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Background An allele score is a single variable summarizing multiple genetic
variants associated with a risk factor. It is calculated as the total
number of risk factor-increasing alleles for an individual
(unweighted score), or the sum of weights for each allele corres-
ponding to estimated genetic effect sizes (weighted score). An allele
score can be used in a Mendelian randomization analysis to esti-
mate the causal effect of the risk factor on an outcome.

Methods Data were simulated to investigate the use of allele scores in
Mendelian randomization where conventional instrumental variable
techniques using multiple genetic variants demonstrate ‘weak instru-
ment’ bias. The robustness of estimates using the allele score to mis-
specification (for example non-linearity, effect modification) and to
violations of the instrumental variable assumptions was assessed.

Results Causal estimates using a correctly specified allele score were unbiased
with appropriate coverage levels. The estimates were generally robust
to misspecification of the allele score, but not to instrumental variable
violations, even if the majority of variants in the allele score were valid
instruments. Using a weighted rather than an unweighted allele score
increased power, but the increase was small when genetic variants had
similar effect sizes. Naive use of the data under analysis to choose
which variants to include in an allele score, or for deriving weights,
resulted in substantial biases.

Conclusions Allele scores enable valid causal estimates with large numbers of
genetic variants. The stringency of criteria for genetic variants in
Mendelian randomization should be maintained for all variants in
an allele score.

Keywords Mendelian randomization, allele scores, genetic risk scores, instru-
mental variables, weak instruments

Introduction
Allele scores (also called genetic risk scores, gene
scores or genotype scores) are a convenient way of
summarizing a large number of genetic variants
associated with a risk factor. An unweighted allele
score is constructed as the total number of risk

factor-increasing alleles present in the genotype of an
individual. A weighted allele score can also be con-
sidered, where each allele contributes a weight reflect-
ing an estimate of the effect of the corresponding
genetic variant on the risk factor. These weights can
be internally derived from the data under analysis,

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Published by Oxford University Press on behalf of the International Epidemiological Association

� The Author 2013.

International Journal of Epidemiology 2013;42:1134–1144

doi:10.1093/ije/dyt093

1134



or externally derived from prior knowledge or an in-
dependent data source. In this way, multidimensional
genetic data on variants associated with a risk factor
can be collapsed into a single variable. Allele scores
have been constructed for many traits, including fast-
ing,1 blood pressure2 and high-density lipoprotein
cholesterol.3

Allele scores are important for the modelling of
multifactorial polygenic traits, particularly when the
allele score consists either of many common variants
with small effects, or of rare variants. When several
such variants are combined into an allele score, the
score may explain a considerable proportion of vari-
ation in the risk factor, even if none of the variants
individually does.

Mendelian randomization
In this paper, we consider the use of allele scores in
Mendelian randomization: that is the application of
instrumental variable methods with genetic instru-
ments to estimate the causal effect of a risk factor
on an outcome from observational data.4,5 Under
the assumption that the genetic instruments used
are specifically associated with the risk factor of inter-
est, and not directly associated with either the
outcome or any potential confounding variable, a gen-
etic instrumental variable divides the population into
subgroups which systematically differ in the risk
factor, but not in any competing risk factor.6 The gen-
etically-defined subgroups are analogous to treatment
arms in a randomized controlled trial.7 Any difference
in the outcome between the subgroups is inferred to
be causally due to the risk factor of interest, subject to
the validity of the instrumental variable assumptions.8

In this paper, we assume the context of a continu-
ous risk factor and a continuous outcome. In order to
consistently estimate a causal effect, further structural
assumptions are necessary, such as linearity in the
association between the risk factor and the outcome.
These assumptions have been discussed at length else-
where,6,9 and are assumed to hold in this paper.

Violation of instrumental variable
assumptions
Violation of the instrumental variable assumptions
can occur for a number of biologically plausible rea-
sons, including pleiotropic association of the genetic
variant with a confounding variable or with the
outcome directly, linkage disequilibrium with another
functional variant associated with a confounding vari-
able or the outcome, and population stratification
where genetic associations reflect latent strata in the
population.10,11 However, where there is substantial
scientific evidence on a genetic variant to justify its
use as an instrumental variable, the instrumental vari-
able estimate can be reasonably assumed to represent
a causal effect. Examples of genetic variants which
have been used in this way for coronary heart disease
include variants in the CRP gene for the causal effect

of C-reactive protein,12 and variants in the IL6R gene
for the causal effect of interleukin-6 receptor.13

Using allele scores in Mendelian
randomization
Allele scores are used in Mendelian randomization
for reasons of simplicity, increased power14 and avoid-
ance of weak instrument bias.15 Their use requires the
assumption that the allele score is an instrumental vari-
able/cite,16 and so is specifically associated with the risk
factor and not with the outcome or confounders as
above. This means that each variant which contributes
to the allele score must be an instrumental variable.14 As
the biological effects of all the variants in an allele score
may not be well known, the instrumental variable as-
sumptions may not be satisfied for all the variants. We
demonstrate the problems resulting from departures
from these assumptions, as well as from assumptions
which are commonly made for mathematical conveni-
ence, such as the use of additive genetic models with
no interactions between genetic variants. The aim of
this paper is to show how use of an allele score resolves
some of these problems; first in an idealized setting,
and then in a range of more realistic scenarios.

Examples of allele scores used in practice
To motivate the methodological issues considered in
this paper, we here provide some examples of how
allele scores have been used in practice. Lin et al.17

used an unweighted and a weighted allele score based
on 15 genetic variants in the context of risk prediction,
deriving weights from the data under analysis. They
found that a weighted allele score provided greater dis-
crimination than an unweighted score when used in
conjunction with conventional risk factors. Rasmussen
et al.1 and Ehret et al.2 used a weighted allele score in the
context of Mendelian randomization, deriving weights
from the data under analysis. Rasmussen et al. chose
five variants from genetic regions which showed signifi-
cant P-values in the dataset, although the precise choice
of variants was from a separate meta-analysis (which
included the study under analysis). In Ehret et al., sev-
eral of the 29 variants used in the allele score were
novel, and were chosen on the basis of P-values in the
dataset. Voight et al.3 used a weighted allele score with
14 variants to perform Mendelian randomization, deriv-
ing weights from a published meta-analysis, although
some studies were in common between the two ana-
lyses. It is not clear how the specific variants were
chosen, although they are reported as having significant
P-values in the dataset.

Simulation study
In order to evaluate the performance of various meth-
ods for causal estimation with multiple genetic
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variants and allele scores, we undertake a simulation
study. The study is presented as a ‘theme and
variations’, with an initial analysis performed where
each of the genetic variants is a valid instrumental
variable for the risk factor and has the same magni-
tude of effect on the risk factor, and with further
analyses varying the data-generating mechanism and
comparing methods used for constructing the allele
score and for instrumental variable analysis.

Initial analysis: valid instruments with
equal-sized effects
We generate simulated data for a risk factor (X) which
is a linear sum of a confounder (U), assumed unmeas-
ured, a set of J independently distributed genetic vari-
ants (Gij ¼ 0,1,2 for j¼ 1 , . . . , J) representing the
number of minor alleles for each variant and a nor-
mally distributed error term. The outcome (Y) is a con-
tinuous variable calculated as the linear sum of the risk
factor, the confounder and an independent error term.
The initial data-generating model for individual i is:

Xi ¼
XJ

j¼1

�GGij þ �UUi þ "Xi

Yi ¼ �X Xi þ �UUi þ "Yi

Ui, "Xi, "Yi � N 0,1ð Þ independently

ð1Þ

Data are simulated with 9, 25 and 100 genetic vari-
ants for 3000 individuals. We set �U ,�U ¼ 1 so that the
risk factor and outcome are positively correlated even
without a causal effect of the risk factor on the out-
come. Three values are taken for the causal effect �X of
0, 0.2 and 0.4. We choose �G ¼ 0:1 for 9 variants,
�G ¼ 0:06 for 25 variants and �G ¼ 0:03 for 100 variants
with a minor allele frequency of 0.3 for each variant, so
that the proportion of variation in the risk factor
explained by the genetic variants above that expected
by chance (the adjusted R2) is approximately 1.9%
throughout, similar to the R2 for the allele score. This
is a fairly typical proportion for many biomarkers.12

Although many traits have a heritability which is
much greater than 1.9%,18 it is unlikely that this her-
itability can be attributed to genetic variants which are
specifically associated with the trait of interest rather
than those associated with potential confounders.

For each of 1000 simulated datasets, we calculate
estimates of the causal effect using an unweighted
allele score (

P
j Gij) as an instrumental variable and

the two-stage least squares (2SLS) method to give a
point estimate and standard error.19 In comparison,
we also present results using the 2SLS and limited
information maximum likelihood (LIML) methods20

with a multivariable first-stage regression model for
the genetic association with the risk factor using a
single coefficient (aj) for each genetic variant:

Xi ¼ a0 þ
XJ

j¼1

ajGij þ ei

Analyses are implemented using the ivreg2 command
in Stata21 (LIML) and the tsls command22 in R23

(2SLS). LIML and 2SLS give identical estimates in
the case of a single instrumental variable such as an
allele score. We focus on the properties of bias, em-
pirical coverage (proportion of datasets in which the
95% confidence interval contains the true causal
effect), and empirical power (proportion of datasets
detecting a non-null causal effect at a significance
level of 5%).

When the strength of the instruments is low, esti-
mates using multiple instruments are known to be
biased in the direction of the observational con-
founded association and have non-normal distribu-
tions,24,25 leading to poor coverage properties in
analysis methods relying on asymptotic standard
errors.26 The strength of the instruments is measured
by the F statistic from the regression of the risk factor
on the instruments.27 Conventionally, instruments
with an F statistic less than 10 are labelled as
‘weak’,28 although so-called ‘weak instrument bias’
is a continuous rather than a binary phenomenon.
The bias is a result of over-fitting in the genetic
model, whereby the genetic variants explain not
only systematic variation in the risk factor of interest,
but also chance variation in the confounders; the bias
is towards the confounded observational estimate.29

Instruments with lower expected F statistics corres-
pond to estimates which are more biased. A weak
instrument should not be confused with an invalid
instrument, and estimates using a weak instrument
will be consistent for the causal effect with a large
enough sample size.

Whereas the use of F statistic thresholds for control-
ling bias has been advocated by some,30 naive appli-
cation of these rules can exacerbate bias rather than
reduce it. We believe that thresholds are unhelpful to
applied researchers in understanding weak instru-
ments, as: (i) they encourage researchers to classify
instruments into the binary classes of weak or non-
weak, rather than acknowledging that weak instru-
ment bias is a continuous phenomenon; (ii) they
ignore the substantial sampling variation in the F
statistic—the bias of the 2SLS estimator depends on
the expected value of the F statistic, not the estimate
of the F statistic in the given dataset; and (iii) they
promote the selection of studies and instruments
based on a data-derived statistic, leading to post
hoc choice of analysis and substantial potential
bias.26,29

In our simulations, the mean F statistic from the
regression of the risk factor on the allele score is
almost 60, meaning that causal estimates using the
allele score should be unaffected by weak instrument
bias. The F statistics using each of the genetic variants
as a separate instrumental variable are much lower.
Estimates from the LIML method are less affected by
weak instrument bias than those from the 2SLS
method.31
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In further simulations, scenarios 1 to 7 below, we
consider various departures from the data-generating
model (1) which reflect practical issues relating to con-
structing and using allele scores. We examine how es-
timates from instrumental variable methods using an
allele score are affected by these changes. Unless
otherwise stated, all parameters take the same values
as in the initial simulation. In the main paper, we de-
scribe situations with 25 variants; results from models
with 9 and 100 variants obtained by scaling the genetic
parameters accordingly are given in the Supplementary
Appendix (available as Supplementary data at IJE
online). Parameters are chosen to take plausible values
with reference to real examples, for example scenario
2, which is motivated by the example of type 1 dia-
betes, and principles, for example that main effects are
generally larger than interaction terms.

1. Unequal variants: valid instruments with
different-sized effects
In practice, it may be that some genetic variants have
stronger associations with the risk factor than others.
To model this, we draw the genetic effect sizes �Gj for
each genetic variant j from independent normal dis-
tributions with mean 0.06 and standard deviation
0.018; so nearly all of the genetic effects sizes are
between 0.02 and 0.12. In addition to an unweighted
standard allele score where each risk-increasing allele
contributed the same value to the allele score, we
construct weighted allele scores (

P
j wjGij). The

weights (wj) are determined in six ways: internally
from the same data used in the analysis using naive
and two cross-validation approaches, externally from
first a small and then a large independent source, and
from the coefficients in the generating model.

In the first case, taking the weights from the data
under analysis (internal weights), the estimate from a
weighted allele score method is the same as that ob-
tained from a 2SLS method with a separate coefficient
for each variant, as the weights are the same as the
coefficients from the first-stage regression in the 2SLS
analysis. In the second case, using 2-fold cross-valid-
ation, the sample is divided randomly into two equal
halves. Two sets of weights are estimated in the
separate halves of the data (w1j, w2j estimated in the
first and second halves of the data, respectively).
The weights estimated in the first half of the
data are taken to construct a score for participants
in the second half (

P
j w1jGij for participants

i¼ 1501 , . . . , 3000 in the second half of the data),
and vice versa (

P
j w2jGij for participants

i¼ 1 , . . . , 1500 in the first half of the data). In this
way the correlation between the weights and the data
under analysis is removed. In the third case, a 10-fold
cross-validation approach is used, so that 10 esti-
mated sets of weights are calculated, each using
90% of the available data, rather than 50%. In the
fourth and fifth cases, weights are generated by sam-
pling from a normal distribution around the true

weight with a standard deviation of 0.04 and of
0.01. This represents uncertainty in the estimation of
weights taken from the regression of the risk factor
on the variants in an external data source of approxi-
mately the same size as the original dataset (3000
participants, imprecise weights) and of 16 times the
size of the original dataset (48 000 participants, pre-
cise weights). In the final case, the coefficients from
the generating model are the true weights.

2. Main and secondary variants: valid
instruments with a few large and many
small effects
In some practical examples, a small number of main
variants have large effects (here, two) and other sec-
ondary variants may have smaller effects, a model
called a ‘major-gene/polygene model’ by Pierce
et al.14 We additionally consider a composite approach
using 2SLS, estimating separate coefficients for the
main variants and including others in an unweighted
allele score. This is compared with the weighted and
unweighted allele score methods discussed above and
the 2SLS and LIML methods. In the generating
model, the effect size for the two main variants is
set at five times the size of the effect of the secondary
variants. We set �G ¼ 0:046 for the secondary variants
and �G ¼ 0:23 for the main variants so that the pro-
portion of variation in the risk factor explained by the
allele score (R2) is maintained at 1.9%.

3. Selected variants: instruments chosen due
to strength of association in the data under
analysis
In practice, it may be that the investigator is uncer-
tain if each of the alleles is truly associated with the
risk factor in the population of interest and decides to
include in an allele score only the variants which
show the strongest association with the risk factor.
To illustrate this approach, variants were ranked
according to their strength of association with the
risk factor and selected using two criteria: a fixed
number of variants (5, 10), and a threshold P-value
(0.05, 0.01). Estimates were obtained using an un-
weighted allele including only the selected variants.

4. Non-linear genetic effects: valid
instruments with non-linear effects
In practice, it may be that some genetic variants do
not have linear (that is additive or per allele) effects
on the risk factor. We modify the data-generating
model (1) by replacing the first line with:

Xi ¼
XJ

j¼1

�G1Gij þ �Gj11Gij¼1

� �
þ �UUi þ "Xi

where 1Gij¼1 is an indicator function, taking the value
one when the subscripted condition is satisfied and
zero otherwise. We set �G1 ¼ 0:06 and draw the
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effects �Gj1 from a normal distribution with mean
0 and standard deviation 0.036. For heterozygotes
(Gij ¼ 1), nearly all values of �G1 þ �Gj1 are in the
range �0.02 to 0.14; �Gj1 ¼ 0 corresponds to a reces-
sive genetic model (heterozygotes grouped with major
homozygotes), and �Gj1 ¼ 0:12 to a dominant model
(heterozygotes grouped with minor homozygotes).

5. Interactions between genetic variants:
valid instruments with genetic interactions
In practice, it may be that there are statistical
interactions between the genetic variants. These are
often called gene–gene interactions, though are more
properly thought of as variant–variant interactions.32

We modify the data-generating model (1) by repla-
cing the first line with:

Xi ¼
XJ

j¼1

�G1Gij þ
XJ

j¼1

X
k>j

�Gjk2GijGik þ �UUi þ "Xi

We set �G1 ¼ 0:06 and draw the effects �Gjk2 from a
mixture distribution taking the value zero with prob-
ability 0.9 and a random value from a normal distri-
bution with mean 0 and standard deviation 0.036
with probability 0.1. With 25 genetic variants, in
each simulated dataset there will be an average of
30 interactions between genetic variants out of the
300 pairs of variants; these include a range of inter-
actions from strongly negative (e.g. �Gjk2 ¼ �0:06) to
strongly positive (e.g. �Gjk2 ¼ þ0:06).

6. Interactions between a genetic variant and
a covariate: valid common instruments with
environmental interactions
In practice, it may be that there are statistical
interactions between a genetic variant and a covariate
which is not a confounder. These are often
called gene–environment interactions, though are
more properly thought of as examples of effect
modification.

We modify the data-generating model (1) by repla-
cing it with:

Xi ¼
XJ

j¼1

�G1Gij þ �Gj3GijVi

� �
þ �UUi þ �V Vi þ "Xi

Yi ¼ �X Xi þ �UUi þ "Yi

Ui,Vi, "Xi, "Yi � N 0,1ð Þ independently

The variable V is introduced as a covariate affecting
the risk factor but not the outcome, so that V is not a
confounder but an effect-modifier. To ensure
that the model is similar to those considered previ-
ously in terms of instrument strength, we let
�U ¼ �V ¼ 1=

ffiffiffi
2
p

. We set �G1 ¼ 0:06 and draw the
modifying effects �Gj3 from a mixture distribution
taking the value zero with probability 0.5 and a
random value from a normal distribution with mean
0 and standard deviation 0.036 with probability 0.5.

With 25 genetic variants, in each simulated dataset
there will be an average of 12.5 interactions between
a genetic variant and the covariate.

In each of scenarios 4, 5 and 6, an unweighted allele
score (

P
j Gij) is used as an instrumental variable. This

score does not account for the non-linearity and inter-
action terms, and is therefore misspecified for the true
association of the variants with the risk factor.

7. Association between a genetic variant and
a confounder: invalid instruments
In practice, it may be that some of the genetic vari-
ants are not specifically associated with the risk factor
of interest, but instead with another variable which is
a confounder in the association between the risk
factor and outcome. Although they will be correlated
with the factor of interest, this will be due to the
effect of the confounder rather than a direct effect
of the variant on the risk factor.

Unlike the previous departures from the data-gener-
ating model, which represent misspecification of the
analysis model, in this case the departure is a viola-
tion of the instrumental variable assumptions. If the
confounder is unmeasured, it will be impossible
empirically to distinguish between this scenario and
the initial scenario.

We here consider pleiotropic associations of variants
with the unmeasured confounder U. We modify the
data-generating model (1) by replacing the first line
with:

Xi ¼
XJ

j¼1

�GZjGij þ �UUi þ "Xi

Ui � N
XJ

j¼1

�Gð1� ZjÞGij,1

 !

The Zj are dummy variables taking the value one if
the genetic variant j is directly associated with the
risk factor X (a valid instrument) and zero if the vari-
ant is associated with the confounder U (an invalid
instrument). The strength of association between the
variant and either X or U is constrained to be the
same. We draw the Zj randomly, taking the probabil-
ity of the instrument being valid as 0.9, 0.7 and 0.5.

Results
We initially present the results from the initial ana-
lysis to demonstrate the performance of the methods
in an idealized setting, before giving those from the
various additional situations considered.

Results of initial analysis
Table 1 displays results from each method: the
median estimate across simulations, interquartile
range (IQR) of estimates, coverage and power. The
median estimate is given rather than the mean as
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the distribution of estimates has several extreme
values. With the allele score and LIML methods, the
theoretical mean estimate is undefined.33 For each
number of variants and set of parameter values,
both in the initial analysis and in each of the add-
itional scenarios, the Monte Carlo standard error (the
expected variation from the true value due to the
limited number of simulations) of the median esti-
mate is approximately 0.004, and of the coverage is
0.7%.

We see that the estimates using 2SLS are biased
throughout and coverage is less than the nominal
95% level. Bias acts in the direction of confounding,
and is especially serious with large numbers of genetic
variants of smaller effect size. Although the power
reaches 100% in some cases, this is meaningless
when the coverage is below the nominal level and is
due to the large bias. The LIML estimates show good
performance with bias compatible with zero, but
coverage levels decrease as the number of variants
increases. This is a known problem, and coverage
can be improved by using a correction to the
method due to Bekker.34 However, Bekker standard
errors are not available in the ivreg2 command in
Stata, and so the correction has not been imple-
mented here as it is likely that practitioners would
use the default option. The median estimates using
the allele score are unbiased with correct coverage
levels throughout. The precision of the allele score
method is greater (i.e. has a lower IQR) than LIML,
but the power is similar (where the coverage of each
method is close to the correct 95%). This is expected
for variants with equal-sized effects as, in this case
with a correctly specified allele score, no information

is lost by converting the multivariate data on genetic
variants to a univariate unweighted allele score.

In summary, when correctly specified, allele scores
allow valid estimation of causal effects using large
numbers of genetic variants where conventional
methods (2SLS, LIML) suffer from problems of bias
and/or reduced coverage (overly narrow confidence
intervals). The LIML approach is a reasonable alterna-
tive (with less than 10 variants) or a sensitivity ana-
lysis (with large numbers of variants) as it is
approximately unbiased even with large numbers of
instruments.

Results of additional scenarios
Table 2 gives results for each of the seven additional
scenarios described above for data-generating models
with 25 genetic variants. Results for 9 and 100
genetic variants are given in the Appendix
(see Supplementary data available at IJE online). In
each case, we present the median estimates across
simulations, and the coverage; the IQR of estimates
for a null effect and power for a non-null effect are
also shown.

We see as follows:

Scenarios 1–2. For variants with different sizes of
effect, the use of true weights rather than an un-
weighted allele score gave some improvement in
power. When the alleles had similar sizes of effect
(scenario 1), the gain in power was generally only
3–4%, whereas when the alleles had considerably dif-
ferent sizes of effect (scenario 2), the gain was
12–15%. Results using an unweighted allele score
were unbiased even though the model was

Table 1 Instrumental variable estimates for genetic variants with equal-sized effects from allele score analysis and
multivariable analyses using two-stage least squares (2SLS) and limited information maximum likelihood (LIML) methods:
mean F statistic from regression of risk factor on the instrument (F stat), median estimate across simulations, interquartile
range (IQR) of estimates, coverage (Cov %) and power (%)

Null effect ð�X ¼ 0Þ Small effect ð�X ¼ 0:2Þ Moderate effect ð�X ¼ 0:4Þ

F stat Median IQR Cov % Median IQR Cov % Power Median IQR Cov % Power

Data-generating model with 9 genetic variants

Unweighted score 58.0 0.00 0.19 95.0 0.20 0.19 94.5 35.6 0.40 0.17 96.7 79.7

All variants (2SLS) 7.3 0.06 0.17 90.8 0.26 0.17 89.1 55.8 0.47 0.16 89.7 91.8

All variants (LIML) 7.3 0.00 0.20 95.0 0.20 0.20 94.0 39.5 0.41 0.19 95.7 77.8

Data-generating model with 25 genetic variants

Unweighted score 58.6 0.00 0.18 96.9 0.20 0.19 95.2 36.3 0.40 0.18 96.6 77.5

All variants (2SLS) 3.3 0.15 0.14 69.2 0.35 0.14 68.8 86.9 0.55 0.14 67.9 99.1

All variants (LIML) 3.3 0.01 0.21 92.6 0.20 0.20 92.4 36.2 0.40 0.22 93.5 72.8

Data-generating model with 100 genetic variants

Unweighted score 57.4 �0.01 0.18 95.4 0.20 0.18 95.7 35.7 0.40 0.17 95.2 77.0

All variants (2SLS) 1.6 0.32 0.10 1.3 0.52 0.09 1.4 100.0 0.72 0.09 0.9 100.0

All variants (LIML) 1.6 �0.01 0.30 79.2 0.21 0.30 80.5 42.6 0.41 0.27 82.1 70.2

USE OF ALLELE SCORES IN MENDELIAN RANDOMIZATION 1139

http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyt093/-/DC1


misspecified. Naive use of weights derived from the
same data under analysis resulted in severe bias. Use
of precisely estimated externally derived weights was
as efficient as use of the true weights, although power
was reduced when the weights were less precisely

estimated even, in some cases, to below that of the
unweighted score. Estimates using weights from a
cross-validation approach were unbiased, with power
in the 10-fold cross-validation analysis slightly below
that with the imprecisely measured external weights,

Table 2 Instrumental variable estimates in a range of scenarios from allele score analysis and multivariable analyses using
two-stage least squares (2SLS) and limited information maximum likelihood (LIML) methods in data-generating model
with 25 genetic variants: mean F statistic from regression of risk factor on the instrument (F stat), median estimate across
simulations, interquartile range (IQR) of estimates, coverage (Cov %) and power (%)

Null effect
(�X ¼ 0)

Small effect
ð�X ¼ 0:2Þ

Moderate effect
ð�X ¼ 0:4Þ

F stat Median IQR Cov % Median Cov % Power Median Cov % Power

1. Unequal effects

Unweighted score 58.5 0.00 0.18 96.7 0.20 95.3 36.3 0.40 96.7 76.7

Internal weights (2SLS)a 89.2 0.14 0.13 71.7 0.34 70.3 87.6 0.54 68.9 99.3

Cross-validated weights (2-fold) 32.2 0.00 0.26 96.1 0.20 94.6 25.4 0.40 95.9 56.5

Cross-validated weights (10-fold) 43.1 -0.01 0.22 95.8 0.20 94.8 26.8 0.40 96.5 62.5

External weights (imprecise) 46.2 0.00 0.20 96.5 0.20 94.9 32.3 0.40 97.2 68.3

External weights (precise) 62.4 0.00 0.17 95.7 0.20 94.9 38.9 0.40 97.1 80.2

True weights 64.0 0.00 0.17 96.3 0.21 94.5 38.9 0.40 96.6 80.3

LIML 3.5 0.00 0.20 92.4 0.20 92.2 38.8 0.40 94.2 77.2

2. Main and secondary effects

Unweighted score 59.2 0.00 0.18 96.9 0.20 95.2 36.8 0.40 96.6 78.3

Internal weights (2SLS) 124.5 0.10 0.12 76.6 0.30 90.2 78.2 0.50 77.3 99.8

Cross-validated weights (2-fold) 58.8 0.00 0.20 96.1 0.19 95.1 35.7 0.41 95.1 75.3

Cross-validated weights (10-fold) 75.0 0.00 0.17 95.8 0.19 94.9 40.1 0.40 95.4 82.8

External weights (imprecise) 79.2 0.00 0.15 95.3 0.20 94.7 42.0 0.40 95.9 86.7

External weights (precise) 97.6 0.00 0.14 95.9 0.20 95.1 48.1 0.40 95.9 92.8

True weights 99.2 0.00 0.14 95.7 0.20 94.9 49.4 0.40 95.7 92.9

Composite approach 33.8 0.01 0.14 95.2 0.21 94.9 53.4 0.41 95.1 94.0

LIML 4.9 0.00 0.16 93.3 0.20 93.6 49.7 0.40 92.6 91.6

3. Selected variants

Top 5 variants 40.9 0.23 0.12 62.4 0.43 60.7 81.4 0.64 58.5 97.5

Top 10 variants 59.8 0.19 0.10 64.5 0.39 63.4 85.9 0.59 63.2 98.6

Variants with P < 0:05 54.9 0.21 0.10 61.8 0.41 58.6 86.1 0.62 57.5 98.1

Variants with P < 0:01 34.8 0.26 0.10 59.1 0.45 62.8 73.2 0.67 58.7 90.5

4. Non-linear effects

Unweighted score 58.5 0.00 0.18 96.8 0.20 95.2 36.3 0.40 96.7 76.8

5. Interactions between variants

Unweighted score 59.5 0.00 0.18 96.6 0.20 95.5 37.3 0.40 96.6 77.5

6. Interactions between a variant and covariate

Unweighted score 44.8 0.00 0.18 96.9 0.20 95.5 36.2 0.40 96.8 77.1

7. Invalid variants

90% valid variants 58.6 0.10 0.19 83.3 0.30 82.7 61.0 0.50 84.2 90.1

70% valid variants 58.6 0.30 0.21 35.8 0.50 35.9 91.9 0.70 35.7 98.2

50% valid variants 58.6 0.49 0.20 6.2 0.70 5.8 99.0 0.89 4.9 100.0

aThe point estimate of a weighted allele score with internally-derived weights (weights derived from the data under analysis) is the
same as that from the 2SLS method with a separate coefficient for each variant.
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and in the 2-fold cross-validation analysis lower still
due to the weights being estimated in a smaller
sample. In scenario 2, the composite method results
using three instrumental variables indicate a small
amount of bias consistent with weak instrument
bias. Although nominal coverage levels appear to be
maintained, the apparent power is slightly greater
than when the true weights are used, possibly due
to the slight upward bias in estimates. Composite
approaches should only be used therefore when
there are variants with substantially different magni-
tudes of association, and where the composite instru-
ment is reasonably strong.

Scenario 3. The use of variants chosen according to
their strength of association with the risk factor in the
data under analysis gave seriously biased estimates,
with bias in the direction of the confounded associ-
ation. The bias is a result of the so-called ‘winner’s
curse’, whereby the estimate of the lead variant’s as-
sociation with the risk factor is likely to be overesti-
mated because of chance correlation with
confounders, leading to bias in the estimate of the
causal effect.

Scenarios 4–6. None of the ways of misspecifying
the analysis model considered (non-linear genetic ef-
fects, variant–variant and variant–environment inter-
actions) affected the bias, coverage or power of
estimates using the unweighted allele score.

Scenario 7. The use of invalid genetic variants in an
allele score severely biased estimates of causal effects,
even when 90% of the variants in the score were valid
instruments.

To summarize, the use of an allele score did not
seem to be sensitive to implicit parametric assump-
tions made by the procedure, such as the linearity
of the genetic associations. However, estimates
are sensitive to how the score is constructed, both
how the variants included in the score are chosen
and how the weights in a weighted score are
determined.

Discussion
The overall conclusion from this simulation study is
that unweighted allele scores can be used as instru-
ments in Mendelian randomization if each of the
variants used in constructing the allele score satisfies
the assumptions of an instrumental variable. We con-
sider an estimator to be valid if it is consistent for the
parameter of interest, the finite-sample bias is not
large and the nominal coverage of confidence inter-
vals is maintained. The validity of the unweighted
allele score did not appear to be adversely affected
by misspecifications of the genetic model, at least in
the range of simulation examples considered, such as
the assumption of equal effect sizes for variants,

non-linear genetic effects, or effect modification by
variant–variant or variant–environment interactions.
This is important because, in practice, the true genetic
model is unknown.

When an allele score is proposed for use in a
Mendelian randomization analysis, researchers
should make clear precisely how the decisions leading
to the construction of the score were made. If variants
have different sizes of effect on the risk factor, then
precision can be gained by using a weighted allele
score, although the use of an unweighted score gave
reasonable estimates in the examples considered. If
variants have considerably different sizes of effect,
then a weighted allele score would be thought to be
advisable, although the weights should not be gener-
ated naively from the data under analysis.14 If the
weights are imprecisely measured, then estimates
remain unbiased, although gains in power are some-
what reduced. In practice, if the only source of
information on the weights is the data under analysis,
then a cross-validation approach can be undertaken.
We would recommend a 10-fold cross-validation ap-
proach, so that in each case the weights are calculated
according to 90% of the data, and 10 sets of weights
are required. A jackknife (or N-fold cross-validation,
where N is the sample size) approach may give even
greater precision.35 In a jackknife approach, a set of
weights is calculated for each participant using data
on all of the other participants. This was not at-
tempted in this paper because of the computational
intensity of the method.

The use of an allele score enables reliable instru-
mental variable analysis with much larger numbers
of genetic variants than conventional methods
(2SLS, LIML) can handle. Although LIML performed
reasonably well in terms of bias, the coverage of the
LIML estimate was below nominal levels with large
numbers of variants. For variants with different sizes
of effect on the risk factor, LIML gave improved
power over an unweighted score method, but did
not dominate a weighted allele score method in
terms of precision. Estimates from the 2SLS
method showed bias and poor coverage throughout,
a manifestation of the problems of weak instrument
bias.

In order to make comparisons across simulations
with different numbers of variants, we have assumed
that the effect size is smaller when there are more
variants in the allele score. In practice, there is no
trade-off that the effect size decreases as the
number of instruments increases. The choice as to
how many (and which) variants to include in an
allele score should be a question addressed using sci-
entific knowledge rather than statistical testing.
Unless variants are very highly correlated, all variants
which can be reasonably assumed to be valid instru-
ments should be included in a Mendelian randomiza-
tion analysis to improve the precision of the causal
estimate.15
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The use of large numbers of genetic variants asso-
ciated with a risk factor has been proposed in
Mendelian randomization, on the premise that pleio-
tropic effects may be expected to ‘balance out’.36 This
is similar to expecting the effects of confounding on
observational estimates of association to cancel out.
The results of this paper demonstrate that the criteria
for the inclusion of a genetic variant in an allele score
should be just as stringent as those for any other
Mendelian randomization analysis.

Comparison with previous work
Previous work on the use of multiple genetic variants
in the context of Mendelian randomization has
demonstrated that using an allele score results in in-
creases in power compared with using single genetic
variants, with slight reductions in power compared
with using multiple variants, but better bias proper-
ties.14,15 This paper confirms these findings and fur-
ther reveals the problem of poor coverage with large
numbers of variants. The additional contributions of
this paper are: the comparison of internally weighted,
externally weighted and unweighted allele scores; the
use of cross-validation to obtain internally-derived
weights; the comparison of external weights with dif-
ferent precisions; the investigation of data-driven
selections of variants to use in allele scores; the inclu-
sion of LIML as well as 2SLS; and addressing the
robustness of estimates using allele scores to misspe-
cification of the score. A key novel finding of this
paper affecting the use of allele scores in practice is
that the procedure used for constructing an
allele score, or for deriving weights for a weighted
score, has a considerable impact on the bias of
estimates.

Limitations of this paper
Although the simulations have covered a range of dif-
ferent scenarios, the conclusions are limited by the
reliance on simulated rather than theoretical results.
Different simulation parameters could be investigated
in further investigations. In response to concerns from
a reviewer, simulations were repeated with a 10-fold
larger sample size; overall findings were unchanged
(Table A3, available as Supplementary Data at IJE
online). Further departures from the analysis model
in the data-generating model could be considered. For
example, we have here considered genetic interactions
on a linear scale; interactions could be considered on
a multiplicative scale. We have limited this paper to
the case of a continuous outcome. Although the
outcome in Mendelian randomization is often
binary, binary outcomes result in other difficulties in
effect estimation.37,38 However, we have no reason to
doubt that the general findings of this paper would be
applicable to the binary case.

We have here assumed that the external weights
used in calculating a weighted allele score are relevant

estimates of the true weights. If the external source is
from a different population, then these weights may
be biased for the true weights. As the use of an un-
weighted score, which is known to be misspecified
with variants of different strengths, did not result in
bias, it is unlikely that the use of misestimated
weights would lead to serious bias. However, when
choosing a source to derive external weights, it is
best to choose a source from a similar population
with enough participants to ensure precisely esti-
mated relevant weights. If a relevant external data
source cannot be identified, then either an un-
weighted score (if the genetic effect sizes are similar)
or a cross-validation approach (if the sample size is
large or the effect sizes are diverse) would be pre-
ferred. In choosing between approaches, there is a
tradeoff between an unweighted score (inefficient,
but unlikely to lead to bias), a cross-validation
approach (weights are relevant estimates, efficiency
depends on sample size), and an external source
(weights may be less relevant estimates, and may be
more precisely estimated).

One assumption which we have not varied is the
independence of genetic variants. If several variants
are included in an allele score which are in high link-
age disequilibrium (highly correlated), then it would
be unnecessary to include all the variants in an allele
score, especially if they all happened to be correlated
with the same functional variant. This would also
lead to difficulties in estimating and interpreting
weights in a weighted allele score.

A disadvantage of using multiple genetic
variants, and allele scores in particular, is sporadic
missing data leading to reduced sample sizes for ana-
lysis.15 In the multiple variant setting, imputation
methods have been shown to be effective in mitigat-
ing against any reduction in power due to missing
data.39

Supplementary Data
Supplementary data are available at IJE online.
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KEY MESSAGES

� The use of an allele score rather than multiple genetic variants can resolve the problem of weak
instrument bias in Mendelian randomization. Mendelian randomization studies should report rele-
vant F statistics to indicate whether weak instrument bias may be substantial.

� If genetic variants have approximately equal-sized effects, then an unweighted allele score gives
unbiased estimates with coverage close to the nominal level, which are robust to misspecifications
of the assumptions of linearity and additivity made by the allele score.

� If genetic variants have considerably different-sized effects, then a weighted allele score gives more
efficient estimates. These weights should be derived from an independent dataset or from a cross-
validation approach; naive use of the dataset under analysis to derive weights leads to severe bias.

� Choosing genetic variants to include in an allele score based on observed strength in the dataset
under consideration also leads to severe bias. More generally, the procedure for constructing an allele
score to be used in an analysis should be decided before looking at the data and should be made
clear, as it has a considerable impact on bias.

� Inclusion of variants in an allele score which are invalid instruments results in severe bias.
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