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A B S T R A C T   

Respiratory infected by COVID-19 represents a major global health problem at moment even after recovery from 
virus corona. Since, the lung lesions for infected patients are still sufferings from acute respiratory distress 
syndrome including alveolar septal edema, pneumonia, hyperplasia, and hyaline membranes Therefore, there is 
an urgent need to identify additional candidates having ability to overcome inflammatory process and can 
enhance efficacy in the treatment of COVID-19. The polypenolic extracts were integrated into moeties of bovine 
serum albumin (BSA) and then were coated by chitosan as a mucoadhesion polymer. 

The results of interleukin-6, and c-reactive protein showed significant reduction in group treated by Encap. 
SIL + CUR (64 ± 0.8 Pg/μL & 6 ± 0.5 μg/μL) compared to group treated by Cham. + CUR (102 ± 0.8 Pg/μL & 7 
± 0.5 μg/μL) respectively and free capsules (with no any drug inside) (148 ± 0.6 Pg/μL & 10 ± 0.6 μg/μL) 
respectively. Histopathology profile was improved completely. Additionally, encapsulating silymarin showed 
anti-viral activity in vitro COVID-19 experiment. It can be summarized that muco-inhalable delivery system 
(MIDS) loaded by silymarin can be used to overcome inflammation induced by oleic acid and to overcome 
COVID-19.   

1. Introduction 

The acute respiratory distress syndrome (ARDS) is diagnosed as a 
failure of respiratory system due to accumulate the pulmonary inflam-
matory cytokines. The progress of this risk leads to increase permeability 
of endothelial and epithelial cells, formation of pulmonary edema and 
hypoxemia. Additionally, there have loss of aerated tissue, decrease of 
lung compliance and bilateral opacities in the chest X-ray image [1]. 
Histologically, the disruption of alveolar capillary membrane barriers 
leads to develop noncardiogenic pulmonary edema, in which a pro-
teinaceous exudate floods the alveolar spaces, impairs gas exchange, and 
precipitates respiratory failure [2]. Although many different types of 
animal were used as a model to study ARDS including mice [3], rats [4], 
rabbits [5], guinea pigs [6], dogs [7], sheep [8], pigs [9], horses [10], 
and nonhuman primates [11]. ARDS continues to be an important global 
risk particular during infection of coronavirus (COVID-19) that is the 
main responsible factor to cause and develop ARSD. It is reported that 

the pathological examination of lung lesions for patients infected by 
COVID-19 revealed to presence alveolar septal edema, comprise capil-
lary congestion, desquamation and necrosis of pneumocytes, hyperpla-
sia of alveolar type 2 cells, hyaline membranes, atypical squamous 
metaplasia, interstitial and intra-alveolar oedema, and thrombi con-
taining platelet-fibrin [12]. The interstitial inflammatory infiltrate 
consisted mainly of lymphocytes and multinucleated syncytial cell. 
Since, a spike glycoprotein of COVID 19 can recognize angiotensin 
converting enzyme 2 (ACE2) facilitating its entry to host cells. These 
pathological evidences were associated to a severe acute respiratory 
distress syndrome (SARDS) [13]. 

For this reason, oleic acid was used here, as a real chemical model 
can cause strong production of inflammatory process in animal model 
leading to acute respiratory disorder [14,15]. The pathological feature 
of this model is similar to that was diagnosed in patients infected by 
COVID-19 [16]. Since, interleukins (mainly IL-1β and IL-6) can 
contribute strongly to develop ARDS. On the same way, IL-6 has been 
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evaluated extensively as a significant indicator for patients infected by 
COVID-19 [17]. Additionally, c reactive protein (CRP) is an acute phase 
protein obtained by the liver in response to IL-6 stimulation [18]. It is 
used as an important indicator for the diagnosis and assessment of se-
vere pulmonary infectious diseases [19]. Previous reports suggested that 
CRP and IL-6 may also be implicated in the pathophysiology of chronic 
obstructive pulmonary disease [20]. Thus, CRP level can be used as 
diagnostic tool in the early stage of COVID-19. Polyphenol and flavonoid 
compounds such as curcumin and silymarin are identified as natural 
ligands of peroxisome proliferator-activated receptor-γ, which reduces 
cytokine production and suppresses the inflammatory process. There-
fore, they might play a similar role in protection against lung injury 
associated with COVID-19 [21]. In this regards, the anti-inflammatory 
activity of flavonoids and polyphenol compounds have been 
confirmed strongly [22]. However, the bio-barriers existing in the res-
piratory airway systems such as mucus, ciliated cells and resident 
macrophages cause limitation for the localization, penetration and 
adsorption of drugs in the lung [23]. 

Our attempt here is to investigate the therapeutic potential effect of 
encapsulated polyphenolic compounds extracted from chamomile 
flowers and milk thistle against oleic acid triggered lung injury. Second, 
is to study the potential therapy of such these compositions against 
COVID-19. Nanoparticles made of BSA have obtained much interest 
because of their non-toxicity, their good stability, high drug capacity, 
and their ability to encapsulate hydrophobic and hydrophilic drugs. BSA 
NPs coated by second polymer was also investigated by using several 
polymers such as poly(ethyleneglycol)-modified polyethylenimine, 
protamine and poly-L-lysine [24]. In the current study, BSA incorporated 
chitosan was used as ideal carrier for delivering muco inhalable delivery 
system. Since, chitosan can modify the physiochemical properties of 
nanoparticles and thus increases the dispersibility of particles leading to 
increase deposition into the lungs. 

2. Material and methods 

2.1. Chemicals 

Chitosan was purchased from Fluka-Sigma-Aldrich, St. Louis, MO, 
USA; PBS tablets pH 7.3 was purchased from Oxoid Limited Basingstoke, 
Hampshire, England; Ethanol from Baker Analyzed, Fisher Scientific, 
Landsmeer The Netherlands; Bovine serum albumin (BSA); formalde-
hyde, Dimethyl sulfoxide (DMSO) from Sigma-Aldrich, St. Louis, MO, 
USA 

2.2. Extraction of chamomile flowers and milk thistle 

The extract of chamomile flowers and milk thistle were isolated by 
Hanafy et al. [27] in our bio-nanotechnology lab. Institute of Nano-
science and Nanotechnology, Kafrelsheikh University, Egypt. Briefly, 5 g 
powder of crushed dry chamomile flowers or milk thistle were kept in a 
flask containing 100 mL ethanol (96%). The mixture was then stirred for 
200 rpm under magnetic stirrer at 70 ◦C for 2 h. After incubation, the 
suspension was further filtered through a series of Whatman filters and 
finally the suspension was passed through 0.22 μm filter. Ethanol was 
then evaporated and 50 mL distilled water was added. The aqueous 
solution was lyophilized by freezing dry machine and the extract was 
stored at − 20 ◦C until use [25]. 

2.3. High performance liquid chromatography measurement 

High performance liquid chromatography (HPLC) was performed by 
using an Agilent 1260 series. The separation was carried out using 
Eclipse C18 column (4.6 mm × 250 mm i.d., 5 μm). The mobile phase 
consisted of water (A) and 0.05% trifluoroacetic acid in acetonitrile (B) 
at a flow rate 1 mL/min. The mobile phase was programmed consecu-
tively in a linear gradient as follows: 0 min (82% A); 0–5 min (80% A); 

5–8 min (60% A); 8–12 min (60% A); 12–15 min (85% A) and 15–16 min 
(82% A). The multi-wavelength detector was monitored at 280 nm. 10 
μL was used as injected volume from each sample. The column tem-
perature was maintained at 35 ◦C [26]. 

2.4. Fabrication of MIDS 

Extracted chamomile flowers and milk thistle were mixed separately 
to 50 mL bovine serum albumin (50 mg/100 mL) under magnetic stirrer 
for 30 min at room temperature. Then, curcumin (5 μg/mL) was added 
slowly. The mixture was then left under magnetic stirrer for additional 
20 min. After that, 20 mL chitosan (50 mg/100 mL) was added and was 
left for other 20 min under magnetic starrier. Then, the mucoadhesive 
assembly was dialyzed against distilled water and then was kept at − 20 
◦C for lyophilization [27]. 

2.5. Determination of loading efficiency 

The encapsulation of chamomile flowers and milk thistle extracts 
were sonicated separately for 15 min with absolute ethanol at 5 
amplitude and then they were centrifuged at 14,000 rpm for 40 min. The 
supernatant was used to calculate the concentration of encapsulated 
flavonoids by high performance liquid chromatography (HPLC, Agilent 
Technologies 1200 Infinity series, USA). The HPLC system contains a 
manual injector (20 μL sample loop) and UV–vis variable wavelength 
detector with an ultra C18, 5 μm (250 × 4.6 mm, Restek, USA) with 
detection at 288 nm. Data was processed by Agilent HPLC Chemstation 
(Rev B.04.03) [28]. 

2.6. Characterization of MIDS 

The characterization of muco-inhalable delivery system was studied 
by Scanning Electron Microscopy (SEM), Transmission Electron Micro-
scopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), UV–vis 
spectroscopy, and Zeta Potential according to [29,30]. 

2.6.1. Scanning electron microscopy (SEM) 
For SEM measurement, few drops of the nanoparticles suspension 

were dropped onto a template of SEM. after their drying, samples were 
coated by a 5 nm gold layer and measurements were conducted under 5 
kV-accelerating potential electron beam by using SEM (JEOL, JSM–IT 
100). Images were processed by using the software SEM/JSM 5000. 

2.6.2. Fourier Transform Infrared Spectroscopy (FTIR) 
FTIR experiments were carried out by using JASCO Fourier Trans-

form Infrared Spectrometer (JASCO, JAPAN, model no. AUP1200343) 
to detect the surface molecular structures in the range of 500–4000 cm− 1 

by using KBr pellet method. For all of the measurements, three scans 
were recorded on different regions on the samples and representative 
spectra were analyzed. 

2.6.3. UV–vis spectrophotometer 
The absorbance of inhalable nano aerosolized system was measured 

by using Jasco V-770 UV Visible Absorbance Spectrophotometer. 500 μL 
of fabricated micro/nanoparticles was diluted into 4 mL by using 
distilled water and then scanned at range 200–800 nm. 

2.6.4. Zeta potential measurement 
The electrophoretic mobility of samples was determined by photon 

correlation spectroscopy by using a Zeta Nano Sizer. All measurements 
were performed at 25 ◦C. Five following measurements were taken for 
analysis. 

2.7. Oleic acid induced lung injury 

Oleic acid purchased from Sigma Aldrich company, and then it was 
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used to induce pulmonary disease [31]. Since, 100 μL oleic acid was 
diluted by 30% ethanol. The oleate solution was completely sonicated 
until white turbidity was appeared. Then, it was kept as a stock solution. 
Afterword, 3 mL of stock solution was diluted to 10 mL saline and used 
as a working solution. Acute respiratory distress syndrome was induced 
by inhalable administration for 9 times (3 time exposure/per week). 
Since, mice were exposed to 5 mL oleate solution each time. 

2.8. Animals and ethical approval 

25 Male mice were obtained from animal house at TANTA city, Egypt 
and had weight range of 15–20 g. The mice were housed in poly-
propylene cages [38 × 23 × 10 cm] with not more than 5 animals per 
cage and maintained under standard laboratory conditions with natural 
dark and light cycle. Animal used standard dry rat diet and tap water 
with free access. Mice were undergone to laboratory conditions one 
week before beginning of the experiment. All procedures were reviewed 
and approved by the Animal Ethics Committee controlled by Kafrel-
sheikh University [25]. 

2.8.1. Animal model experiment 
Mice were subdivided into five groups i.e. [n = 5], 
G1: Control treated by saline 
G2: Oleic acid induced respiratory disease 
G3: Oleic acid induced respiratory disease and then they were 

treated by free capsules 
G4: Oleic acid induced respiratory disease, and then they were 

treated by Encap. Cham. + CUR 
G5: Oleic acid induced respiratory disease and then they were 

treated by Encap. SIL. + CUR. 

2.8.2. Blood samples collection. 
Blood samples were collected by using anti-coagulant tubes (EDTA) 

for obtaining blood picture analysis. They were settled by Platelet Count 
(PLT), Red Blood Cells Count (RBCs), White Blood Cells Count (WBCs), 
and Haemoglobin concentration (Hb) (mg/dL). While, C-Reactive Pro-
tein [32] was measured in serum. Each sample was measured under top 
serializing and cleaning condition. Sample waste was immediately 
collected and mixed directly with detergent. All gloves, tubes, musk 
were collected and wasted. 

2.8.3. Photomicrograph acquisition 
During dissection of mice, and the examination of lung, photomi-

crograph for external morphology of lung was obtained. 

2.8.4. Histopathology examination 
Lungs were removed and fixed by using 10% formalin for 24 h. Then, 

they were dehydrated by using serial concentrations of ethanol (70%, 
80%, 90%, 100%). After word, they were embedded inside paraffin wax 
after clearing by toluene. The paraffin block was then cut at 5 μm by 
microtome. The section was stained by H + E and images were further 
acquired by bright field microscopy. 

2.8.5. Interleukin 6 measurement 
Enzyme-linked immunosorbent assay was used to detect influence of 

oleic acid on secretion of inflammatory mediators such as IL-6. Lung was 
removed from each group and then harvested inside PBS pH 7.2. 100 μL 
homogenate of each sample was used to quantify the level of IL-6 ac-
cording to the manufacturer's procedure using Human IL-6 ELISA Kit 
(Bioassay Technology Laboratory, Shanghai, China). Samples were then 
measured spectrophotometry at 450 nm. The concentrations were 
determined by constructing standard curve using recombinant IL-6. The 
measurement was performed in triplicated [33]. 

2.8.6. Plaque reduction assay 
Plaque inhibition assay for drug susceptibility testing was carried out 

in a six multiwells plate with 90% confluent Vero E6 (for SARS-CoV-2 
virus) [34]. The treated (Various concentrations in DMEM) and con-
trol untreated hCoV-19/Egypt/NRC-03/2020 (Accession Number on 
GSAID: EPI_ISL_430820) (10-3 dilution of the virus stock) were incu-
bated at room temperature for 1 h. Growth medium was removed from 
the cell culture plates and the cells were incubated with (100 μL/well) of 
each virus or virus/compound mixture. After 1 h contact time for virus 
adsorption, 3 mL of DMEM supplemented with 2% agarose and the 
tested compounds was added onto the cell monolayer. Then, plates were 
left to solidify and incubated at 37 ◦C till formation of viral plaques (3 to 
4 days). Formalin (10%) was added for 2 h then plates were stained with 
1% crystal violet in distilled water. Control samples were included 
where untreated virus was incubated with Vero E6 cells and finally 
plaques were counted and the percent of reduction in plaques formation 
was recorded as following: 

%inhibition = viral count (untreated) − viral count (treated)
/viral count (untreated)× 100  

2.8.7. Biostatistical analysis 
The results were expressed as mean ± standard error of mean (SEM). 

Data were analyzed by Sigma Plot Software 12.1 using one-way analysis 
of variance (ANOVA), followed by Duncan's test for comparison between 
different treatment groups. Statistical significance was set at P ≤ 0.05. 

3. Results 

3.1. Flavonoids composition of chamomile flowers and milk thistle 
extraction 

HPLC was used to identify and quantify the encapsulation of flavo-
noids contents. The concentration of individual flavonoids in the ex-
tracts of chamomile flowers and milk thistle was shown in (Fig. 1 and 
Tables 1 & 2). Since, gallic acid showed good amount in encapsulation 
(4.96 ± 0.1 μg/mL). While, methyl gallate observed minor amounts 
(0.03 ± 0.2 μg/mL). The other contents of flavonoids were arranged as 
following; Gallic acid > Chlorogenic acid > Taxifolin > Caffeic acid >
Ellagic acid > Caffeic acid > Naringenin > Ferulic acid > Vanillin >
Coumaric acid > Methyl gallate. On the other hand, silymarin content 
was estimated as (96 ± 0.3 μg/mL). 

3.2. Characterization of MIDS 

Albumin contains many chemical bonds such as peptide bonds, ionic 
bonds, hydrogen bonds, covalent bonds, and electrostatic interaction 
bonds [35] that could facilitate its strong attachment. Such these 
chemical interactions provide number of advantages allowing to in-
crease stability, bioavailability, high capacity, good storage and control 
release. In the current study, TEM images showed successful nano-
particles formation. Since, the structure was assembled exactly into 3D 
structure observing crystals like shape in extract of silymarin (Fig. 2) and 
semi-spherical or spherical shapes in extract of chamomile flowers 
(Fig. 3). This behaviour depends mainly on the physical and chemical 
properties of cargo molecules interacted with used polymers. Confirmly, 
SEM images showed micro/nanopores were integrated inside moieties 
of assembly. 

In Fig. 4, there is a sharp adsorption at 278 nm in spectrum of BSA 
that may be attributed to a new transition of the indole moiety of its 
tryptophan residues when “protonated”. Tryptophan residues of pro-
teins are known to participate in π-cation interactions, which are 
important in protein stability and function [36]. 

The maximum absorption of chamomile flowers extract was detected 
at 287 nm according to [37]. In the current study, wide adsorption peak, 
was detected at spectrum of Encap. (Cham + CUR). This is due to the 
presence albumin, taxifolin and π-π-curcumin in the same region. While, 
the characteristic adsorption peak of curcumin was measured at 432 nm 
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in both pure curcumin and Encap. (Cham + CUR). While spectrum of 
Encap. (SIL + CUR) showed three peaks located at (277 nm, 309 nm and 
432 nm) that were attributed to (BSA, silymarin and curcumin) 
respectively. The zeta potential of free mucoadhesive capsules with no 
any drug inside showed good adsorption (− 19 ± 1.5 mV). This reveals 
presence good physical stability of suspension due to electrostatic 
repulsion of individual nanoparticles while, zeta potential measurement 
of Encap. (SIL + CUR) and Encap. (Cham + CUR). was changed into (32 
± 2 mV). Hence, the potential net charge surface was changed into 
positive charge indicating that polyphenolic extracts can alternate the 
final charge after their integration into BSA moieties (Fig. 3). 

In Fig. 5, FTIR spectrum of BSA alone shows that 3412 cm− 1 band is 
assigned to stretching vibration of hydroxyl group whereas 2952 cm− 1 

band was corresponded to stretching vibration of amide I (NH). 1673 

cm− 1 band was related to amide I (mainly C––O stretching vibrations) 
with a high proportion of α-helix [4]. Band at 1529 cm− 1 was assigned to 
amide II [38]. 

FTIR of chamomile flowers extract showed that band at 3455 cm− 1 

was attributed to OH stretching vibration; band at 2924 cm− 1, was 
associated to stretching vibration of –CH; band at 1644 cm− 1 was 
associated with C––O. While band located at 1368 cm− 1, was attributed 
to stretching vibration of –C–O–C. 

In the spectrum of curcumin, the adsorption of 3512 cm− 1 band was 
associated with phenolic stretching vibration. Additionally, 1644 cm− 1 

and 1515 cm− 1 bands are attributed to stretching vibration of C––C of 
benzene rings and olefinic bending vibrations of C–H bound to the 
benzene rings of curcumin. Stretching vibrations of C–O groups were 
localized at 811 cm− 1 [39]. 

The spectrum of chitosan showed band at 3483 cm− 1 which was 
ascribed to the stretching vibration of O–H and N–H. The band at 
1630 cm− 1 was corresponded to the binding vibration of the amido 
groups. The band in the range 1083 cm− 1 belongs to the special 
absorbing peaks of β-1,4 glycoside bond in chitosan [6–7]. 

In the spectrum of encapsulated chamomile flowers, band at 3383 
cm− 1, was assigned to stretching vibration of –OH and NH; band at 
2924 cm− 1, was associated to stretching vibration of –CH; while band 
located at 1654 cm− 1, was assigned to C––O. While, band located at 
1083 cm− 1 belonged to the special absorbed peaks of β-1,4 glycoside 
bond in chitosan. 

While FTIR spectrum of milk thistle extract showed bands at 3412 
cm− 1 associated to phenolic O–H stretching vibration. While, band 
located at 2927 cm− 1 was assigned to aromatic C–H stretching vibra-
tion. The functional bands of silymarin were located at 1654 cm− 1 that 
was attributed to mixed (C––O) amide and (C––C) vibrations, 1403 cm− 1 

band was associated to the symmetric aromatic ring stretching vibration 
(C––C ring) and 1066 cm− 1 which was responsible for C–O group. 

The spectrum of encapsulating silymarin combined curcumin illus-
trated that the characteristic bands of silymarin were shifted into 1645 
cm− 1, 1470 cm− 1, and 1079 cm− 1. 

3.3. Complete blood count (CBC) 

The complete blood count showed significant depletion in account of 
RBCs and haemoglobin compared to control values. While, the platelet 

Fig. 1. Chromatography result showed peaks of flavonoids contents isolated after their encapsulation.  

Table 1 
Quantification and identification of flavonoids contents isolated from chamo-
mile flowers and then were encapsulated.  

Flavonoids Standard flavonoids Encapsulation of chamomile 
flowers 

Area Conc. (μg/mL) Area Conc. (μg/mL) 

Gallic acid  215.77  16.8  63.77 4.96 ± 0.1 
Chlorogenic acid  366.67  28  18.47 1.41 ± 0.2 
Methyl gallate  808.27  10.2  2.75 0.03 ± 0.2 
Caffeic acid  482.70  18  6.54 0.24 ± 0.1 
Syringic acid  354.12  17.2  10.62 0.52 ± 0.1 
Ellagic acid  486.05  34.3  3.26 0.23 ± 0.2 
Coumaric acid  701.29  13.2  3.50 0.07 ± 0.1 
Vanillin  560.43  12.9  3.60 0.08 ± 0.7 
Ferulic acid  356.29  12.4  2.85 0.1 ± 0.3 
Naringenin  258.80  15  2.76 0.16 ± 0.2 
Taxifolin  219.24  13.2  11.92 0.72 ± 0.4  

Table 2 
Quantification and identification of flavonoids contents isolated from milk 
thistle and then were encapsulated.  

Flavonoids Standard Encapsulation of milk thistle 

Area Conc. (μg/mL) Area Conc. (μg/mL) 

Silymarin 3877 1000 373.4 96 ± 0.3  
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count was presented higher value in the oleic acid model as shown in 
Table 3 [40]. In contrast, Encap. SIL + CUR and Encap. Cham. + CUR 
showed significant improvement of RBCs count, platelets count and 
haemoglobin level. In meanwhile, oleic acid model treated by free 
capsules (with no any drug inside) exhibited slightly improvement. 

3.4. Photomicrograph results 

In the control group, the lungs were appeared as pink colour with 
very smooth surface and no leakage out of blood was seen under the 
naked eye. While there is an intense haemorrhage was clearly shown by 
naked eye in oleic acid model [41] and in group treated by using free 
capsules (with no any drug inside) compared to control group. Since, 
oleic acid contains free fatty acid that can react with pulmonary 

Fig. 2. Morphology of muco-inhaled delivery system. A) TEM image of Encap. (SIL + CUR). B) Grayscale image with invert LUT. C) Graysacle image with 
thresholding. D) Quantification of distribution diameter of nanoparticles. E) SEM image of Encap. (SIL + CUR). F) Thresholding image. G) Quantification of dis-
tribution micro/nanopores. 

Fig. 3. Morphology of muco-inhaled delivery system. A) TEM image of Encap. (Cham + CUR). B) Grayscale image with invert LUT. C) Graysacle image with 
thresholding. D) Quantification of distribution diameter of nanoparticles. E) SEM image of Encap. (SIL + CUR). F) Thresholding image. G) Quantification of dis-
tribution micro/nanopores. 
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capillary endothelium leading to increase endothelial permeability, 
inducing pulmonary edema and impairing gas exchange. While, hae-
morrhage was reduced completely in group treated by encapsulating 

extracts of milk thistle and chamomile flowers. Previously, haemorrhage 
was observed in severe ARDS that was diagnosed in patients suffering 
from complicated leptospirosis (Fig. 5). 

3.5. Histopathology results 

Alveoli are the functional unit in lung structure, they are mostly 
coated by alveolar type I and type II cells. Alveolar type I cells contains 
approximately 90% of the alveolar epithelium, and the remaining 10% 
is formed by cuboidal type II cells. In the current study, clear alveolar 
structure and thin alveolar walls, no haemorrhage and no exudate from 
alveoli were found in the microscopic evaluation. While, the histological 
changes of oleic acid-induced lung injury were associated with marked 
functional changes. Since, general polymorphonuclear leukocyte infil-
tration, along with intra-alveolar edema, haemorrhage, and fibrin 
deposition. Hyaline membranes, which are depositions of cell debris and 
plasma proteins lining the alveolar wall, were observed (Fig. 6) [42,43]. 
In contrast, encapsulated (silymarin and curcumin) was remodulated 
the histological profile completely and improved histo-architecture of 
tissue (Fig. 6J & Q). 

In the current study, pathological profile of acute lung injury scores 
was calculated according to previous publication [44]. Since, histo-
pathological examination was investigated as alveolar congestion, 
alveolar hemorrhages, infiltration or aggregation of neutrophils in the 
airspace or vessel walls, and thickness of alveolar wall/hyaline mem-
brane formation and inflammatory cell infiltration, were evaluated. The 
grading scale to score pathologic findings was as follows: 0 = no injury; 
1 = slight injury; 2 = moderate injury; 3 = severe injury; and 4 = very 
severe injury (Fig. 7). 

3.6. Interleukin 6 measurement 

Interleukin 6 is inflammatory cytokine, used as a clinical examina-
tion for measurement of the inflammatory process. Since, IL-6 can be 
released from monocytes, lymphocytes, or endothelial cells during tissue 
injury. Therefore, it stimulates neutrophil and platelets from the bone 
marrow to migrate into blood circulation. IL-6 plays a vital role in an 
increase expression of c-reactive protein (CRP), fibrinogen, serum am-
yloid A, and other hemostatic variables. While lipoproteins, and 

Fig. 4. UV visible spectrophotometer and zeta potential measurements. A & D) Free capsules. B & E) Encap. Cham + CUR. C & F) Encap. SIL + CUR.  

Fig. 5. FTIR measurement for modification bands. A) Encap. Cham. + CUR. B) 
Encap. SIL + CUR. 

Table 3 
Complete blood count in different groups.   

Haemoglobin RBCs Total leucocytes 
count 

Platelets 
count 

Control 13.3 ± 1.2 9.07 ±
1.1 

10.5 ± 1.3 243 ± 2. 

Oleic Acid 
Model 

8.7 ± 1.4 6.24 ±
0.8 

9.8 ± 1.2 689 ± 3.2 

Free Capsules 11.4 ± 0.9 7.8 ±
0.9 

11.6 ± 1.2 435 ± 2.5 

Encap. SIL +
CUR 

12 ± 1.3 9.14 ±
1.2 

14.8 ± 1.5 380 ± 2.3 

Encap. Cham +
CUR 

10.4 ± 1.2 7.5 ±
0–9 

18 ± 1.7 377 ± 1.9  
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albumin were decreased during its higher expression [45]. In mean-
while, CRP is a one of the acute phase proteins being synthesized by 
hepatocytes. The serum concentration of CRP increases during acute 
stages of diverse diseases associated with inflammation and tissue 
injury. In the current study, the level of IL-6 was increased significantly 
in group exposed to oleic acid (175 ± 0.9 Pg/μL). While, its level was 
reduced significantly in group treated by Encap. SIL + CUR (64 ± 0.8 
Pg/μL) compared to group treated by Cham. + CUR (102 ± 0.8 Pg/μL) 
and free capsules (with no any drug inside) (148 ± 0.6 Pg/μL) (Fig. 8). 
Similarly, Encap. SIL + CUR has ability to reduce completely CRP level 
in group treated by oleic acid (6 ± 0.5 μg/μL). While, the level of CRP 
was reduced slightly in group treated by Encap. Cham. + CUR (7 ± 0.5 
μg/μL) compared to oleic acid model (12 ± 0.8 μg/μL) and group treated 
by free capsules alone (10 ± 0.6 μg/μL) (Fig. 9). 

3.7. Plaque reduction assay 

Plaque-based assay is a standard technique used to determine virus 
concentration in terms of infectious dose [46]. Viral plaque assays 
determine the number of plaque forming units (pfu) in a virus sample, 

which is one measure of virus quantity. A confluent monolayer of host 
cells was infected by COVID-19 and the infected cell area created a 
plaque (an area of infection surrounded by uninfected cells) which can 
be seen with an optical microscope. In plaque reduction assay, Encap. 
(SIL. + CUR) nanoparticles were added in different concentrations 
(3.125, 6.25, 12.5 and 25 μg/mL) to infected cells and numbers of 
formed plaques were counted and compared to controls (untreated 
infected cells). Finally, percent of the reduction in plaques formation in 
comparison to control was recorded. In Table 4 and Fig. 10, the Encap. 
(SIL. + CUR) showed antiviral activity 44.4% against SARS-CoV-2 at the 

Fig. 6. Photomicrograph of dissecting mice. A) Control. B) Oleic acid model. C) Animal treated by free capsules. D) Animal treated by Encap. Cham. + CUR. E) 
animal treated by Encap. SIL. + CUR. Photomicrograph of individual lung. F) Control. G) Oleic acid induced model. H) Animal treated by free capsules. I) Animal 
treated by Encap. Cham. + CUR. J) animal treated by Encap. SIL. + CUR. Histopathological examination K) Control. L) Oleic acid model. M) animal treated by free 
capsules. N) Animal treated by Encap. Cham. + CUR. Q) Animal treated by Encap. SIL + CUR. 

Fig. 7. Scores of histopathological evaluation in different animal groups.  

Fig. 8. Evaluation the level of IL-6 (Pg/μL) in different groups showed signif-
icant increase in group treated by oleic acid. While there is serious reduction 
was seen in group treated by encapsulated (silymarin and curcumin). 
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highest tested concentration (25 μg/mL) and this inhibition was 
decreased gradually to 24.1% at the lowest tested concentration (3.125 
μg/mL). 

4. Discussion 

Nanoparticles made of chitosan have been strongly introduced for 
pulmonary administration due to its mucoadhesive properties. Chitosan 
contains many amino groups (–NH2) that can be protonated (–NH3 +) 
at acidic pH. Such this cationic charge of chitosan enables delivery to 

adhere and penetrate the mucosa of lung epithelial cells. This facilitates 
cellular internalization and drug accumulation. Since mucoadhesive 
polymer can help to open the intercellular tight junctions of the lung 
epithelium [4]. In meanwhile, BSA contains lysine and glutamate that 
make it suitable carrier to carry high amount of incorporated flavonoids 
inside its moieties [47]. 

In the current study, chitosan-BSA NPs loaded separately by extracts 
of chamomile flowers and milk thistle were mostly assembled into 3D 
network structure with many micro/nanopores. SEM images showed 
exactly presence several pores integrated into chitosan-BSA moieties 
and distributed inside the surface (Figs. 2 & 3). Zeta potential and UV 
visible spectrophotometer measurements confirmed the successful 
incorporation of assembly. Since, chitosan-BSA NPs obtained (− 19 ±
1.5 mV). While, the encapsulation of curcumin with extracts of cham-
omile flowers and milk thistle showed (32 ± 2 mV). The main absor-
bance peak of curcumin was observed at 432 nm indicating to presence 
of curcumin in both assemblies. In the current study, FTIR was used to 
study the modification of chemical bands after their reaction. Chitosan, 
BSA, curcumin, extract of chamomile flowers, milk thistle and the nano 
formulation were investigated. The spectrum of encapsulating milk 
thistle extract (silymarin) combined curcumin illustrated that the 
characteristic bands of silymarin were shifted into 1645 cm− 1, 1470 
cm− 1, and 1079 cm− 1. While, extract of chamomile flowers combined 
curcumin showed shifting peak of 1644 cm− 1 to 1654 cm− 1 (Fig. 5). 

FTIR result indicates that extract of chamomile flowers and milk 
thistle were successfully incorporated inside moieties of assembly. To 
confirm this result, chromatography analysis of encapsulated flavonoids 
showed that concentration of flavonoids content were arranged as 
following; Gallic acid > Chlorogenic acid > Taxifolin > Caffeic acid >
Ellagic acid > Caffeic acid > Naringenin > Ferulic acid > Vanillin >
Coumaric acid > Methyl gallate (Fig. 1). Recently, many reports have 
confirmed possible induction of ARDS with similar pathological evi-
dence in animal model by using oleic acid [48]. Since, oleic acid causes 
accumulation of neutrophil, increase in the level TNF, IL-8, IL-6 and IL- 
1β. This leads to loss of the alveolar-capillary barrier and forms the 
hyaline membrane formation [49]. In the current study, oleic acid ani-
mal model was developed as an attempt to study ARDS. The presented 
DATA showed significant increase in IL-6 and CRP as cytokines indicator 
for acute inflammation (oleic acid model). In contrast, the level of IL-6 
was reduced significantly in group treated by Encap. (SIL. + CUR) 
(64 ± 0.8 Pg/μL) compared to Encap. (Cham. + CUR) (102 ± 0.8 Pg/μL). 
Similarly, CRP level was exactly inhibited in oleic acid model treated by 
Encap. (SIL. + CUR) (6 ± 0.5 μg/μL). compared to group treated by 
Encap. (Cham. + CUR) (7 ± 0.5 μg/μL). Besides that, silymarin NPs 
exhibited antiviral activity against COVID-19 at concentration 25 μg/mL 
(Fig. 10 and Table 4). This result indicates that silymarin NPs have 
strong potential therapy against acute inflammation. Hence, they can 
improve histopathological evidence. Additionally, they have ability to 
reduce growth of COVID-19. 

It can be summarized that silymarin extracted from milk thistle, has a 
protective effect during lung injury because of its ability to decrease the 
production of nitric oxide, decrease the infiltration of inflammatory 
cells, suppress the activity of myeloperoxidase and its ability to reduce 
the protein levels of pro-inflammatory mediators, superoxide dismutase, 
catalase and GSH peroxidase [50]. Additionally, silymarin has been 
considered recently as a potent inhibitor for angiotensin converting 
enzyme-2 preventing its host-cell entry [51]. 

Chamomile has been used extensively as anti-microbial, anti-in-
flammatory, anti-spasmic, analgesic and sedative properties. This is 
because of its content from biological active compounds including 
essential oils and several polyphenols. Recently, chamomile extract has 
been considered as a good candidate, can be used for the treatment of 
respiratory symptoms especially when used as nasal irrigation because 
of its ability to reduce leukocyte infiltration, providing anti- 
inflammatory behaviour. According to this fact, chamomile extract has 
been used recently as a promising treatment for Covid-19 [52,53]. 

Fig. 9. Evaluation the level of CRP (μg/μL) in different groups showed signif-
icant increase in group treated by oleic acid. While there is serious reduction 
was seen in group treated by encapsulated (silymarin and curcumin). 

Table 4 
Antiviral activity against Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV2) as measured by plaque reduction assay.  

Code of 
sample 

Conc. 
(μg/mL) 

Virus control 
(PFU/mL) 

Viral titer post- 
treatment (PFU/ 
mL) 

Viral 
inhibition (%) 

Number 1  25 2.7 * 106 1.5 * 106  44.4%  
12.5 1.55 * 106  42.6%  
6.25 1.85 * 106  31.5%  
3.125 2.05 * 106  24.1%  

Fig. 10. Plaque reduction assay. A) Plate of plague reduction. B) Quantification 
of viral inhibition (%). C) Quantification of viral titer post treatment. 
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Similarly, curcumin represents a natural ligand can bind to peroxi-
some proliferator-activated receptor-γ, which represses the inflamma-
tory process by reducing cytokine production [54]. On the same way, 
many reports have revealed the ability of curcumin to bind with Mpro 
protease, indispensable for the maturation of SARS-CoV-2 [55]. There-
fore, it can bind to the glycoprotein receptor-binding domain and to the 
peptidase –ACE2 domain, which are necessary for the entry of the virus 
[56]. For this reason, our hypothesis was assessed to integrate curcumin 
with extract of chamomile flowers and milk thistle separately to raise the 
potential activity of total polyphenolic extract in treatment of inflam-
matory mediators and to have potential therapy against lung injury 
associated with COVID-19 [57,58]. 

5. Conclusion 

Many antivirus drugs have been derived recently into clinical trial. 
However, less of them may provide clear improvement for lung patho-
logical profiles during treatment. In the current study, oleic acid model 
showed polymorphonuclear leukocyte infiltration, along with intra- 
alveolar edema, haemorrhage, and fibrin deposition. Hyaline mem-
branes. This pathological profile was significantly remodulated by 
encapsulated silymarin + curcumin. In meanwell, IL-6 and CRP were 
significantly reduced in oleic acid model as well after their treatment. 
Additionally, encapsulated silymarin + curcumin exhibited antiviral 
activity against COVID19 by using plague reduction assay. Nanotech-
nology have been used widely in biomedical application to overcome 
drawbacks of pure drugs [59–62]. 
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