5 and |E| < 0.5 , the escaping energy is not enough and the prey 
has no chance to flee. So, the hawks will attack the prey via the hard besiege strategy as 
follows:

(2)Xmean(t) =
1

N

N∑
i=1

Xi(t)

(3)E = E0 ×

(
2 −

2t

tmax

)

Fig. 1  Different stages of Harris 
hawks optimizer algorithm
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2.3.2  Soft besiege strategy

When r ≥ 0.5 and |E| ≥ 0.5 , the escaping energy is enough but the prey has no chance to 
escape. So, the hawks will attack the prey by using the soft besiege way as:

where J = 2(1 − r5) indicates the jumping length of the prey and r5 denotes a random num-
ber in (0,1).

2.3.3  Soft besiege with progressive rapid dives

When r < 0.5 and |E| ≥ 0.5 , the escaping energy is very enough and the prey has chance 
to flee. In this phase, two steps are included. The first step is executed by the following 
equation:

After executing the first step, if the hawks’ positions are not improved, the second step 
based on Lévy flight (LF) operator is executed by:

where D represents the optimization problem’s dimension, S denotes the random vector, 
and LF is the Lévy flight function as follows:

where u , v are the random constants of LF,� = 1.5.
In this phase, the positions of hawks are updated by the following equation:

2.3.4  Hard besiege with progressive rapid dives

When r < 0.5 and |E| < 0.5 , the prey has a chance to flee but the energy after escaping is 
not enough. Hence, the positions of hawks are updated by:

where Y ′ and Z′ are calculated by the following equations:

(4)X(t + 1) = Xrabbit(t) − E × ||Xrabbit(t) − X(t)||

(5)X(t + 1) =
(
Xrabbit(t) − X(t)

)
− E × ||J × Xrabbit(t) − X(t)||

(6)Y = Xrabbit(t) − E × |J × Xrabbit(t) − X(t)|

(7)Z = Y + S × LF(D)

(8)LF(x) = 0.01 ×
u × �

�v�1∕� , � =

⎛⎜⎜⎜⎝

Γ(1 + �) × sin
�

��

2

�

Γ
�

1+�

2

�
× � × 2(�−1)∕2

⎞⎟⎟⎟⎠

1∕�

(9)X(t + 1) =

{
Y , if F(Y) < F(X(t))

Z, if F(Z) < F(X(t))

(10)X(t + 1) =

{
Y �, if F(Y �) < F(X(t))

Z�, if F(Z�) < F(X(t))
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Algorithm 1 introduces the step-wise explanation of the conventional HHO.

3  Proposed velocity‑guided HHO algorithm

Similar to other meta-heuristic optimization methods, the conventional HHO cannot effec-
tively explore the entire search space when solving complex optimization problems (Gupta 
et al. 2020b; Kamboj et al. 2020; Qu et al. 2020). Therefore, the objective of our work is to 
develop a new variant of HHO. It needs to be emphasized that our study does not change 
the framework of the conventional HHO algorithm, and improves HHO by embedding 
three strategies, i.e., velocity-guided position search equation, nonlinear escaping energy 
parameter, and refraction-opposition-based learning strategy.

3.1  Velocity‑guided position search equation

The meta-heuristic algorithm is developed for achieving a good trade-off between explora-
tion and exploitation over the iterative process. This trade-off is very important to the suc-
cessful implementation of optimization method. The global exploration refers the capabil-
ity to search for global optimum, while the local exploitation refers the capability to utilize 
the existing information to seek for better agents. The conventional HHO algorithm has 
shown unbalanced between global exploration and local exploitation on multimodal opti-
mization problems (Kamboj et al. 2020). The main challenging issue of the original HHO 

(11)Y � = Xrabbit(t) − E × |J × Xrabbit(t) − Xmean(t)|

(12)Z� = Y � + S × LF(D)
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algorithm is that it may be trapped in local optima when handling multimodal optimization 
cases (Gupta et al. 2020b). The reason is the poor global exploration ability of HHO, while 
it is good at local exploitation capability. Moreover, as seen in Eqs. (4) and (5), the new 
candidate search agent is generated by conducting difference operation between the global 
best search solution (Xrabbit) and the current one. It may cause the algorithm to prema-
ture convergence. Therefore, for balancing between exploration and exploitation of HHO, 
modifying the position search equation in exploitation phase is one of the active research 
directions. Many HHO variants have been suggested to achieve this objective (Gupta et al. 
2020b; Kamboj et al. 2020).

PSO is an efficient and effective meta-heuristic technique proposed by Kennedy and 
Eberhart (1995). Its idea is derived from the foraging behavior of birds. In PSO, each parti-
cle has its own position ( X ) and velocity ( v ). In the iterative process, the velocity and posi-
tion of each particle are updated (Shi and Eberhart 1998):

where v indicates the particles’ velocity, w denotes the inertia weight, Xpbest represents the 
personal best position of particle, X denotes the particle’s position, Xgbest represents the 
global best position, c1 and c2 are the coefficient factors, r1 and r2 are the random numbers.

Inspired by PSO, this paper designed a novel velocity-guided position search equation 
in exploitation phase and the detailed expressions are as follows.

In hard besiege strategy, the position is updated by

In soft besiege strategy, the position is updated by

where v denotes the velocity of each hawk, Xpbest is the personal best position of each hawk, 
c3 and c4 are the memory factors, r3 and r4 are the random numbers in [0, 1], w represents 
the inertia weight and is calculated by:

where winitial and wend are respectively the initial and end values of w.
The first part on the right side of Eqs. (15) and (17) denotes the dynamical flight veloc-

ity of each hawk, which provides the necessary motivation for hawks to search throughout 
the solution space. Similar to PSO, the second term of Eqs. (15) and (17) is called as “cog-
nitive” component, and represents the personal thinking of each hawk, which guides the 
hawk to move toward its own historical best position. Compared with the position search 
Eqs. (4) and (5) in the conventional HHO algorithm, the proposed position search Eqs. (15) 

(13)vi(t + 1) = w × vi(t) + c1 × r1 ×
(
Xpbest − Xi(t)

)
+ c2 × r2 ×

(
Xgbest − Xi(t)

)

(14)Xi(t + 1) = Xi(t) + vi(t + 1)

(15)v(t + 1) = w × v(t) + c3 × r3 ×
(
Xpbest − X(t)

)
+ Xrabbit(t) + E × ||Xrabbit − X(t)||

(16)X(t + 1) = X(t) + v(t + 1)

(17)
v(t + 1) = w × v(t) + c4 × r4 ×

(
Xpbest − X(t)

)
+
(
Xrabbit(t) − X(t)

)
+ E × ||J × Xrabbit − X(t)||

(18)X(t + 1) = X(t) + v(t + 1)

(19)w (t) = winitial − (winitial − wend) ×

������
t

1 +
√
1 + t2

������
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and (17) have three different features: (1) The velocity term is added for enhancing the 
global search capability of the position search equation; (2) The hawk learns not only from 
its own information but also from the knowledge of the other hawks in the population; and 
(3) The inertia weight w is introduced for dynamically balancing the optimization perfor-
mance of HHO.

3.2  Nonlinear escaping energy parameter

The search efficiency of meta-heuristic algorithm depends on how well it achieves a good 
transition from exploration to exploitation over the optimization process. In the original 
HHO algorithm, we observed that the escaping energy coefficient E plays a crucial role 
in transiting between exploration and exploitation. A large value of the escaping energy 
parameter E (≥ 1) is in favor of the exploration capability, while a small value (< 1) is help-
ful to exploitation ability. Therefore, it is quite important to select the suitable values of the 
escaping energy parameter E for HHO. However, the escaping energy parameter E values 
of the conventional HHO are random, and the range of this randomness decreases from 2 
to 0 over the iterative process. This escaping energy coefficient E has proved to be effec-
tive for some problems, but it is invalid in other cases (Gupta et al. 2020b; Qu et al. 2020). 
Due to the iterative search of HHO is highly nonlinear and quite complicated, the linearly 
decrease transition rule of E cannot truly reflect the actual optimization process. Thus, 
a potential research interest is to investigate the new transition parameter E rules in the 
HHO for achieving a good transition from global exploration to local exploitation. Many 
decrease nonlinearly strategies of the escaping energy parameter E have been suggested to 
achieve this goal (Gupta et al. 2020b; Qu et al. 2020; Yousri et al. 2020).

Different from previous proposed nonlinearly decrease strategies of E, this paper pro-
poses a novel increase nonlinearly scheme of the escaping energy parameter E. The reasons 
are explained as follows. On the one hand, the population of hawks has a good diversity 
in the early phase of iteration search. The good diversity means that HHO has a powerful 
capability to explore throughout the search space. The main goal of this phase is to acceler-
ate convergence (i.e., E < 1). On the other hand, in the later phase of the iterative search, 
HHO may be converged at a certain point in the search space, which the loss of population 
diversity. Maintaining the population diversity and escaping the local optimum are main 
purpose of this phase (i.e., E ≥ 1). Therefore, the calculated formulation of the proposed 
parameter E is

where Emax and Emin are respectively the max and min values of E.
Compared with the decrease linearly strategy of the escaping energy parameter E, the 

increase nonlinearly strategy described in Eq. (20) is to take a longer time for exploitation 
as compared to exploration. Figure 2 shows the graph of the proposed nonlinear escaping 
energy parameter E over the course of iteration process.

From Fig. 2 and Eq. (20), the values of the proposed nonlinear escaping energy param-
eter E are small (E < 1) in the early and middle phases of iteration, which demonstrates that 
it is concentrated on the local exploitation phase for a long time (about 67% of the total 
iteration numbers) as compared to the global exploration phase. Figure 2 also indicates that 
the proposed nonlinear escaping energy parameter E is large in the later phase, which is 
focused on exploration only for about 33% iterations.

(20)E (t) = Emax − (Emax − Emin) ⋅ cos

(
t

tmax

×
�

2

)
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3.3  Refraction‑opposition‑based learning strategy

For meta-heuristic optimization algorithms, in the later stage of search, the other indi-
viduals in the population are attracted by the current best individual obtained so far, and 
gather towards it, thereby resulting in the loss of the population diversity and easing to 
fall into the local optima. This is the inherent shortcoming of meta-heuristic optimi-
zation algorithms. That is to say, enhancing the population diversity of meta-heuristic 
algorithms in the later stage of optimization is very important. To overcome this short-
coming, some additional strategies such as mutation operation (Gupta et  al. 2020c), 
Lévy flight (Chawla and Duhan 2018), opposition-based learning (OBL) (Rahnamayan 
et al. 2008) and pinhole-imaging-based learning (Long et al. 2021b) are introduced in 
the meta- heuristic algorithms.

The OBL strategy is a candidate technique to effectively improve the optimization abil-
ity of meta-heuristic algorithm. However, premature convergence may be occurred in the 
later phase of algorithms. Thus, this paper improves the OBL strategy based on the refrac-
tion theory and proposes a novel refraction-opposition learning (ROL) mechanism for the 
global best solution. The detailed implementation process is provided in Fig. 3.

In Fig. 3, according to the principle of light refraction, the incidence light slants from 
medium 1 into medium 2 and its direction will be changed. The refraction angle is smaller 
than the incidence angle. Based on the Snell’s Law (Griffiths 1998), the following math-
ematical formula is obtained by:

where n represents the refraction index, �1 and �2 are the incidence angle and refraction 
angle, a and b are the left and right endpoints of interval, Xrabbit is the global best indi-
vidual, X′

rabbit
 is called as opposite individual of Xrabbit , h and h′ are the distance of XO and 

X′O , respectively.
Let k = h∕h� , Eq. (21) is modified as

According to Eq. (22), the refraction learning opposition solution X′
rabbit

 is computed as

(21)n =
sin �1

sin �2
=

((a + b)∕2 − Xrabbit)
/
h

(X�
rabbit

− (a + b)∕2)
/
h�

(22)kn =
(
(a + b)∕2 − Xrabbit

)/(
X�
rabbit

− (a + b)∕2
)

Fig. 2  Proposed escaping energy 
parameter E 
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When k = 1 and n = 1 , Eq. (23) is reduced to

where Eq. (24) is the mathematical formula of OBL in (Rahnamayan et al. 2008). That is to 
say, OBL [Eq. (24)] is a special case of the ROL strategy [Eq. (23)].

The Eq. (23) can be generalized to D-dimensional space:

where aj and bj represent the left and right bounds of jth dimensional variable, Xrabbit,j and 
X′
rabbit,j

 are the jth dimension of Xrabbit and X′
rabbit

 . Algorithm 2 provides the steps of the 
ROL strategy on Xrabbit.

(23)X�
rabbit

= (a + b)
/
2 + (a + b)

/
2kn − Xrabbit

/
kn

(24)X�
rabbit

= (a + b) − Xrabbit

(25)X�
rabbit,j

=
(
aj + bj

)/
2 +

(
aj + bj

)/
2kn − Xrabbit,j

/
kn

Fig. 3  Proposed refraction-oppo-
sition-based learning process
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In summary, the flow chart of VGHHO algorithm is provided in Fig. 4.

3.4  Computational complexity analysis

The worst time complexity of VGHHO is calculate according to big-O notation using 
its pseudo codes. The step-wise description of the obtained complexity of VGHHO is as 
follows:

The population initialization of VGHHO requires O(N × D) time, where N is the popula-
tion size and D is the dimension of the problem.

Calculate the fitness value of each hawk requires O(N) time.
Selection of rabbit (best solution obtained so far) requires O(N) time.
Position update mechanism of each hawk in VGHHO requires O(N × D) time.
Greedy selection technique in VGHHO requires O(N) time.
Refraction-opposition-based learning strategy requires O(1 × D) time.
In summary, the total computational time of VGHHO is O(N × D × tmax) for tmax 

iterations.

4  Experiments on classical benchmark functions

4.1  Classical benchmark test functions

18 classical benchmark functions are applied for experiments. Table  1 lists the detailed 
characteristics of these functions. These functions are unimodal (f1–f8) and multimodal 
(f9–f18) functions. The unimodal problem has only one global best value, which are used for 
testing exploitation ability of metaheuristic approaches. Conversely, multimodal functions 
are usually utilized to investigate exploration ability of metaheuristic since it has many 
local optimal solutions (Long et al. 2018a). In Table 1, fmin represents the theoretical opti-
mum value.
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Fig. 4  The flow chart of the 
proposed VGHHO algorithm
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4.2  Comparison of VGHHO with other approaches on low‑dimensional problems

The search capability of VGHHO is compared with other six meta-heuristic algorithms, 
i.e., BOA (Arora and Singh 2019), SOA (Dhiman and Kumar 2019a, b), HHO (Hei-
dari et al. 2019), adaptive guided differential evolution (AGDE) (Mohamed et al. 2019), 
exploration-enhanced GWO (EEGWO) (Long et al. 2018a), and improved SCA (ISCA) 
(Long et al. 2019). BOA, SOA and HHO are the tradition meta-heuristic optimization 
techniques, while AGDE, EEGWO and ISCA are the state-of-the-art meta-heuristic 
algorithms. The population size and the total iterative numbers of VGHHO and other 
six optimization techniques are respectively fixed to 30 and 500 for ensuring fair of 
comparison. In VGHHO, c3 = c4 = 2, winitial = 1, wend = 0, Emax = 2, Emin = 0, k = 5, n = 5. 
In this experiment, the dimensions of functions in Table  1 are set to 30. The source 
codes of all approaches are implemented by MATLBA R2014a software. In order to 
reduce errors, each algorithm is independently run 30 trials for each function. Table 2 
summaries the values of the average (Mean) and standard deviation (Std) of seven algo-
rithms for 18 functions. In addition, the Friedman ranking test values based on “Mean” 
and “Std” results are also presented in Table 2. The best value of each function is high-
lighted in bold in Table 2.

Table 1  The 18 classical benchmark test functions

Function equation Domain fmin

f1(x) =
∑D

i=1
x2
i

[− 100,  100]D 0

f2(x) =
∑D

i=1
�xi� +∏D

i=1
�xi� [− 10,  10]D 0

f3(x) = maxi
{|xi|, 1 ≤ xi ≤ D

}
[− 100,  100]D 0

f4(x) =
∑D

i=1

�
100(xi+1 − x2

i
)2 + (xi − 1)2

� [− 30,  30]D 0

f5(x) =
∑D

i=1
i x4

i
+ random [0, 1) [− 1.28, 1.28]D 0

f6(x) =
∑D

i=1
i x2

i
[− 10,  10]D 0

f7(x) =
∑D

i=1
��xi��(i+1) [− 1,  1]D 0

f8(x) =
∑D

i=1

�
106

�(i−1)∕(D−1)
x2
i

[− 100,  100]D 0

f9(x) =
∑D

i=1

�
x2
i
− 10 cos(2� xi) + 10

� [− 5.12, 5.12]D 0

f10(x) = −20 exp

�
−0.2

�
1

D

∑D

i=1
x2
i

�
− exp

�
1

D

∑D

i=1
cos( 2� xi)

�
+ 20 + e

[− 32,  32]D 0

f11(x) =
1

4000

∑D

i=1
x2
i
−
∏D

i=1
cos

�
xi√
i

�
+ 1 [− 600,  600]D 0

f12(x) =
∑D

i=1
��xi ⋅ sin(xi) + 0.1 ⋅ xi

�� [− 10,  10]D 0

f13(x) = sin2(� x1) +
∑D−1

i=1

�
x2
i
⋅

�
1 + 10 sin2(� x1)

�
+ (xi − 1)2 ⋅ sin2

�
2� xi

�� [− 10,  10]D 0

f14(x) = 1 − cos

�
2�

�∑D

i=1
x2
i

�
+ 0.1

�∑D

i=1
x2
i

[− 100,  100]D 0

f
15
(x) = 0.1

�
sin

2(3�x
1
) +

∑D−1

i=1
(xi − 1)2

�
1 + sin

2
�
3�xi+1

��
+(xD − 1)2

�
1 + sin

2
�
2� xD

��� [− 5,  5]D 0

f16(x) =
∑D

i=1

�
0.2x2

i
+ 0.1x2

i
⋅ sin

�
2xi

�� [− 10,  10]D 0

f17(x) =
∑D−1

i=1

�
x2
i
+ 2x2

i+1

�0.25
⋅

��
sin 50(x2

i
+ x2

i+1
)0.1

�2
+ 1

�
[− 10,  10]D 0

f18(x) =
∑D

i=1
x6
i
⋅

�
2 + sin

1

xi

�
[− 1,  1]D 0
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Table 2  Comparisons of VGHHO and other six approaches for 18 classical problems with 30D in Table 1

Func-
tion

Index BOA SOA HHO AGDE EEGWO ISCA VGHHO

f1 Mean 2.64E-11 4.17E-13 6.59E-
102

4.87E-03 0 0 0

Std 3.10E-12 4.36E-13 2.94E-
102

3.63E-03 0 0 0

Rank-
ing

6 5 4 7 1 1 1

f2 Mean 8.65E-09 1.30E-08 9.20E-50 1.09E-02 5.42E-240 8.99E-211 0
Std 4.62E-09 1.14E-08 2.06E-49 5.10E-03 0 0 0
Rank-

ing
5 6 4 7 2 3 1

f3 Mean 1.27E-08 3.44E-03 1.46E-48 8.73E + 00 8.80E-228 1.36E-207 0
Std 2.22E-09 4.09E-03 3.26E-48 8.09E-01 0 0 0
Rank-

ing
5 6 4 7 2 3 1

f4 Mean 2.90E + 01 2.81E + 01 7.15E-02 6.19E + 01 2.89E + 01 2.89E + 01 4.40E-03
Std 2.58E-02 6.22E-01 6.67E-02 5.65E + 01 2.61E-02 1.81E-02 4.43E-03
Rank-

ing
6 3 2 7 4 4 1

f5 Mean 1.23E-03 2.08E-03 2.27E-04 7.60E-02 2.56E-05 4.24E-05 5.17E-06
Std 5.41E-04 1.55E-03 1.66E-04 4.53E-02 3.85E-05 5.55E-05 1.15E-05
Rank-

ing
5 6 4 7 2 3 1

f6 Mean 2.65E-11 8.30E-13 1.87E-
107

3.55E-04 0 0 0

Std 3.25E-12 6.74E-13 2.88E-
107

1.46E-04 0 0 0

Rank-
ing

6 5 4 7 1 1 1

f7 Mean 2.87E-13 1.41E-47 2.12E-
129

3.10E-22 0 0 0

Std 2.19E-13 3.06E-47 4.63E-
129

1.38E-22 0 0 0

Rank-
ing

7 5 4 6 1 1 1

f8 Mean 2.79E-11 3.71E-09 7.36E-96 8.33E + 00 0 0 0
Std 3.05E-12 5.66E-09 1.64E-95 6.30E + 00 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f9 Mean 1.20E + 02 2.96E + 00 0 4.26E + 01 0 0 0
Std 1.11E + 02 4.62E + 00 0 3.95E + 00 0 0 0
Rank-

ing
7 5 1 6 1 1 1

f10 Mean 1.23E-08 2.00E + 01 8.88E-16 1.53E-02 8.88E-16 8.88E-16 8.88E-16
Std 1.40E-09 6.20E-04 0 1.83E-03 0 0 0
Rank-

ing
5 7 1 6 1 1 1
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From Table  2, VGHHO gets the theoretical optima (0) for all the other problems 
except for f4, f5, and f10. Compared with BOA, SOA and AGDE algorithms, VGHHO 
shows excellent performance on all the optimization tasks. With respect to HHO, 
VGHHO finds better values on fourteen cases. For f9–f11, and f18, the same values are 

The best value of each function is highlighted in bold in the table

Table 2  (continued)

Func-
tion

Index BOA SOA HHO AGDE EEGWO ISCA VGHHO

f11 Mean 1.55E-11 2.61E-02 0 1.42E-02 0 0 0

Std 1.05E-11 3.64E-02 0 9.85E-03 0 0 0

Rank-
ing

5 7 1 6 1 1 1

f12 Mean 1.68E-09 4.24E-04 1.71E-57 2.57E-02 8.44E-239 2.03E-210 0
Std 1.02E-09 7.29E-04 2.59E-57 3.38E-03 0 0 0
Rank-

ing
5 6 4 7 2 3 1

f13 Mean 4.20E-12 1.31E-13 3.17E-99 3.30E-01 0 0 0
Std 4.36E-12 1.19E-13 1.42E-98 5.71E-01 0 0 0
Rank-

ing
6 5 4 7 1 1 1

f14 Mean 3.29E-01 1.42E-01 8.18E-49 1.10E + 00 5.39E-63 0 0
Std 4.26E-02 8.55E-02 1.82E-48 2.00E-01 4.52E-63 0 0
Rank-

ing
6 5 4 7 3 1 1

f15 Mean 2.38E-12 3.47E-16 2.34E-
105

2.71E-06 0 0 0

Std 8.81E-13 4.68E-16 3.92E-
105

1.39E-06 0 0 0

Rank-
ing

6 5 4 7 1 1 1

f16 Mean 2.08E-11 1.30E-13 3.60E-
100

9.69E-06 0 0 0

Std 4.44E-12 2.81E-13 8.05E-
100

7.84E-06 0 0 0

Rank-
ing

6 5 4 7 1 1 1

f17 Mean 5.01E-05 1.46E-02 2.28E-27 4.96E + 00 0 0 0
Std 8.06E-05 5.10E-03 7.11E-27 8.73E-01 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f18 Mean 5.27E-10 3.53E-37 0 9.73E-16 0 0 0
Std 4.76E-10 7.31E-37 0 8.57E-16 0 0 0
Rank-

ing
7 5 1 6 1 1 1

Average ranking 5.72 5.44 3.22 6.72 1.50 1.61 1.00
Total ranking 6 5 4 7 2 3 1
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obtained by two approaches. Compared to the EEGWO algorithm, VGHHO obtains 
excellent and same performance on twelve and six problems (i.e., f2–f5, f12, and f14), 
respectively. VGHHO is superior to ISCA on thirteen benchmark functions. In addi-
tion, two algorithms obtain similar values on five functions (i.e., f2–f5, and f12). Regard-
ing to the average Friedman ranking test results in Table 2, VGHHO obtains the first 
rank, followed by EEGWO, ISCA, HHO, SOA, BOA, and AGDE. To intuitively show 
the convergence performance, Fig.  5 plots the iterative curves of VGHHO and other 
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Fig. 5  The iterative curves of seven approaches for six representative 30D functions
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six techniques on six representative optimization cases with 30D. As seen from Fig. 5, 
VGHHO obtains faster convergence speed than other approaches.

4.3  Scalability test

Furthermore, the VGHHO is used for dealing with the higher dimensions of the 18 clas-
sical benchmark tasks in Table 1 (i.e., D = 100 and 1000) to further investigate its scal-
ability. For all algorithms, the same parameter settings are used as in Sect.  4.2. The 
mean and std results of VGHHO and other six algorithms on 18 problems with 100 and 
1000 dimensions are outlined in Tables 3 and 4.

From Tables 3 and 4, VGHHO shows very excellent scalability for the search dimen-
sions on most problems in Table  1. In other words, the comprehensive performance of 
VGHHO does not seriously deteriorate. It must be emphasized that a function with 1000 
dimensions is very challenging for HHO. The reason is that it does not use the specific 
search strategies customized to deal with high-dimensional optimization problems. Com-
pared with BOA and SOA, VGHHO obtains better performance on all the functions with 
100 and 1000 dimensions. VGHHO provides better results than the conventional HHO 
algorithm on fourteen functions with high dimensionality. For most high dimensional 
functions, EEGWO, ISCA and VGHHO obtain similar results. From the average results of 
Friedman ranking test in Tables 3 and 4, the first rank is obtained by VGHHO, followed by 
EEGWO, ISCA, HHO, BOA, SOA, and AGDE. Furthermore, Figs. 6 and 7 plot the itera-
tive curves of seven algorithms for six representative 100D and 1000D problems.

From Figs. 6 and 7, VGHHO shows very faster convergence speed than other tech-
niques for six representative problems with high dimensionality. It can be seen from the 
above comparison results that VGHHO is a highly competitive meta-heuristic algorithm 
for solving high-dimensional optimization problems.

4.4  Statistical test analysis

In this section, Wilcoxon rank sum test with a significance level of 5% based on the 
average values of 30 times trials is used to investigate the difference between VGHHO 
and BOA, SOA, HHO, AGDE, EEGWO, and ISCA on 18 benchmark functions with 30, 
100, and 1000 dimensions. Tables 5 shows the Wilcoxon rank sum test results between 
VGHHO and other six approaches. The “p-value” is the significance determines whether 
the statistical hypothesis should be rejected.

The results in Table  5 indicate that VGHHO gets larger “R+” results than “R−” 
results on different cases. Furthermore, the p-values of VGHHO versus BOA, SOA, 
HHO, and AGDE on the classical benchmark problems with 30D, 100D, and 1000D are 
less than 0.05. That is to say, the performance difference of VGHHO and BOA, SOA, 
HHO, and AGDE is quite obvious.

4.5  Comparison of CPU runtime

In this subsection, the CPU runtime results of the basic HHO and the proposed VGHHO 
are introduced to investigate the computational complexity analysis and comparisons of 
two algorithms. In this experiment, 18 classical test functions in Table 1 are used. The 
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Table 3  Comparisons of VGHHO and six algorithms on 18 classical benchmark problems with 100 dimen-
sions in Table 1

Func-
tion

Index BOA SOA HHO AGDE EEGWO ISCA VGHHO

f1 Mean 2.81E-11 2.88E-05 1.05E-96 3.67E + 02 0 0 0
Std 8.26E-13 1.61E-05 1.91E-96 7.32E + 01 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f2 Mean 1.16E + 47 7.31E-05 2.47E-48 1.58E + 01 1.95E-227 2.68E-208 0
Std 1.85E + 47 5.90E-05 3.76E-48 1.17E + 00 0 0 0
Rank-

ing
7 5 4 6 2 3 1

f3 Mean 1.46E-08 6.88E + 01 8.44E-48 5.88E + 01 4.36E-220 2.13E-204 0
Std 1.40E-09 2.19E + 01 6.62E-48 1.45E + 00 0 0 0
Rank-

ing
5 7 4 6 2 3 1

f4 Mean 9.89E + 01 9.81E + 01 3.15E-01 7.65E + 04 9.89E + 01 9.90E + 01 5.39E-02
Std 2.95E-02 4.10E-01 4.41E-01 1.99E + 04 2.78E-02 1.19E-02 8.93E-02
Rank-

ing
4 3 2 7 4 6 1

f5 Mean 1.82E-03 1.35E-02 7.20E-04 9.83E-01 3.72E-05 7.46E-05 2.00E-05
Std 1.88E-03 1.30E-02 5.92E-04 3.01E-01 3.26E-05 1.59E-04 2.86E-05
Rank-

ing
5 6 4 7 2 3 1

f6 Mean 2.78E-11 2.24E-05 2.24E-
100

1.60E + 02 0 0 0

Std 3.99E-12 1.73E-05 5.13E-
100

3.62E + 01 0 0 0

Rank-
ing

5 6 4 7 1 1 1

f7 Mean 3.91E-13 4.14E-06 2.02E-
124

2.40E-12 0 0 0

Std 4.73E-13 5.90E-06 3.25E-
124

9.92E-12 0 0 0

Rank-
ing

5 7 4 6 1 1 1

f8 Mean 3.08E-11 1.69E-02 3.91E-93 6.59E + 05 0 0 0
Std 2.80E-12 3.79E-02 3.10E-93 1.21E + 05 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f9 Mean 1.68E + 02 5.08E + 00 0 5.94E + 02 0 0 0
Std 3.75E + 02 5.53E + 00 0 1.18E + 01 0 0 0
Rank-

ing
6 5 1 7 1 1 1

f10 Mean 1.27E-08 2.00E + 01 8.88E-16 4.29E + 00 8.88E-16 8.88E-16 8.88E-16
Std 1.68E-09 4.72E-04 0 1.71E-01 0 0 0
Rank-

ing
5 7 1 6 1 1 1
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dimensions of these functions are set 30, 100, and 1000. Table 6 lists the average CPU 
runtime (in seconds) results of the basic HHO and VGHHO.

As can be seen in Table  6 that the CPU runtime of the basic HHO is less than 
VGHHO on all of the functions except for f4 with D = 1000. This shows that the intro-
duction of three operators (i.e., velocity-guided position search equation, nonlinear 
escaping energy parameter and refraction-opposition-based learning strategy) in HHO 
will increase the computational cost. However, this increased computational cost is 

The best value of each function is highlighted in bold in the table

Table 3  (continued)

Func-
tion

Index BOA SOA HHO AGDE EEGWO ISCA VGHHO

f11 Mean 2.95E-11 2.53E-02 0 4.22E + 00 0 0 0

Std 1.65E-11 2.84E-02 0 1.19E + 00 0 0 0

Rank-
ing

5 6 1 7 1 1 1

f12 Mean 2.44E-09 1.11E-03 2.52E-49 3.71E + 01 1.28E-228 2.14E-208 0
Std 2.06E-09 8.77E-05 2.06E-49 5.48E + 00 0 0 0
Rank-

ing
5 6 4 7 2 3 1

f13 Mean 3.14E-11 8.95E + 03 1.34E-94 2.53E + 02 0 0 0
Std 1.50E-11 1.32E + 02 2.22E-94 6.51E + 01 0 0 0
Rank-

ing
5 7 4 6 1 1 1

f14 Mean 3.34E-01 3.40E-01 1.52E-47 8.37E + 00 8.15E-52 0 0
Std 4.55E-02 5.48E-02 1.06E-47 1.31E + 00 1.62E-51 0 0
Rank-

ing
5 6 4 7 3 1 1

f15 Mean 7.01E-12 9.76E-09 5.50E-99 4.16E-01 0 0 0
Std 5.36E-12 8.24E-09 7.71E-99 5.14E-02 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f16 Mean 2.39E-11 5.85E-08 1.23E-98 2.38E + 00 0 0 0
Std 1.99E-12 5.72E-08 1.17E-98 1.11E + 00 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f17 Mean 3.14E-06 4.19E-01 2.11E-25 1.17E + 02 0 0 0
Std 1.50E-06 2.27E-01 1.32E-25 4.02E + 00 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f18 Mean 1.60E-10 5.20E-20 0 2.27E-04 0 0 0
Std 1.63E-10 3.79E-20 0 2.67E-04 0 0 0
Rank-

ing
6 5 1 7 1 1 1

Average ranking 5.17 5.89 3.22 6.72 1.50 1.72 1.00
Total ranking 5 6 4 7 2 3 1
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Table 4  Comparisons of VGHHO and six approaches for 18 classical benchmark problems with 1000 
dimensions in Table 1

Func-
tion

Index BOA SOA HHO AGDE EEGWO ISCA VGHHO

f1 Mean 3.15E-11 8.02E-01 7.12E-95 5.17E + 05 0 0 0
Std 3.20E-12 2.80E-01 6.82E-95 4.78E + 04 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f2 Mean NA 1.62E-02 2.12E-47 NA 0 1.26E-207 0
Std NA 4.43E-03 4.73E-47 NA 0 0 0
Rank-

ing
6 5 4 6 1 3 1

f3 Mean 1.50E-08 9.97E + 01 8.92E-48 9.51E + 01 2.55E-214 1.46E-203 0
Std 8.56E-10 1.00E-01 6.99E-48 1.97E-01 0 0 0
Rank-

ing
5 7 4 6 2 3 1

f4 Mean 9.99E + 02 1.21E + 04 8.34E + 00 8.03E + 08 9.99E + 02 9.99E + 02 9.39E-
01

Std 2.87E-02 1.04E + 04 7.02E + 00 3.51E + 07 4.99E-02 1.66E-02 6.05E-
01

Rank-
ing

3 6 2 7 3 3 1

f5 Mean 2.33E-03 6.72E-01 1.23E-03 1.13E + 04 9.13E-05 9.99E-05 4.80E-
05

Std 2.44E-04 2.45E-01 1.58E-03 2.39E + 03 6.66E-05 1.91E-04 3.96E-
05

rank-
ing

5 6 4 7 2 3 1

f6 Mean 3.22E-11 5.23E + 00 2.56E-93 2.42E + 06 0 0 0
Std 3.07E-12 1.29E + 00 4.37E-93 2.30E + 05 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f7 Mean 7.50E-13 3.24E + 00 4.85E-124 1.60E-06 0 0 0
Std 6.08E-13 6.38E-01 5.33E-124 5.71E-07 0 0 0
Rank-

ing
5 7 4 6 1 1 1

f8 Mean 3.56E-11 4.27E + 04 5.97E-90 7.75E + 09 0 0 0
Std 2.44E-12 4.30E + 04 6.41E-90 7.38E + 08 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f9 Mean 1.89E + 03 5.04E + 01 0 1.15E + 04 0 0 0
Std 4.21E + 03 7.96E + 01 0 5.16E + 02 0 0 0
Rank-

ing
6 5 1 7 1 1 1

f10 Mean 1.28E-08 2.00E + 01 8.88E-16 1.72E + 01 8.88E-16 8.88E-16 8.88E-
16

Std 7.25E-10 4.46E-05 0 2.81E-01 0 0 0
Rank-

ing
5 7 1 6 1 1 1
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acceptable. In addition, it should be pointed out that the optimization performance of 
VGHHO is significantly better than that of basic HHO.

4.6  Comparison with existing studies

In this section, VGHHO is also compared with three HHO variants such as Leader HHO 
(LHHO) (Naik et al. 2021), HHO with joint opposite selection (HHO-JOS) (Arini et al. 

NA represents no available solution
The best value of each function is highlighted in bold in the table

Table 4  (continued)

Func-
tion

Index BOA SOA HHO AGDE EEGWO ISCA VGHHO

f11 Mean 3.12E-11 2.01E-01 0 4.22E + 00 0 0 0

Std 4.10E-12 1.63E-01 0 1.19E + 00 0 0 0

Rank-
ing

5 6 1 7 1 1 1

f12 Mean 4.90E-09 1.27E-01 2.89E-48 1.34E + 03 2.61E-218 8.06E-208 0
Std 2.17E-09 2.19E-01 2.37E-48 4.61E + 01 0 0 0
Rank-

ing
5 6 4 7 2 3 1

f13 Mean 3.59E-11 9.96E + 04 5.73E-94 4.57E + 04 0 0 0
Std 5.94E-12 6.95E + 01 4.60E-94 7.07E + 03 0 0 0
rank-

ing
5 7 4 6 1 1 1

f14 Mean 3.60E-01 8.80E-01 3.53E-46 8.43E + 01 3.15E-47 1.22E-58 0
Std 4.30E-02 1.30E-01 3.27E-46 2.92E + 00 6.52E-47 2.46E-58 0
Rank-

ing
5 6 4 7 3 2 1

f15 Mean 1.97E-11 2.18E-04 2.24E-97 2.24E + 02 0 0 0
Std 1.31E-11 2.49E-04 1.96E-97 2.48E + 01 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f16 Mean 2.88E-11 9.94E-03 7.85E-96 9.80E + 02 0 0 0
Std 2.25E-12 5.93E-03 6.53E-96 7.76E + 01 0 0 0
Rank-

ing
5 6 4 7 1 1 1

f17 Mean 5.28E-06 3.80E + 03 3.72E-24 2.59E + 03 0 0 0
Std 6.03E-07 1.37E + 00 4.10E-24 7.81E + 01 0 0 0
Rank-

ing
5 7 4 6 1 1 1

f18 Mean 6.87E-14 4.80E-03 3.89E-291 5.49E + 00 0 0 0
Std 3.02E-14 5.59E-03 0 1.05E + 00 0 0 0
Rank-

ing
5 6 4 7 1 1 1

Average ranking 5.00 6.17 3.39 6.67 1.39 1.61 1.00
Total ranking 5 6 4 7 2 3 1
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2022) and modified HHO (m-HHO) (Gupta et al. 2020b). In this experiment, 18 bench-
mark test functions in Table  1 are used. The dimensions of all functions are set 30. 
The population size and the total iterative numbers of VGHHO and LHHO, HHO-JOS, 
m-HHO are respectively fixed to 30 and 500 for ensuring fair of comparison. Table 7 
lists the “Mean” and “Std” results of four HHO variants on 18 classical benchmark 
functions with 30 dimensions. In addition, the Friedman ranking test results of four 
algorithms are also shown in Table 7.

From Table 7, compared with LHHO algorithm, VGHHO obtains better and similar 
results on fourteen and four functions (i.e., f9–f11, f18), respectively. The comprehensive 
performance of VGHHO is superior to HHO-JOS on thirteen benchmark functions. Fur-
thermore, the similar results are obtained by two algorithms on five functions (i.e., f7, 
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Fig. 6  The iterative curves of seven approaches for six representative 100D functions
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f9–f11, f18). VGHHO and mHHO achieve the similar optimization performance on all 
of functions except for two functions. For f4 and f5, the better values are obtained by 
VGHHO.

4.7  Parameters sensitivity analysis

In the proposed VGHHO algorithm, there are eight parameters such as c3, c4, winitial, wend, 
Emax, Emin, k and n. Similar to PSO, the values of c3, c4, winitial, wend are set to 2, 2, 1, and 
0, respectively. At the same time, it can be seen that these four parameters are not sensitive 
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Fig. 7  The iterative curves of seven approaches for six representative 1000D functions
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Table 5  Wilcoxon rank sum test results between VGHHO and other six algorithms

Dimension Algorithm Better Equal Worst R + R− p-value α = 0.05

D = 30 VGHHO versus BOA 18 0 0 171 0 1.1614E-05 Yes
VGHHO versus SOA 18 0 0 171 0 6.2991E-06 Yes
VGHHO versus HHO 14 4 0 166 5 0.0022 Yes
VGHHO versus AGDE 18 0 0 171 0 5.4783E-07 Yes
VGHHO versus EEGWO 6 12 0 132 39 0.2216 No
VGHHO versus ISCA 5 13 0 125.5 45.5 0.3386 No

D = 100 VGHHO versus BOA 18 0 0 171 0 9.9822E-06 Yes
VGHHO versus SOA 18 0 0 171 0 1.7630E-06 Yes
VGHHO versus HHO 14 4 0 166 5 0.0022 Yes
VGHHO versus AGDE 18 0 0 171 0 1.9314E-07 Yes
VGHHO versus EEGWO 6 12 0 132 39 0.2216 No
VGHHO versus ISCA 5 13 0 125.5 45.5 0.3386 No

D = 1000 VGHHO versus BOA 18 0 0 171 0 1.1614E-05 Yes
VGHHO versus SOA 18 0 0 171 0 5.4783E-07 Yes
VGHHO versus HHO 15 3 0 168 3 0.0010 Yes
VGHHO versus AGDE 18 0 0 171 0 1.6174E-07 Yes
VGHHO versus EEGWO 5 13 0 125.5 45.5 0.3386 No
VGHHO versus ISCA 6 12 0 132 39 0.2216 No

Table 6  Comparisons of the 
average CPU runtime (in 
seconds) for two algorithms on 
18 classical benchmark functions

Function D = 30 D = 100 D = 1000

HHO VGHHO HHO VGHHO HHO VGHHO

f1 1.0451 1.2615 1.1395 1.4812 1.7977 3.4857
f2 0.9950 1.2931 1.0226 1.4901 1.8860 3.6052
f3 1.0394 1.3604 1.1186 1.5773 2.2271 3.4668
f4 1.2772 1.2776 1.4510 1.4655 3.1194 2.8505
f5 1.0876 1.5038 1.5567 2.0870 7.6704 8.5438
f6 1.0112 1.3339 1.0953 1.5364 1.9348 3.7386
f7 1.1420 1.5690 1.4996 2.1386 5.7890 8.3051
f8 1.1014 1.5692 1.4959 2.1844 7.0387 10.265
f9 1.1616 1.4301 1.3188 1.6639 3.1826 4.2151
f10 1.2473 1.5421 1.3563 1.7880 3.2324 4.1397
f11 1.2148 1.4596 1.3398 1.7005 3.3207 4.2764
f12 1.0722 1.3912 1.1648 1.5633 2.0695 3.7206
f13 1.1760 1.5239 1.3851 1.8166 2.4075 4.8079
f14 1.1374 1.4903 1.2937 1.7207 2.0801 3.8852
f15 1.1023 1.4430 1.2356 1.6858 2.2886 4.8273
f16 1.1698 1.4916 1.2758 1.7256 2.2983 4.8760
f17 1.4360 1.9296 2.2013 2.7898 12.837 14.776
f18 1.3162 1.7422 2.1196 2.7616 12.777 16.458
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to affect the performance of the VGHHO algorithm by conducting many trials. The values 
of Emax = 2 and Emin = 0 are similar to the base HHO for a fair comparison. Furthermore, 
in VGHHO, k and n are the two critical parameters which help the population of algorithm 
to escape from the local optima. Therefore, in this subsection, a series of experiments are 
conducted to investigate the sensitivity of the parameters k and n. We manipulate the values 
of k and n while keeping the other parameters fixed. Table 8 lists the experimental results 
of different k and n values on 18 classical benchmark functions with D = 30. The results 
related to k = 2.0 and n = 2.0 are also reported, along with those of new values in Table 8.

From Table 8, the comprehensive convergence accuracy of VGHHO with k = 2.0 and 
n = 2.0 is better than that of other values. Furthermore, we conducted several experiments 
VGHHO with the larger k (k > 2.0), n (n > 2.0) and compared with k = 2.0, n = 2.0. The 
comparison results showed that they exhibited similar performance on average. Therefore, 
considering all of the k and n values analyzed, it concluded that the setting of k = 2.0 and 
n = 2.0 for VGHHO is an appropriate choice.

Table 7  Comparison results of four HHO variants on 18 classical benchmark functions with 30D 

The best value of each function is highlighted in bold in the table

Function LHHO HHO-JOS mHHO VGHHO

Mean Std Mean Std Mean Std Mean Std

f1 3.23E-149 5.60E-149 2.64E-261 0 0 0 0 0
f2 1.37E-78 1.49E-78 7.26E-137 1.62E-136 0 0 0 0
f3 5.26E-73 9.11E-73 6.57E-122 1.46E-121 0 0 0 0
f4 7.23E-03 1.10E-02 4.82E-03 5.55E-03 7.68E-02 1.60E-01 4.40E-03 4.43E-03
f5 1.28E-04 1.74E-04 1.21E-04 1.27E-04 7.47E-05 7.17E-05 5.17E-06 1.15E-05
f6 3.64E-151 6.31E-151 6.58E-261 0 0 0 0 0
f7 1.01E-201 0 0 0 0 0 0 0
f8 1.30E-140 2.25E-140 2.22E-247 0 0 0 0 0
f9 0 0 0 0 0 0 0 0
f10 8.88E-16 0 8.88E-16 0 8.88E-16 0 8.88E-16 0
f11 0 0 0 0 0 0 0 0
f12 3.24E-79 4.75E-79 8.99E-138 1.90E-137 0 0 0 0
f13 4.15E-156 5.12E-156 8.80E-244 0 0 0 0 0
f14 1.47E-72 2.53E-72 3.92E-130 8.76E-130 0 0 0 0
f15 1.06E-151 1.80E-151 7.36E-265 0 0 0 0 0
f16 1.26E-154 2.18E-154 6.66E-237 0 0 0 0 0
f17 1.27E-39 1.15E-39 8.88E-74 1.97E-73 0 0 0 0
f18 0 0 0 0 0 0 0 0
Average 

ranking
3.28 2.39 1.22 1.00

Total rank-
ing

4 3 2 1
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5  Experiments on latest benchmark problems for CEC 2017

The overall performance of VGHHO is further evaluated on 30 latest CEC 2017 bench-
mark problems, which are more complicated than the eighteen classical functions from 
Table 1. These problems are classified as four types, namely, unimodal (F01–F03), mul-
timodal (F04–F10), hybrid (F11–F20), and composite cases (F21–F30) to investigate dif-
ferent search ability of algorithm (Awad et al. 2016). In this experiment, the dimensions of 
each problem are set to 30. The experimental results of VGHHO are compared with BOA, 
SOA, HHO, HHO-JOS, EEGWO, AGDE and ISCA, respectively. The terminate condi-
tion for seven algorithms is the same fitness evaluation maximum number (i.e.,  104 × D, D 
denotes the problems’ dimension) to maintain fairness. The error value [f(x)—f(x0)] of each 
algorithm is calculated over 30 independent trials on each problem. The f(x) is a best value 
obtained by each method, while f(x0) is the theoretical best value on each problem. The 
comparison results of seven algorithms are listed in Table 9. Due to its unstable behavior, 
F02 has been deleted from test set and its result is not reported.

The optimization results of VGHHO in Table  9 are much better than BOA, HHO, 
EEGWO and ISCA on all the problems. Compared with SOA, VGHHO finds the bet-
ter error values on 21 benchmark test problems. However, the better results are obtained 
by SOA on other eight problems (namely, F05–F07, F09, F16, F17, F20, and F23). With 
respect to the HHO-JOS algorithm, VGHHO gets the better and worse error values on 

Fig. 8  Friedman test ranks of 
seven approaches for CEC 2017 
problems

BOA SOA HHO HHO-JOS EEGWO AGDE ISCA VGHHO
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Table 10  Wilcoxon’s rank sum test values are obtained by VGHHO versus other seven approaches

Algorithm Better Equal Worst R + R− p-value α = 0.05

VGHHO vs. BOA 29 0 0 435 0 0.0054 Yes
VGHHO vs. SOA 21 0 8 373 62 0.4368 No
VGHHO vs. HHO 29 0 0 435 0 0.2078 No
VGHHO vs. HHO-JOS 24 0 5 359 76 0.7795 No
VGHHO vs. EEGWO 29 0 0 435 0 0.0103 Yes
VGHHO vs. AGDE 3 0 26 26 409 1.08E-04 Yes
VGHHO vs. ISCA 29 0 0 435 0 0.0075 Yes
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24 and five problems (i.e., F6, F10, F22, F26 and F30), respectively. AGDE is a state-of-
the-art meta-heuristic algorithm for CEC 2017 benchmark test suit. AGDE obtains better 
results than VGHHO on 26 problems. However, the better values of three problems (i.e., 
F10, F25 and F26) are obtained by VGHHO algorithm. According to the non- parametric 
statistical Friedman ranking test results, Fig. 8 plots the column chart of the average rank-
ing results of seven algorithms on 30 benchmark problems from CEC 2017. From Fig. 8, 
AGDE achieves the first rank, followed by VGHHO, HHO-JOS, SOA, HHO, EEGWO, 
ISCA and BOA.

Additionally, the Wilcoxon’s rank sum statistical test based on “Mean” values in Table 9 
is also used to investigate the difference between VGHHO and other seven optimization 
algorithms. Table 10 provides the statistical performance of VGHHO and other seven algo-
rithms. From Table 10, VGHHO obtains higher “R+” than “R−” results on all of cases 
except for VGHHO versus AGDE. The p-values of VGHHO versus BOA, EEGWO, AGDE 
and ISCA are less than 0.05.

6  VGHHO for benchmark feature selection problems

In this section, the feasibility of VGHHO is further verified by dealing with feature selec-
tion (FS) problems. In fact, FS is a typical combinatorial optimization problem and its 
solution space is represented by binary values (Neggaz et al. 2020; Dhiman et al. 2021b; 

Table 11  The detailed 
information of 21 UCI datasets

Number Dataset Number of 
features

Number 
of sam-
ples

1 Breastcancer 9 699
2 BreastEW 30 569
3 Clean1 166 476
4 Clean2 166 6598
5 CongressEW 16 435
6 Exactly 13 1000
7 Exactly2 13 1000
8 HeartEW 13 270
9 IonosphereEW 34 351
10 KrvskpEW 36 3196
11 Lymphography 18 148
12 M-of-n 13 1000
13 PenglungEW 325 73
14 Semeion 265 1593
15 SonarEW 60 208
16 SpectEW 22 267
17 Tic-tac-toe 9 958
18 Vote 16 300
19 WaveformEW 40 5000
20 WineEW 13 178
21 Zoo 16 101
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Hussain et  al. 2021). However, VGHHO is a continuous version optimization technique 
which needs to transform it from continuous space into binary one when solving FS prob-
lems. One of the easiest handle ways is to introduce a transfer function (Tubishat et  al. 
2020). The biggest characteristic of this way is not to change the framework of VGHHO. In 
this paper, the following S-shaped transfer function is used:

where τ is a constant number.
In our experiment, twenty-one feature selection benchmark datasets from UCI are used. 

These datasets have been widely used to verify the optimization performance of meta-heu-
ristic algorithms and their detailed information are shown in Table 11.

For twenty-one datasets, the wrapper technique and k-Nearest Neighbors (KNN) classi-
fier (k = 3) are combined to use. The number of samples of each dataset is randomly classi-
fied as two groups, namely, 80% is utilized for training while 20% is used for testing. In this 
experiment, the same population scale (N = 10) and maximum iterative number (tmax = 100) 
for all the approaches are used to obtain a fair comparison. Each algorithm runs 30 inde-
pendently trials on each dataset. Table 12 provides the average classification accuracy for 

(26)T(x) =
1

1 + e−� x

Table 12  The average classification rates are obtained by seven algorithms on twenty-one selected datasets

The best value of each function is highlighted in bold in the table

Dataset BOA SOA HHO m-HHO EEGWO ISCA VGHHO

Breastcancer 0.9696 0.9710 0.9736 0.9760 0.9668 0.9768 0.9822
BreastEW 0.9572 0.9750 0.9587 0.9617 0.9483 0.9519 0.9736
Clean1 0.8938 0.9363 0.8421 0.9333 0.8683 0.8875 0.9366
Clean2 0.9685 0.9783 0.9722 0.9740 0.9669 0.9626 0.9759
CongressEW 0.9720 0.9720 0.9693 0.9770 0.9627 0.9604 0.9846
Exactly 0.7818 0.9061 0.7167 0.7117 0.7596 0.6909 0.9178
Exactly2 0.7646 0.7606 0.7433 0.7617 0.7606 0.7576 0.7697
HeartEW 0.8165 0.8277 0.8184 0.8272 0.8090 0.8352 0.8642
IonosphereEW 0.8986 0.9478 0.9190 0.9190 0.8898 0.9275 0.9333
KrvskpEW 0.9149 0.9813 0.9515 0.9588 0.8789 0.9408 0.9760
Lymphography 0.8611 0.9097 0.7701 0.9080 0.8681 0.8750 0.9136
M-of-n 0.8242 0.9586 0.8550 0.9067 0.8020 0.8858 0.9200
PenglungEW 0.9028 0.9583 0.9286 0.9286 0.8750 0.9167 0.9583
Semeion 0.9708 0.9853 0.9811 0.9895 0.9695 0.9803 0.9860
SonarEW 0.9069 0.9461 0.9187 0.9593 0.8922 0.8529 0.9293
SpectEW 0.8446 0.8598 0.8930 0.8868 0.8485 0.8788 0.8977
Tic-tac-toe 0.7384 0.7700 0.7801 0.7853 0.7584 0.7690 0.8083
Vote 0.9562 0.9596 1.0000 1.0000 0.9360 0.9528 1.0000
WaveformEW 0.7400 0.7998 0.7440 0.7703 0.7384 0.7331 0.7739
WineEW 0.9712 0.9827 0.9333 1.0000 0.9712 0.9712 1.0000
Zoo 0.9596 0.9596 0.9500 0.9833 0.9596 0.8990 0.9866
Average ranking 5.17 2.60 4.57 2.83 6.07 5.24 1.52
Total ranking 5 2 4 3 7 6 1



 W. Long et al.

1 3

seven algorithms on twenty-one datasets. The average feature numbers of seven methods 
on each dataset are listed in Table 13. Furthermore, the non-parametric statistical Friedman 
test results are also provided in Tables 12 and 13.

From Table 12, compared with BOA, EEGWO, and ISCA, VGHHO gets better clas-
sification accuracy on all the datasets. VGHHO obtains better classification accuracy than 
SOA on thirteen and one (i.e., PenglungEW) datasets, respectively. However, the better 
results are obtained by SOA on BreastEW, Clean2, IonosphereEW, KrvskpEW, M-of-n, 
SonarEW, and WaveformEW datasets, respectively. With respect to the basic HHO algo-
rithm, VGHHO achieves better performance on all the datasets except for Vote. For Vote 
dataset, two algorithms find similar classification accuracy. Compared to the m-HHO 
algorithm, VGHHO provides better and similar classification rate for seventeen and two 
(i.e., Vote and WineEW) datasets. However, the better results are found by OBL-HHO 
on Semeion and SonarEW datasets. In addition, according to the Friedman test results in 
Table 12, the ranking order is VGHHO, SOA, m-HHO, HHO, BOA, ISCA, and EEGWO.

From Table 13, the numbers of the selected features of VGHHO are less than BOA on 
all the datasets except for Exactly2. Compared with SOA, VGHHO selects less and more 
feature numbers on eleven and nine datasets, respectively. For M-of-n dataset, two algo-
rithms find the equal numbers of features. The numbers of the selected features of HHO are 

Table 13  The average feature numbers are obtained by seven algorithms on twenty-one selected datasets

The best value of each function is highlighted in bold in the table

Dataset BOA SOA HHO m-HHO EEGWO ISCA VGHHO

Breastcancer 5.0000 3.3333 5.6667 4.0000 5.3333 5.3333 3.6667
BreastEW 14.667 9.6667 16.000 12.000 16.000 16.000 12.000
Clean1 73.667 36.000 76.667 69.000 79.667 81.667 63.000
Clean2 68.667 44.333 89.667 80.667 88.667 85.333 39.333
CongressEW 4.6667 2.0000 8.3333 3.3333 7.3333 2.0000 3.0000
Exactly 5.0000 5.6667 9.3333 4.3333 3.3333 1.0000 1.0000
Exactly2 1.0000 2.3333 5.3333 3.0000 1.0000 1.0000 1.0000
HeartEW 7.3333 4.3333 8.6667 6.0000 8.3333 3.6667 4.3333
IonosphereEW 11.333 4.6667 17.333 4.3333 16.000 3.6667 3.3333
KrvskpEW 19.333 14.333 30.333 29.333 20.667 15.667 14.667
Lymphography 7.6667 4.3333 11.333 6.0000 10.333 5.6667 4.0000
M-of-n 8.0000 6.0000 13.000 8.3333 7.3333 5.6667 7.6667
PenglungEW 55.667 14.333 157.00 37.000 158.00 141.33 22.000
Semeion 112.67 49.333 132.67 111.33 123.00 133.33 102.67
SonarEW 25.667 13.667 29.000 23.333 28.000 27.333 24.667
SpectEW 10.667 4.3333 14.000 8.3333 9.6667 7.3333 7.0000
Tic-tac-toe 6.0000 4.6667 6.6667 6.6667 6.3333 4.3333 4.3333
Vote 6.3333 3.3333 7.3333 1.3333 7.0000 2.3333 2.0000
WaveformEW 23.333 18.667 34.667 21.000 20.000 8.0000 18.333
WineEW 6.3333 5.0000 4.3333 5.6667 8.0000 4.0000 4.0000
Zoo 7.0000 4.6667 7.0000 7.6667 8.0000 4.3333 4.0000
Average ranking 4.38 2.38 6.43 4.05 5.38 3.24 2.00
Total ranking 5 2 7 4 6 3 1
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more than VGHHO on all the datasets. VGHHO selects the numbers of features less than 
m-HHO on all the datasets except for Sonar and Vote. With respect to EEGWO, VGHHO 
obtains more feature numbers on nineteen datasets. The numbers of the selected features of 
VGHHO are less and more than ISCA on fifteen and four datasets, respectively. Addition-
ally, VGHHO obtains the first rank based on Friedman test.

Fig. 9  The components connection framework of a typical wind turbine

Table 14  The feature and sample 
numbers of two fault datasets

Dataset Faculty type Number of 
features

Number 
of sam-
ples

Dataset-1 Variable pitch system 
super capacitor volt-
age low fault

106 2883

Dataset-2 Variable pitch paddle 3 
super capacitor volt-
age low fault

110 3585

Table 15  The average classification accuracy of seven algorithms on two fault datasets

The best value of each function is highlighted in bold in the table

Dataset BOA SOA HHO OBL-HHO EEGWO ISCA VGHHO

Dataset-1 0.9968 0.9988 0.9993 1.0000 0.9979 1.0000 1.0000
Dataset-2 0.9944 0.9974 0.9970 0.9944 0.9972 0.9972 1.0000
Average ranking 6.75 3.50 4.50 4.25 4.75 2.75 1.50
Total ranking 7 3 5 4 6 2 1
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7  VGHHO for fault diagnosis of wind turbine

Although VGHHO has shown excellent performance on benchmark problems, it is neces-
sary for investigating its effectiveness in real-world problems. Therefore, in this section, 
a practical fault diagnosis problem of wind turbine is used to verify the effectiveness of 
VGHHO. Wind turbine is a kind of clean energy, which has been widely used. Figure 9 
plots the framework diagram of connection between components of wind turbine.

Pitch control system is an important parts of wind turbine. Its internal structure is com-
plex. When it operates in extremely harsh environment, it is likely to cause its failure (Tang 
et al. 2020a). The fault of variable pitch system directly affects the power operation effi-
ciency of wind turbine (Tang et al. 2020b). Therefore, the research on fault diagnosis of 
variable pitch system plays an important role in reducing the operating cost of wind tur-
bine and improving the power generation (Cho et al. 2018). One year monitoring and data 
acquisition (SACDA) data set of a wind farm in East China is the experimental data of fault 
data of variable pitch system. Table 14 lists the fault feature and sample numbers of two 
datasets.

The wrapper method with KNN classifier and VGHHO on feature selection is used on 
two fault datasets. Each dataset is randomly divided into two parts, namely, 80% is the 
training set while 20% is the testing one. The performance of VGHHO is compared against 
BOA, SOA, HHO, OBL-HHO, EEGWO and ISCA. For all algorithms, the swarm scale 
is 10 and the maximum of iterative numbers is 10. Each algorithm runs 30 independently 
trials on each dataset. Table 15 provides the average classification accuracy of seven algo-
rithms on two datasets. The average feature numbers of seven algorithms on two datasets 
is shown in Table 16. In addition, the non-parametric statistical Friedman test results on 
seven algorithms are also provided in Tables 15 and 16.

As seem in Tables  15, the average classification accuracy of VGHHO is better than 
BOA, SOA, HHO, and EEGWO on Dataset-1. Compared with OBL-HHO and ISCA, 
VGHHO obtains similar results on Dataset-1. For Dataset-2, the result of VGHHO is bet-
ter than other six algorithms. From the statistical Friedman test results, VGHHO achieves 
the first rank. From Table  16, the numbers of the selected features of VGHHO are less 
than other six algorithms on Dataset-1. For Dataset-2, VGHHO achieves better results than 
BOA, SOA, HHO, OBL-HHO, EEGWO, and ISCA. With respect to the non-parametric 
statistical Friedman test results in Table 16, VGHHO obtains the first rank, followed by 
OBL-HHO, HHO, ISCA, EEGWO, SOA, and BOA.

Table 16  The average feature numbers are obtained by seven algorithms on two fault datasets

The best value of each function is highlighted in bold in the table

Dataset BOA SOA HHO OBL-HHO EEGWO ISCA VGHHO

Dataset-1 53.333 46.000 12.667 8.0000 34.333 23.000 6.3333
Dataset-2 54.000 47.000 19.667 3.3333 31.667 19.000 2.6667
Average ranking 7.00 6.00 3.50 2.5 5.00 3.50 1.00
Total ranking 7 6 3 2 5 3 1
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8  VGHHO for parameter estimation of photovoltaic model

In recent years, low-carbon technology has developed rapidly around the world. Solar 
energy is considered one of the most promising renewable energy resources due to its 
abundance, cleanliness, and pollution-free. Photovoltaic (PV) power generation systems 
can convert solar energy into electrical energy. As the main com- ponent of the PV power 
generation system, accurately estimate the parameters of PV cells is a great significant to 
model the PV systems. Parameters with low accuracy will not only cause large errors, but 
may even lead to the failure of the maximum power point tracking (MPPT). Therefore, 
establishing a reliable mathematical model based on the measure data that describe the 
nonlinear characteristics of solar cells and accurately estimating its parameters can provide 
a guarantee for the design and application of solar cell fault diagnosis and MPPT control.

In generally, single diode (SD) is one of the widely used models in solar PV power gen-
eration system. The equivalent circuit structure of SD model is shown in Fig. 10.

In Fig. 10, based on Shockley equation, the output current (IL) of SD model is calcu-
lated as follows (Long et al. 2020a, 2021a):

Fig. 10  The equivalent circuit 
structure of SD model

Table 17  The best estimated parameters and their corresponding RMSE values of various algorithms

Algorithm Iph (A) Isd (μA) RS (Ω) Rsh (Ω) n RMSE

CLPSO (Liang et al. 
2006)

0.7608 0.34302 0.0361 54.1965 1.4873 9.9633E-04

DE-BBO (Gong 
et al. 2010)

0.7605 0.32477 0.0364 55.2627 1.4817 9.9922E-04

BSA (Civicioglu 
2013)

0.7609 0.37749 0.0358 56.5266 1.4970 1.0398E-03

GOTLBO (Chen 
et al. 2016)

0.7608 0.32970 0.0363 53.3664 1.4833 9.8856E-04

IBSA (Nama et al. 
2017)

0.7607 0.35502 0.0361 58.2012 1.4907 1.0092E-03

GWOCS (Long et al. 
2020a)

0.760773 0.32192 0.03639 53.6320 1.4808 9.8607E-04

EABOA (Long et al. 
2021a)

0.760771077 0.322929 0.036379593 53.76600144 1.481153457 9.8602E-04

HHO (Heidari et al. 
2019)

0.7599465 0.358115 0.0373477 82.48671 1.4912567 2.4122E-03

VGHHO 0.7607549 0.324388 0.0363521 53.94424 1.4816135 9.8628E-04
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where Iph is the photo-generated current, Isd represents the reverse saturation current, RS 
denotes the series resistance, q is the electron charge (= 1.60217646), k represents the 
Boltzmann constant (1.38 ×  10–23), VL denotes the output voltage, Rsh is the shunt resist-
ance, n represents the ideality factor, and T denotes the cell temperature in Kelvin. From 
Eq. (27), for SD model, five parameters (i.e., Iph, Isd, RS, Rsh, and n) are required to be esti-
mated based on the measured IL and VL data.

Over the past twenty years, many methods have been proposed to estimate the 
unknown parameters of SD model. Among them, meta-heuristic optimization algo-
rithm is the most popular parameters estimation method of SD model (Long et  al. 
2020a, 2021a). In this paper, VGHHO is used to estimate the unknown parameters of 
SD model. The range of five parameters is set as follows: 0 ≤ Iph, Isd ≤ 1, 0 ≤ RS ≤ 0.5, 
0 ≤ Rsh ≤ 100, and 1 ≤ n ≤ 2. The measured current–voltage (I-V) data are acquired from 
Easwarakhanthan et al. (1986). VGHHO is also compared with the standard HHO and 
other seven algorithms. All algorithms have the same maximum number of fitness 
evaluations 50,000. The best estimated parameter and their corresponding RMSE val-
ues of various methods are listed in Table 17.

From Table 17, the best parameters and RMSE value of SD model are obtained by 
EABOA. Compared with CLPSO, DE-BBO, BSA, GOTLBO, IBSA, and HHO algo-
rithms, VGHHO obtains better RMSE value for SD model. However, the RMSE value 
of VGHHO is worse than that of GWOCS and EABOA. Furthermore, based on the best 
estimated parameters, the fitting curves of the calculated data obtained by VGHHO 
and the measured data is shown in Fig. 11. As can be seen from Fig. 11, the calculated 
data obtained by VGHHO are in very good agreement with the measured data for SD 
model.

(27)IL = Iph − Isd ⋅

[
exp

(
q ⋅ (VL + RS ⋅ IL)

n ⋅ k ⋅ T

)
− 1

]
−

VL + RS ⋅ IL

Rsh
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Fig. 11  The calculated values obtained by VGHHO and the measured values for SD model
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9  Conclusions

The main purpose of this study was to develop an improved version of HHO (i.e., VGHHO) 
by introducing three modified strategies to overcome the drawbacks of HHO. The velocity 
and inertia weight were added into the position search equation in exploitation phase for 
guiding search direction of algorithm. Thus, the convergence speed and solution precision 
were improved. To obtain a good transition from exploration to exploitation, a nonlinear 
escaping energy coefficient E based on cosine function was proposed. The refraction-oppo-
sition-based learning mechanism was introduced to enhance the population diversity and 
avoid premature convergence.

To investigate the effectiveness of VGHHO, several experiments were conducted. In 
the first experiment, eighteen classical benchmark functions with different scales were 
selected to evaluate the performance of VGHHO and compared it with other algorithms. 
The experimental results indicated that VGHHO had higher precision and better scalability 
than other algorithms on most classical benchmark functions. In the second experiment, 
30 latest benchmark functions from CEC 2017 were tested. Simulations indicated that 
VGHHO obtained better performance than other algorithms on complex test functions. In 
the third experiment, we utilized twenty-one benchmark feature selection problems from 
UCI to further test the optimization ability of VGHHO. The test investigation showed that 
the VGHHO gave satisfactory results in term of classification rate. Finally, a practical fault 
diagnosis problem of wind turbine and a parameter estimation problem of PV model were 
used to verify the performance of VGHHO in solving the real-world applications. The 
comprehensive results indicated that VGHHO was a feasible and promising technique for 
wind turbine fault diagnosis and PV model parameter estimation. These experiments con-
firmed that VGHHO performed better competitiveness than other selected algorithms on 
benchmark functions, benchmark feature selection problems and real-world problems.

The main limitation and disadvantage of VGHHO was that different parameters need to 
be set for different optimization problems. Furthermore, for complex optimization prob-
lems such as CEC 2017 benchmark functions and feature selection problems of UCI com-
plex datasets, the solution results of VGHHO are not very satisfied.

In the future, VGHHO will be used for solving more complex optimization problems 
and real-world applications, especially in the fields of constrained, multi-objective, and 
combinational optimization problems, signal processing, pattern recognition, and auto-
matic control as well as data mining. Moreover, the velocity-guided strategy can also be 
added into other meta-heuristic algorithms and further investigates its effectiveness and 
feasibility.
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